
Introduction

What	is	Phoenix?
What	is	React?
What	will	be	covered?
What	are	some	alternatives?

As	any	experienced	developer	knows,	scaling	is	not	a	trivial	problem.	In	fact,	if	your	product	is	successful,
building	the	app	is	often	the	easiest	part	of	the	process.

Scaling	is	more	than	just	handling	concurrent	connections	or	a	boat-load	of	simultaneous	requests.	It
also	means	dealing	with	a	large	team	pushing	code	at	the	same	time,	building	architecture	that	makes	it
easy	to	change	pieces	of	the	app	without	breaking	everything,	and	knowing	about	important	DevOps
concepts	that	are	generally	ignored	by	most	tutorials.

Scaling	problems	are	much	harder	to	predict,	track	down,	and	prevent	if	you	do	not	consider	them	from
the	outset	of	your	project.	You	need	to	be	aware	of	every	inefficiency,	ensure	actions	from	different
customers	do	not	conflict,	grow	your	database,	handle	errors,	tolerate	server	failures,	among	a	litany	of
other	issues	that	a	smaller	app	simply	does	not	need	to	consider.

Developers	who	have	to	deal	with	legacy	code	on	a	regular	basis	know	the	feeling	of	staring	at	a
codebase	that	looks	like	a	Frankenstein	monster	of	outdated	technologies	and	an	assortment	of	hacks
that	could	fall	apart	at	any	moment.	Refactoring	would	take	too	much	time,	so	you	just	continue	to	pile
onto	the	monster	and	pretend	that	everything	is	fine.

So	why	not	just	build	your	app	in	a	framework	that	is	designed	from	the	ground	up	to	easily	handle	your
scaling	concerns,	refactors	without	server	shutdowns,	and	comes	in	an	easily-understood	syntax?	Enter
Phoenix.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 1	of	407

https://www.learnphoenix.io

What	is	Phoenix?

Phoenix	is	a	web	framework	built	with	Elixir	that	is	able	to	leverage	the	insanely	powerful	Erlang	VM	gives
you	the	ability	to	handle	millions	of	concurrent	connections,	while	also	remaining	fault-tolerant	and	easy
to	implement.

To	give	you	a	real	comparison,	here	is	how	Phoenix	performs	compared	to	other	popular	frameworks
(data	from	mroth):

This	is	the	same	underlying	technology	that	WhatsApp	uses	and	one	of	the	reasons	Facebook	paid	$19b
for	them.	Check	out	this	article	in	Wired	appropriately	titled	Why	WhatsApp	Only	Needs	50	Engineers	for
Its	900M	Users.	As	you	might	guess,	it	has	to	do	with	Erlang.

Phoenix	uses	the	programming	language	Elixir,	which	is	a	functional	programming	language	built	on
Erlang.	The	syntax	is	very	similar	to	Ruby	and	most	programmers	find	it	easy	to	understand.	The	hardest
part	is	not	the	language	itself,	but	wrapping	one's	head	around	the	concepts	of	functional	programming.

The	basic	syntax	for	Elixir	looks	like	this:

defmodule	Fib	do
		def	fib(0)	do	0	end
		def	fib(1)	do	1	end
		def	fib(n)	do	fib(n-1)	+	fib(n-2)	end
end

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 2	of	407

http://elixir-lang.org/
http://www.wired.com/2015/09/whatsapp-serves-900-million-users-50-engineers/
https://github.com/mroth/phoenix-showdown
http://www.wired.com/2015/09/whatsapp-serves-900-million-users-50-engineers/
https://medium.com/@chetcorcos/functional-programming-for-javascript-people-1915d8775504
https://www.ruby-lang.org/en/
https://www.learnphoenix.io

What	is	React

React	is	the	"V"	in	"MVC"	(Model	View	Controller).	It	is	all	JavaScript	and	it	has	quickly	become	the	new
standard	for	frontends.	Rather	than	using	a	markup	language	like	HTML	to	render	the	DOM,	React
creates	each	element	in	the	DOM	with	a	function	and	creates	a	"virtual	DOM"	which	it	can	use	to	compare
against	the	current	version	of	the	DOM	and	render	only	the	smallest	necessary	amount	of	information.	If
this	sounds	complicated,	don't	worry.	React	does	all	of	this	behind	the	scenes,	so	all	you	have	to	do	is
write	JavaScript.

This	roundabout	approach	might	seem	like	overkill,	but	it	leads	to	more	efficient	rendering,	better	code
maintainability,	and	the	advantage	of	being	able	to	write	everything	in	a	syntax	that	is	more	coherent	than
a	markup	language:	JavaScript.

React	has	become	immensely	popular,	it	is	supported	by	Facebook,	and	it's	already	used	in	production	in
countless	major	websites	and	apps.

The	basic	syntax	for	JavaScript	is:

function	fibonacci(n)	{
			if	(n	<	2)	{
					return	n
			}	else	{
					return	fibonacci(n	-	2)	+	fibonacci(n	-	1)
			}
}

What	will	be	covered?

This	set	of	lessons	is	intended	for	people	with	at	least	some	experience	programming.	An	ideal	candidate
for	this	series	is	someone	who	just	finished	a	coding	bootcamp	and	wants	to	start	learning	how	to	write
production-ready	code.	If	you're	a	Ruby	on	Rails	developer,	or	if	you	have	experience	with	another
framework,	you	should	have	no	problem	picking	this	up.

It	would	be	ideal	for	someone	with	experience	in	functional	programming,	but	this	is	not	necessary;	we
will	go	through	the	fundamental	concepts	of	functional	programming.

We	will	cover	some	of	the	basics	of	Elixir	and	we	will	touch	on	Erlang	when	necessary.	For	more	detailed
tutorials	on	Elixir,	check	out	ElixirSips.com	and	ElixirSchool,	which	will	teach	you	a	lot	more	about	the
language.

On	the	frontend,	we	will	cover	the	basics	of	React	and	Redux,	but	a	deeper	knowledge	of	React	will	be

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 3	of	407

https://en.wikipedia.org/wiki/Markup_language
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/elixirsips.com
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/elixirschool.com
https://www.learnphoenix.io

very	useful.	The	egghead.io	tutorials	on	React,	Redux,	and	React	Native	are	really	good	if	you're	looking
for	additional	resources.

We	will	cover	some	of	the	basics	of	styling	and	we	will	use	Sass	as	our	preprocessor.	We	will	also	be
using	CSS	Modules	to	make	our	CSS	more	maintainable	and	modular.

This	is	not	an	intro-level	tutorial.	We	will	not	cover	the	basics	of	programming.	You	do	not	need	to	be	an
expert,	but	you	should	at	least	know	what	a	 function 	is	and	generally	how	to	use	them	in	at	least	one
language.	You	should	also	know	what	a	 library 	(Lodash,	Bootstrap,	etc)	is	and	have	at	least	some	idea
of	how	to	use	one.

If	you	are	totally	new	to	programming,	start	with	something	like	CodeSchool.	HTML	and	CSS	is	probably
the	easiest	place	to	start,	followed	by	JavaScript	and	Ruby	on	Rails.	Once	you	have	the	basics	down,
come	back	and	sign	up.

What	is	the	ideal	type	of	app	for	this	framework?

Phoenix	is	ideal	for	highly	concurrent	apps,	meaning,	apps	that	have	a	lot	of	things	happening	at	the
same	time.	For	example,	a	popular	messaging	app	might	have	a	few	million	people	using	it	at	any	given
time,	and	each	of	those	users	will	expect	to	receive	real-time	updates	when	a	message	is	sent	or
received.

This	is	not	to	say	that	Phoenix	does	not	perform	well	for	apps	that	do	not	demand	concurrency.	Its	fault-
tolerance	alone	makes	it	ideal	for	most	environments.	You	lose	very	little	in	the	way	of	developer
efficiency	for	a	final	product	that	is	significantly	better.

That	said,	for	a	small	hackathon-type	app,	Phoenix	is	probably	overkill.	A	self-contained	JavaScript
framework	such	as	Meteor.js	or	Feather.js	are	hard	to	beat	for	this	type	of	app.

There	are	also	languages	other	than	Elixir/Erlang	that	are	better	suited	for	large-scale	computation.	So	if
you	foresee	a	lot	of	number	crunching	or	machine	learning	in	your	future,	you	might	want	to	consider
Java,	Python,	or	R.

What	are	some	alternatives?

You	can	use	Phoenix	for	both	the	frontend	and	the	backend	using	Elixir's	builtin	markup	language.	If	you
choose	to	go	that	route,	check	out	the	book	Programming	Phoenix.

If	you're	looking	to	make	a	quick	prototype	and	you're	proficient	in	JavaScript	Meteor.js	and	Feathers.js
are	excellent	options.

Ruby	on	Rails	is	also	a	safe	bet	and	is	probably	the	default	choice	for	the	majority	of	startups	as	of	2016.
There	are	a	nearly-endless	number	of	resources	Rails.	A	good	place	to	start	is	CodeSchool	if	you're	new

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 4	of	407

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/egghead.io
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/css-modules
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/lodash.com
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/getboostrap.com
http://codeschool.com
http://www.oracle.com/technetwork/java/index-138747.html
https://www.python.org/
https://www.r-project.org/
https://pragprog.com/book/phoenix/programming-phoenix
http://codeschool.com
https://www.learnphoenix.io

to	the	framework.

There	are	hundreds,	if	not	thousands	of	options.	If	you	need	something	more	specific	than	the	options
listed	above,	you	probably	already	know	what	you	need	and	this	section	has	not	been	especially	useful	to
you.

General	formatting

Each	lesson	takes	you	through	the	process	of	building	an	app	with	varying	levels	of	complexity.	We	will
also	generally	use	different	technologies	for	each	app	as	the	landscape	evolves.	For	example,	this	app
will	use	React	and	Redux,	while	a	future	app	may	use	Cycle.js,	React	Native,	or	Elm.

In	the	event	you	have	a	bug	to	report,	please	post	an	issue	in	the	Github	repository.	The	Node	ecosystem
in	particular	moves	very	quickly	and	it	is	likely	some	pieces	of	this	tutorial	will	become	outdated	in	a
matter	of	weeks.	If	the	question	is	more	generally	about	Phoenix,	React,	Elixir,	et	al,	please	post	the
question	on	StackOverflow.

Code	written	in	codeblocks,	such	as	the	code	below,	shows	you	the	code	being	added,	removed,	or
changed.	Ellipses	(...)	are	often	used	in	place	of	code	that	is	being	omitted	for	reasons	of	brevity.

class	LessonShow	extends	React.Component	{

		...

}

Command	line	inputs	will	look	like	the	example	code	below.	The	command	line	inputs	assume	you	are
using	a	Mac.	If	you're	on	a	Linux	machine,	you	probably	already	know	what	you're	doing	and	it	will	be
similar.

$	cd	~/directory/name

Contact

Feel	free	to	contact	us	at	any	time	with	comments	or	questions	at	info@learnphoenix.io.

A	special	thanks	to	Josh	Adams,	Sean	Callan,	and	Ryan	Swapp	for	all	your	help	in	making	this	possible.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 5	of	407

http://cycle.js.org/
http://elm-lang.org/
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/stackoverflow.com
https://github.com/knewter
https://github.com/doomspork
https://github.com/ryanswapp
https://www.learnphoenix.io

Installing	Phoenix	and	React

Install	Phoenix
Node	and	npm
Brew
Postgres

To	use	Phoenix	and	React,	you	need	to	install	a	few	things	on	your	computer.	There	are	a	surprising
number	of	things	that	can	go	wrong	with	the	installation,	usually	involving	the	installation	of	PostgreSQL.

Install	Homebrew

The	first	thing	you	should	get	is	Homebrew.	Homebrew	allows	you	to	run	the	command	 brew 	to	install
just	about	anything	on	your	Mac.	Run	the	following	command	if	you	do	not	already	have	Homebrew
installed.	It	might	require	you	to	install	xcode	or	some	extra	software.	If	it	prompts	you	to	do	so,	install
that	too:

$	ruby	-e	"$(curl	-fsSL	https://raw.githubusercontent.com/Homebrew/install/master/install)"

You	should	check	to	make	sure	the	installation	ran	properly	by	running	the	command	 brew	help ,	which
should	pop	up	with	some	helper	text.	If	you	get	an	error,	something	went	wrong	and	you	should	do	some
Googling	to	figure	out	what	went	wrong.

Install	Node.js

Now	that	you	have	Homebrew,	it's	pretty	easy	to	install	everything	else.	You	will	need	Node	to	run	your
JavaScript	server	and	to	have	access	to	the	Node	Package	Manager	(NPM),	which	you	will	use	to	install	a
variety	of	assets,	including	React	and	Redux.

Run	the	following	command	to	install	Node:

$	brew	install	node

Then,	for	good	measure,	check	to	make	sure	the	installation	was	successful	by	running	 node	-v ,	which

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 6	of	407

http://brew.sh/
https://developer.apple.com/xcode/download/
https://nodejs.org/en/
https://www.learnphoenix.io

will	return	the	version	of	Node	you	are	using.	You	should	also	check	to	make	sure	that	NPM	was	installed
by	running	 npm	-v .

Install	Elixir

We	are	assuming	you're	using	a	Mac,	so	the	instructions	below	will	be	for	a	Mac	installation.	If	you	have
a	different	machine,	follow	this	link	to	find	instructions.

If	you're	on	a	Mac,	run:

$	brew	install	elixir

And	you're	done.	To	ensure	the	installation	went	smoothly,	run	 iex 	to	see	if	the	interactive	Elixir	shell
worked.

If	it	did,	and	this	is	your	first	installation	of	Elixir,	you	will	need	to	install	the	Hex	package	manager	(the
Elixir	equivalent	to	NPM).	You	can	install	it	by	running	 mix	local.hex

Install	Phoenix

Now	it's	time	to	install	Phoenix.	Run	the	following	command	to	install:

$	mix	archive.install	https://github.com/phoenixframework/archives/raw/master/phoenix_new.ez

Install	PostgreSQL

We	will	use	PostgreSQL	(often	referred	to	as	"Postgres")	as	our	default	database.	A	lot	of	things	can	go
wrong	here,	so	you	might	have	to	do	some	debugging	to	make	sure	you	can	get	Posgres	to	work	on	your
machine.

Install	Postgres	by	running	the	command:

$	brew	install	postgresql

Postgres	is	now	installed	on	your	machine,	but	it	is	not	running.	You'll	want	to	start	Postgres	at	login,	so
run	the	following	two	commands	to	both	set	Postgres	to	launch	at	login	and	launch	now:

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 7	of	407

http://elixir-lang.org/install.html
https://hex.pm/
https://www.learnphoenix.io

$	ln	-sfv	/usr/local/opt/postgresql/*.plist	~/Library/LaunchAgents
$	launchctl	load	~/Library/LaunchAgents/homebrew.mxcl.postgresql.plist

To	make	sure	everything	installed	properly,	run	the	command	 which	psql ,	which	should	return
/usr/local/bin/psql .	If	it	does	not,	something	went	wrong	and	you're	in	for	some	debugging.

Now	you	need	to	create	a	default	database,	which	should	be	the	same	as	your	username.	If	you	do	not
know	your	username,	you	can	find	it	by	running	the	command	 whoami .	Create	the	database	with	the
following	command,	with	your	username	in	place	of	 <username> :

$	createdb	`<username>`

Then	run	 psql 	to	make	sure	the	database	was	created	properly.	If	you	enter	the	Postgres	shell,	you're	in
business!

Postgres	errors

If	you	already	have	a	previous	version	of	Postgres	installed,	you	will	probably	run	into	some	problems.

$	pg_ctl	-D	/usr/local/var/postgres	-l	logfile	start

Another	potential	problem	that	comes	up	regularly	is	the	lack	of	a	"role".	If	you	get	the	following	error,	you
will	need	to	configure	a	role:

**	(Mix)	The	database	for	Firestorm.Repo	couldnt	be	created,	reason	given:	psql:	FATAL:		role	

You	can	configure	a	role	by	entering	the	 psql 	shell	and	creating	the	role.	Run	the	following	command:

$	psql	postgres

This	will	bring	up	a	new	shell	that	gives	you	the	ability	to	run	commands.	You	should	enter	the	following
to	create	the	new	role	(note	that	 postgres=# 	is	the	prompt	and	should	not	be	entered):

postgres=#	CREATE	ROLE	postgres	LOGIN	CREATEDB;

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 8	of	407

https://www.learnphoenix.io

You	should	receive	 CREATE	ROLE 	as	the	response.	Then	exit	the	shell	with	 \q 	and	you	should	be	in
business!

If	you're	still	having	issues,	try	restarting	Postgres	with	the	following	commands.

$	pg_ctl	-D	/usr/local/var/postgres	stop	-s	-m	fast
$	pg_ctl	-D	/usr/local/var/postgres	-l	/usr/local/var/postgres/server.log	start

And	if	you	still	can't	get	it	working,	try	Stackoverflow	or	a	Google	search.

Additional	Installations

You	will	also	need	a	text	editor	of	some	sort.	You	can	use	 Sublime	Text	3,	Atom,	or	any	other	text	editor
you'd	like	(or	if	you're	a	ninja,	you	can	use	vim).	Some	people	also	prefer	an	IDE	(integrated	development
environment)	such	as	Webstorm.	At	the	end	of	the	day,	this	is	all	a	matter	of	preference	and	will	make
little	difference.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 9	of	407

https://www.sublimetext.com/
https://atom.io/
http://www.vim.org/
https://www.jetbrains.com/webstorm/
https://www.learnphoenix.io

Directory	structure

Create	a	new	Phoenix	project
Create	a	new	React	project
Overview	of	directory	structure

This	app	is	separated	into	two	pieces:	the	 frontend 	and	the	 backend .	This	separation	should	be	familiar
to	you,	as	it	is	the	general	structure	of	just	about	every	app.	The	frontend	will	be	built	with	React,	and	the
backend	with	Phoenix.

The	first	thing	we're	going	to	do	is	create	a	directory	(also	known	as	a	"folder")	with	the	name	of	our	app.
The	app	we	are	building	is	a	clone	of	the	Acquire	functionality	of	Intercom.io.	You've	probably	seen	it
before--it's	the	little	chat	bubble	on	the	bottom	right	of	many	websites	that	allows	you	to	chat	with	a
representative	of	the	company:

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 10	of	407

https://www.intercom.io/live-chat
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/intercom.io
https://www.learnphoenix.io

When	the	chat	bubble	is	clicked,	a	chat	window	is	overlayed	on	the	page:

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 11	of	407

https://www.learnphoenix.io

We	will	also	want	to	build	a	web	and	mobile	app	that	allows	the	company	representative	to	easily
manage	several	chats	at	once.	We	will	model	this	chat	feature	on	Slack	and	WhatsApp's	web	app.

Since	we	are	not	especially	creative	when	it	comes	to	naming	our	projects,	we'll	call	this	app	PhoenixChat
and	we	will	keep	a	live,	production-ready	version	of	the	completed	app	at	PhoenixChat.io.

$	mkdir	phoenix-chat-api	phoenix-chat-frontend

Now	that	we	have	directories	to	contain	our	project,	we	need	to	generate	the	code	for	our	React	frontend
and	Phoenix	backend.

Generating	the	frontend

Now	we	need	to	create	our	React	app.	Let's	create	the	folder	 frontend ,	then	enter	it	and	create	a	Node
app	with	 npm	init ,	filling	out	the	command	line	prompts	as	necessary	(you	can	also	use	the	 -y 	flag	to
accept	all	defaults	if	you're	feeling	lazy):

$	cd	phoenix-chat-frontend	&&	npm	init

That's	all	you	need	to	do	for	React	at	the	moment.	We	will	go	over	React	in	more	detail	in	the	next
section.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 12	of	407

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/phoenixchat.io
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/phoenixchat.io
https://www.learnphoenix.io

Frontend	directory	structure

We	are	not	going	to	set	up	the	directory	structure	in	advance	of	the	app,	but	the	general	structure	will	be
(and	for	those	of	you	who	want	to	know	how	the	tree	below	was	generated,	check	out	tree):

phoenix-chat-frontend
		|--	node_modules
		|--	app
						|--	components
						|--	images
						|--	redux
						|--	styles

frontend 	will	contain	everything	for	the	frontend	of	our	application.	This	includes	code	for	our
development	environment,	as	well	as	our	production	code.	This	includes	our	webpack	configuration,	our
package.json 	file,	and	everything	else	we'll	need	to	compile	our	app	into	something	we	can	run	in
production.

app 	contains	just	the	code	that	will	become	our	app.	This	includes	our	components,	our	styles,	and	how
all	those	components	fit	together.

components 	will	contain	all	of	our	React	components.	This	is	what	renders	on	the	screen	and	displays
our	data.

images 	will	contain	our	static	images.

redux 	will	contain	our	 actions ,	our	 reducers ,	and	our	 store .	These	are	the	core	components	of
Redux	and	will	be	covered	in	a	later	chapter.

styles 	will	contain	default	styling,	such	as	a	css	reset	or	other	css	libraries	we	might	need	import.

Overall,	the	React	structure	is	pretty	straight-forward.

Generating	the	backend

Fortunately,	Phoenix	makes	it	easy	to	generate	boilerplate	code.	We	can	use	 mix	phoenix.new 	to	create
a	simple	app.	We	are	creating	our	Phoenix	app	without	Brunch	because	we	are	not	using	Phoenix	for	our
frontend.	When	you	run	 mix	phoenix.new ,	you	will	be	prompted	to	fetch	and	install	dependencies.	You
want	to	enter	 y 	to	install	your	dependencies.

Run	the	following	commands	to	go	back	a	directory,	and	create	your	new	app.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 13	of	407

http://brewformulas.org/tree
http://brunch.io/
https://www.learnphoenix.io

$	cd	..
$	mix	phoenix.new	phoenix-chat-api	--app	phoenix_chat	\
		--module	PhoenixChat	--no-brunch

The	first	command	sends	you	back	a	directory	(we	may	not	include	directory	changes	in	the	future),	then
the	second	command	creates	your	new	project	within	the	 phoenix-chat-api 	directory	we	made	earlier.

You	probably	noticed	 mix ,	which	is	a	command	line	tool	that	we	will	use	extensively	with	Phoenix.

We	then	choose	the	 phoenix-chat-api 	directory	and	create	a	new	application	called	"PhoenixChat".	We
are	passing	in	the	 --no-brunch 	flag	because	we	do	not	need	to	render	HTML	or	generate	all	the
boilerplate	for	a	frontend	since	we	are	building	our	frontend	with	React.

Backend	directory	structure

The	Phoenix	generator	has	taken	care	of	most	of	our	boilerplate	for	us.	The	general	structure	is	as
follows	(with	some	directories	omitted	for	the	sake	of	brevity):

phoenix-chat-api
		|--	config
		|--	deps
		|--	lib
		|			|--	phoenix_chat
		|--	priv
		|			|--	repo
		|			|--	static
		|--	test
		|--	web
						|--	channels
						|--	controllers
						|--	models
						|--	static
						|--	templates
						|--	views

config 	contains	several	files	related	to	configuration.	Among	the	most	useful	are	 prod.secret.exs ,
which	can	hold	all	your	secret	production	keys	with	less	risk.

deps 	contains	all	the	dependencies	you	installed.

lib 	contains	configuration	for	your	endpoints	and	your	Ecto	repositories	(don't	worry	about	what	that
means,	we	will	cover	it	later).

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 14	of	407

https://www.learnphoenix.io

priv 	contains	all	of	your	data	migrations	(i.e.	a	record	of	all	your	database	changes),	and	your	static
files.

test 	contains	all	your	Elixir	tests.

web 	contains	everything	related	to	the	web	API,	including	 channels ,	 controllers ,	 models ,	and	other
useful	goodies.

If	you	do	not	know	what	all	of	this	means,	do	not	be	concerned.	We	will	go	into	each	of	these	in	greater
detail	in	later	chapters	as	they	become	relevant.	For	now,	just	know	that	Phoenix	has	generated	most	of
what	we	need	to	get	started.	Since	we	are	creating	a	web	API,	most	of	what	we	are	interested	in	lives	in
the	 web 	directory.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 15	of	407

https://www.learnphoenix.io

Basics	of	React

Basics	of	React
Basics	of	Webpack
npm	and	SemVer

In	this	section,	we	go	over	the	basics	npm	and	React	and	some	of	its	syntactical	quirks	and	install	some
necessary	dependencies	to	be	able	to	handle	ES2015,	2016,	and	2017	syntax,	as	well	as	jsx.

What	is	React?

React	is	a	JavaScript	library	built	by	Facebook	for	highly	efficient	DOM	rendering	and	a	more	functional
programming	approach	to	the	frontend.	From	the	React	docs:

We	built	React	to	solve	one	problem:	building	large	applications	with	data	that	changes	over
time.

Rather	than	use	a	markup	language	such	as	HTML,	each	React	component	is	a	function,	so	you	can	build
the	elements	within	your	DOM	using	a	much	more	powerful	language:	 JavaScript .

And	because	each	component	is	encapsulated	in	a	function,	you	can	reuse	code,	run	tests,	and	build
better	abstractions	much	more	easily.

There	are	a	few	React	competitors	that	are	formidable	and	arguably	better.	Among	them	are	 Cycle.js,
Elm,	and	Om.	Each	has	its	advantages.

The	reason	we	are	using	React	is	because	it	has	a	much	larger	community,	it	is	easier	to	hire	developers
who	know	React,	and	it	is	supported	by	Facebook,	which	makes	it	more	likely	to	have	long-term	staying
power.

Since	 React	v0.14.0 ,	the	main	 React 	function	has	been	split	into	 React 	and	 ReactDOM ;	 ReactDOM 	is
what	we	use	to	render	our	components	to	the	DOM	and	 React 	is	what	we	use	to	create	our	components.

Most	people	use	 React.createClass 	to	create	components	and	 ReactDOM.render 	to	render	our
components	to	the	DOM.	Most	people	also	use	the	JSX	syntax,	which	mimics	HTML's	syntax.	A	very
simple	React	app	looks	like	this:

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 16	of	407

https://en.wikipedia.org/wiki/HTML
http://cycle.js.org/
http://elm-lang.org/
https://github.com/omcljs/om
https://www.learnphoenix.io

import	React	from	"react"
import	ReactDOM	from	"react-dom"

const	App	=	React.createClass({
		render()	{
				return	(<div>Hello	World!</div>)
		}
})

ReactDOM.render(<App	/>,	document.body)

There	are	those	who	prefer	to	use	a	different	syntax	for	creating	React	components.	That	syntax	extends
the	 Component 	export	from	 React .	Both	are	perfectly	valid.

We	will	be	using	the	 class 	syntax,	as	it	is	the	syntax	that	Facebook	suggests	going	forward.	For	a	good
article	that	explains	the	differences	between	the	two,	check	out	this	article	by	Todd	Motto.	An	example	of
this	syntax	would	be:

import	React	from	"react"
import	ReactDOM	from	"react-dom"

class	App	extends	React.Component	{
		render()	{
				return	(<div>Hello	World!</div>)
		}
}

ReactDOM.render(<App	/>,	document.body)

Another	option	(though	slightly	different),	and	one	that	we	will	be	using	on	occasion,	is	to	create	your
React	components	as	a	pure	function,	also	referred	to	as	a	"stateless	function",	or	a	"presentational
component".

import	React	from	"react"
import	ReactDOM	from	"react-dom"

const	App	=	()	=>	{
		return	(<div>Hello	World!</div>)
}

ReactDOM.render(<App	/>,	document.body)

Pure	functions	are	highly	performant	with	React,	and	since	we	are	using	Redux	to	handle	state,	many	of
our	components	will	be	pure	functions.	This	is	the	case	because	our	data	is	all	passed	down	from	the

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 17	of	407

https://toddmotto.com/react-create-class-versus-component
https://www.learnphoenix.io

highest-level	component,	so	none	of	our	child	components	need	to	worry	about	their	local	state.	We	will
cover	these	concepts	in	greater	detail	in	the	Redux	section.

Also	worth	noting,	if	you	want	to	pass	 props 	into	one	of	these	functions,	you	must	pass	it	in	through	the
function:	 const	App	=	(props)	=>	{	...

This	should	look	familiar	to	people	who	have	used	the	 PureRenderMixin .	Both	rely	on	pure	functions	and
give	a	nice	performance	boost.	Just	keep	in	mind	that	mixins	are	not	supported	by	ES6	classes	and	are
slowly	being	phased	out.

When	using	Webpack,	you	will	want	to	 export 	these	components	so	you	can	 import 	them	in	other	files.
There	are	two	options	when	it	comes	to	exporting:	default	exports	and	named	exports.

Each	file	can	only	have	one	 default 	export,	and	we	will	primarily	use	 default 	export.

import	React	from	"react"
import	ReactDOM	from	"react-dom"

class	App	extends	React.Component	{
		render()	{
				return	(<div>Hello	World!</div>)
		}
}

export	default	App

If	you	then	wanted	access	to	this	component	in	a	different	file,	you	would	simply	import	it	the	same	way
you	imported	 React 	and	 ReactDOM ,	using	the	path	to	the	file:

import	React	from	"react"
import	ReactDOM	from	"react-dom"
import	App	from	"path/to"
...

So	if	your	component	lived	within	 app/components ,	you	would	import	it	from	that	directory.

Named	exports	are	slightly	different,	and	you	can	export	several	named	exports	in	a	single	file.	The
syntax	for	a	named	export	uses	curly	braces	for	the	import	to	pull	out	a	specifically	named	pieces	from
within	a	module:	 import	{	Component	}	from	'react' .	You	can	export	functions,	objects,	classes,	and
other	such	things.	For	more	information	on	exporting	modules,	check	out	this	link.

You	will	also	see	examples	where	we	don't	name	the	actual	file	being	imported	and	simple	leave	it	at	the
directory	name.	This	is	only	possible	if	you	name	the	file	 index.js 	with	a	default	export.	Webpack	will
assume	that	the	 index.js 	file	is	the	file	you	were	looking	for.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 18	of	407

http://www.2ality.com/2014/09/es6-modules-final.html
https://www.learnphoenix.io

For	example,	if	the	path	were	 app/Home/index.js ,	you	could	simply	import	from	 app/Home 	and	Webpack
will	assume	that	you	meant	to	import	from	 index.js .

What	is	Webpack?

Webpack	is	a	module	bundler.	If	you've	ever	used	Browserify	and/or	RequireJS,	the	concept	is	very
similar	but	Webpack	allows	for	much	greater	functionality.

This	added	functionality	comes	at	the	cost	of	simplicity.	Finding	oneself	stuck	in	Webpack	configuration
hell	is	a	not-so-uncommon	experience	for	developers	who	have	used	it.	That	said,	the	advantages	of
webpack	outweigh	the	pain	of	added	upfront	configuration.

Webpack	is	the	technology	that	gives	us	the	ability	to	split	our	app	into	modules	that	we	can	piece
together	to	make	our	frontent	efficient	and	well	organized.

It	also	gives	us	a	bunch	of	loaders	which	allows	Webpack	to	replace	your	traditional	build	tool,	such	as
Grunt	or	Gulp.	We	will	go	over	all	of	this	in	greater	detail	as	it	becomes	relevant,	so	if	this	is	at	all
confusing,	just	know	that	Webpack	is	awesome,	almost	everyone	uses	it	for	their	React	projects,	and	we
will	be	using	it	for	this	app.

Webpack	is	also	where	even	the	most	advanced	developer	can	find	himself	stuck	in	Webpack
configuration	hell	for	hours	on	end.	So	if	you	find	yourself	stuck	on	Webpack,	know	that	you	are	not
alone.

Setting	up	our	frontend

We're	going	to	change	a	few	things	in	our	newly-generated	 package.json 	file.	We're	going	to	add	a
start 	command	so	we	can	start	our	server	with	additional	configuration	using	the	command	 npm
start .	We	can	do	this	by	changing	the	 scripts 	in	our	 package.json 	file:

/package.json
commit: coming soon

		"scripts":	{
				"start":	"node	server.js",
				"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1"
		},

What	we	are	doing	here	is	telling	Node	to	use	the	 server.js 	file,	which	we	will	create	shortly,	to	start	our
server.	This	allows	us	to	keep	all	of	our	basic	server	configuration	in	one	file	and	is	common	practice.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 19	of	407

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/webpack.github.io
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/browserify.org
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/requirejs.org
https://webpack.github.io/docs/loaders.html
https://www.learnphoenix.io

We	are	going	to	leave	 test 	alone	for	now.	At	the	moment,	if	you	run	the	command	 npm	test ,	you	will
simply	receive	a	message	letting	you	know	that	it	has	not	been	set	up	yet.

Something	that	is	worth	noting	about	these	scripts	is	that	there	are	some	commands	that	NPM	handles
by	default.	These	include	 npm	start ,	 npm	test ,	and	a	few	others.	If	you	want	to	run	a	custom	script	that
is	not	supported	by	default	(which	we	will	do	later	on),	you	must	use	 npm	run	<name	of	script> ,	with	the
name	of	your	script	in	the	appropriate	field.	You	will	see	this	in	action	later.

The	next	thing	we	want	to	do	is	set	up	a	few	dependencies	so	we	can	quickly	get	this	project	up	and
running.	These	dependencies	are	split	into	 devDependencies 	and	 dependencies .

Development	dependencies	(devDependencies)	will	not	be	run	in	production,	so	this	is	where	you	put
things	like	your	module	bundler	(Webpack)	and	transpilers	(Babel).	Basically,	anything	that	is	processed
before	going	into	production	goes	here.

Your	production	dependencies	(dependencies)	are	anything	that	you	need	to	run	your	app	after
compilation.	React	is	an	example	of	a	dependency	that	you	will	need	when	your	app	is	live,	because	your
app	depends	on	React	to	render	the	frontend.

Add	the	following	dependencies,	each	of	which	will	be	elaborated	upon	after	the	codeblock	(note	that	a
\ 	denotes	a	line	break	in	your	terminal):

$	npm	install	--save-dev	babel-core	babel-loader	\
		babel-preset-es2015	babel-preset-react	babel-preset-stage-0

When	adding	packages	to	your	app,	you	have	the	option	of	adding	them	to	the	 package.json 	file	and
running	 npm	install ,	which	will	install	the	dependencies	you	added,	or	running	the	command	in	your
terminal.

It	is	also	important	to	use	the	 --save 	or	 --save-dev 	flag.	If	you	do	not,	your	app	will	run	locally	but	when
someone	clones	your	repository	or	when	you	try	to	deploy,	your	app	will	not	work	because	it	will	not	know
which	dependencies	to	install.

After	running	the	command	above,	you	should	see	the	following	dependencies	in	your	 package.json 	file
automatically	added	(though	the	version	numbers	will	likely	be	different	since	these	packages	are
updated	constantly).	You	can	also	specify	version	numbers	with	the	 @ 	syntax:	 npm	install	--save-dev
babel-core@6.7.6 .

SemVer

Another	thing	that	sometimes	confuses	people	is	the	caret	(^)	that	comes	before	the	version	number.
This	is	for	use	in	packages	that	abide	by	(as	all	packages	should)	SemVer,	which	stands	for	"semantic
versioning".	SemVer	is	very	important	for	maintaining	project	stability	and	it	is	definitely	worth	checking

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 20	of	407

https://docs.npmjs.com/misc/scripts
http://semver.org/
https://www.learnphoenix.io

out	the	docs	to	learn	more	about	it.

The	short	version	is	that	versioning	should	follow	a	pattern,	and	that	the	pattern	actually	means
something.	For	example,	 X.Y.Z 	denotes	 X	=	major	version ,	 Y	=	minor	version ,	 Z	=	patch .	Any
changes	in	 X 	will	likely	break	your	app,	changes	in	 Y 	will	add	new	features	but	shouldn't	break	anything,
and	 Z 	is	for	small	patches	and	bug	fixes	that	won't	break	anything.

So	coming	back	to	the	caret	(^)	and	using	the	example	 ^6.14.0 ,	this	tells	npm	that	we	want	to	use	any
package	that	is	major	version	 6 	and	any	minor	version	that	is	at	least	 14 	(i.e.	 6.15.2 	would	be	fine).
You	might	also	see	a	tilde	(~),	which	denotes	a	minor	version.	So	for	the	same	version	above,	it	would
tell	npm	to	use	anything	with	major	version	 6 ,	minor	version	 14 ,	and	any	acceptable	patch	(i.e.	 6.14.3
would	be	fine).	You	can	also	use	 x 	in	place	of	the	version	you	want	updated	(i.e.	 6.x.x 	is	equal	to
^6.14.0).

		...
		"devDependencies":	{
				"babel-core":	"^6.14.0",
				"babel-loader":	"^6.2.5",
				"babel-preset-es2015":	"^6.14.0",
				"babel-preset-react":	"^6.11.1",
				"babel-preset-stage-0":	"^6.5.0"
		}

The	first	dependency	we	add	is	 babel-core .	This	is	something	you	have	to	add	to	use	 babel-loader ,
which	is	really	what	we	want.	Why	the	two	are	separated,	I	have	no	idea,	but	I'm	sure	there	is	a	perfectly
good	reason.

The	second	dependency	is	 babel-loader .	This	is	probably	a	good	time	to	go	over	what	loaders	are	and
why	they	are	a	very	useful	part	of	Webpack.

Loaders

Loaders	allow	you	to	take	code	of	a	particular	type	and	apply	transformations	to	it.	Or	as	it	says	in	the
Webpack	docs:

Loaders	allow	you	to	preprocess	files	as	you	require()	or	"load"	them.	Loaders	are	kind	of	like
"tasks"	are	in	other	build	tools,	and	provide	a	powerful	way	to	handle	frontend	build	steps.
Loaders	can	transform	files	from	a	different	language	like,	CoffeeScript	to	JavaScript,	or	inline
images	as	data	URLs.	Loaders	even	allow	you	to	do	things	like	require()	css	files	right	in	your
JavaScript!

One	cool	feature	of	loaders	is	that	you	can	chain	them	to	apply	multiple	transformations.	For	example,	if
you	had	a	 .less 	that	had	styles	you	wanted	to	apply	to	your	component,	you	could	run	the	 less-loader ,

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 21	of	407

http://semver.org/
https://webpack.github.io/docs/loaders.html
https://www.learnphoenix.io

followed	by	the	 css-loader 	(because	the	 less-loader 	transformed	it	into	css),	followed	by	the	 style-
loader ,	which	loads	the	style	into	your	React	component:

require("style-loader!css-loader!less-loader!./styles.less")

We'll	cover	the	specifics	of	each	loader	we	use	as	we	progress	through	this	course.

Back	to	setting	up	the	frontend

The	next	three	dependencies	are	 babel-preset-react ,	 babel-preset-es2015 ,	and	 babel-preset-
stage-0 .	These	give	you	access	to	all	the	Babel	plugins	under	that	category.	So,	when	you	add	the
babel-preset-react 	plugin,	you	get	access	to	the	plugins:

react-constant-elements

react-display-name

react-inline-elements

react-jsx

react-jsx-compat

The	last	dependency	we	add	is	 babel-preset-stage-0 ,	which	tells	Babel	to	use	the	most	recent
experimental	version	of	Babel.	The	stages	range	from	0	to	4,	with	0	being	the	least	stable	and	4	being	the
most	stable.	We	are	going	to	use	 stage-0 	because	it	gives	us	access	to	a	lot	of	handy	features	that	are
not	yet	implemented	in	ES6,	such	as	destructuring	assignment	and	spread	operators.	We	will	explain
what	each	feature	is	in	more	detail	as	we	use	them.

As	of	Babel	6,	you	need	to	be	more	explicit	about	what	Babel	uses.	To	do	this,	you	have	two	options:
create	a	 .babelrc 	file,	or	add	a	 babel 	configuration	option	within	 package.json .	This	is	entirely	a
matter	of	preference,	but	since	in	this	case	we	don't	have	many	options	to	configure,	let's	just	add	it	to
package.json :

/package.json
commit: coming soon

		...
		"devDependencies":	{
				...
		},
		"babel":	{
				"presets":	["es2015",	"react",	"stage-0"]
		}

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 22	of	407

https://babeljs.io/docs/plugins/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://www.learnphoenix.io

Then	let's	go	ahead	and	add	Webpack	as	a	development	dependency.	We	will	add	both	Webpack	and	the
the	Webpack	development	server	so	we	don't	have	to	continually	refresh	the	page	to	see	the	changes	we
made:

$	npm	install	--save-dev	webpack	webpack-dev-server

The	last	dependency	we	need	before	we	can	render	"Hello	World!"	to	our	DOM	is	React.	Let's	go	ahead
and	add	React	as	a	dependency	for	our	app.	Recall	that	this	is	not	a	development	dependency,	but	a
production	dependency.	Since	we're	building	this	app	into	static	assets,	it	actually	doesn't	matter	if	you
install	things	as	 devDependencies 	or	 dependencies ,	but	it's	generally	advisable	to	keep	modules	that	are
exclusively	for	testing	etc	separate	from	things	that	your	app	actually	depends	on	in	runtime.

$	npm	install	--save	react	react-dom

In	version	0.14.0,	React	split	into	two	main	pieces:	 React 	and	 ReactDOM .	ReactDOM	handles	everything
DOM-related,	such	as	rendering	to	the	DOM,	while	React	itself	handles	the	creation	of	all	of	your
components.	If	this	does	not	makes	sense	now,	it	will	become	immediately	obvious	as	soon	as	we	start
using	them.

In	the	15.0.0	update,	they	changed	their	versioning	to	 major 	versioning	in	accordance	with	SemVer
mostly	because	corporate	people	were	afraid	to	use	software	that	"isn't	even	1.0	yet".	There	are	few,	if
any,	breaking	changes	that	will	affect	most	applications.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 23	of	407

http://semver.org/
https://www.learnphoenix.io

Basics	of	Webpack

Set	up	Webpack
Hello	World!

In	this	section,	we	set	up	Webpack	and	get	our	 Hello	World! 	app	running.

Webpack	configuration

Now	that	we	have	all	of	our	NPM	dependencies	set	up,	we	need	to	configure	Webpack.	As	mentioned
before,	this	is	not	the	simplest	task.	There	are	a	seemingly	limitless	number	of	configuration	options,	but
for	now,	we	will	only	use	the	minimum.

Create	a	file	using	the	 touch 	command	in	your	 /phoenix-chat-frontend 	directory	called
webpack.config.js .

$	touch	webpack.config.js

In	that	file,	add	the	following	configuration	options,	which	we	will	go	over	line-by-line	below	the	code:

/webpack.config.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 24	of	407

https://www.learnphoenix.io

var	path	=	require('path')
var	webpack	=	require('webpack')

module.exports	=	{
		devtool:	'eval',
		entry:	[
				'webpack-dev-server/client?http://localhost:3000',
				'./app/index'
],
		output:	{
				path:	path.join(__dirname,	'dist'),
				filename:	'bundle.js'
		},
		module:	{
				loaders:	[
						{
								test:	/\.js$/,
								loaders:	['babel'],
								exclude:	/node_modules/,
								include:	path.join(__dirname,	'app')
						}
]
		},
		resolve:	{
				extensions:	['',	'.js']
		}
}

The	first	line	requires	the	Node's	 path ,	which	is	used	to	keep	track	of	directory	names.	This	is	not	strictly
necessary,	but	makes	directory	paths	clearer.

The	second	line	requires	 webpack .	We	need	this	because	we	are	going	to	use	some	of	the	plugins	from
Webpack	later	on	in	the	configuration.

Next	we	have	our	 devtool ,	which	we	set	to	 eval .	This	just	sets	your	debugging	tool	to	one	of	several
options,	but	almost	everyone	uses	 eval 	because	it	builds	faster.	If	you	want	better	bug	tracking,	you
should	use	 source-map 	or	 inline-source-map .

The	next	configuration	option	is	 entry .	Entry	is	an	important	concept	in	Webpack	because	it	defines	all
the	modules	that	are	to	be	loaded	when	you	start	the	app,	with	the	last	one	being	exported.	This	is	an
important	piece	to	understand,	so	we	will	go	into	greater	detail.

The	first	entry	point	is	the	 webpack-dev-server ,	which	we	want	to	run	our	app	through	first.	Next,	we	run
it	through	the	Webpack	hot	loader,	which	hot-loads	our	code	and	allows	the	changes	you	make	to	take
effect	immediately	without	losing	the	state	of	your	app.	The	last	thing	is	 app/index .	This	will	finally
export	whatever	we	eventually	put	in	the	 index.js 	file,	which	we	will	create	shortly.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 25	of	407

https://webpack.github.io/docs/configuration.html#devtool
https://www.learnphoenix.io

You	might	be	wondering	at	this	point	why	we	left	off	the	 .js 	part	of	 index.js 	in	our	configuration	file.
That's	because	of	the	 resolve 	configuration	option,	which	allows	us	to	leave	off	the	file	extensions	of
any	named	file	type--in	this	case,	 .js .

The	next	configuration	option	is	 output .	This	is	another	important	part	of	webpack	to	be	aware	of.
Because	React	is	all	JavaScript,	Webpack	is	able	to	bundle	everything	into	a	single	file	(though	not
necessarily	one	file,	as	we	will	see	much	later	in	this	course)	and	insert	it	into	a	script	tag	in	your	app.

In	our	case,	we	are	cleverly	naming	our	bundle,	 bundle.js .	We	are	also	specifying	the	location	of	all
static	assets	to	be	compiled	into	 dist/ .	If	you	want	to	see	webpack	in	action	or	look	at	what	would	be
built	in	production,	you	can	run	 webpack 	from	the	command	line	and	it	will	compile	your	app	and	drop	it
in	 phoenix-chat-frontend/dist .

The	next	line	is	our	list	of	 loaders .	By	the	time	this	project	is	through,	we	will	have	several	additional
loaders	for	different	types	of	files.	This	is	where	you	tell	Webpack	how	to	handle	different	file	types.	You
can	handle	images	(.png ,	etc),	styling	(.less ,	 .scss ,	etc),	and	just	about	any	other	type	of	file
imaginable--even	file	extensions	that	you	set	arbitrarily,	such	as	 .potato .	Loaders	are	among	the	most
useful	features	of	webpack,	and	they	are	the	easiest	to	understand.

Also	within	our	 loaders ,	we	are	telling	it	to	ignore	any	files	within	our	 node_modules 	directory,	because
those	files	are	already	compiled,	and	we	telling	it	to	explicitly	look	for	files	within	our	 app 	directory.

We	now	have	a	functional	(if	basic)	webpack	configuration.

Server	configuration

The	last	piece	of	configuration	we	need	is	to	configure	our	server.	Recall	we	changed	our	 npm	start
script	to	call	a	 server.js 	file	so	we	could	add	some	additional	configuration.	So	the	first	thing	we	need
to	do	is	create	the	 server.js 	file	in	our	 /phoenix-chat-frontend 	directory.

$	touch	server.js

In	that	file,	add	the	following	configuration:

/server.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 26	of	407

https://www.learnphoenix.io

var	webpack	=	require('webpack')
var	WebpackDevServer	=	require('webpack-dev-server')
var	config	=	require('./webpack.config')

new	WebpackDevServer(webpack(config),	{
		historyApiFallback:	true
}).listen(3000,	'localhost',	function	(err,	res)	{
		err	?	console.log(err)	:	console.log("Listening	at	localhost:3000")
})

First	we	declare	our	dependencies	for	this	module	(webpack ,	 webpack-dev-server ,	and
webpack.config),	then	we	create	a	new	 WebpackDevServer ,	with	some	of	the	options	from	our	Webpack
configuration	and	tell	it	to	listen	on	 port	3000 .

The	 historyApiFallback 	is	necessary	for	handling	route	changes.	We	will	start	out	with	something
called	 hashHistory 	(explained	in	detail	later),	which	handles	all	routing	on	the	client	with	no	server-side
configuration	necessary.	This	flag	makes	routing	possible	for	single	page	apps.	If	you	want	to	dig	deeper
into	why	this	is,	check	out	this	resource.

If	there	is	an	error,	it	tells	us	there	was	an	error.	Otherwise,	it	logs	 Listening	at	localhost:3000 .

HTML,	React,	and	ReactDOM

There	are	only	two	remaining	additions	we	need	to	make	to	get	our	"Hello	World!"	app	running.	First	we
need	an	 index.html 	in	our	root	directory,	then	we	need	to	create	our	 app/index.js 	file	to	render	to	the
page.

Go	ahead	and	create	an	 index.html 	file	in	the	root	directory	and	add	the	following.

$	touch	index.html

/index.html
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 27	of	407

https://github.com/bripkens/connect-history-api-fallback
https://www.learnphoenix.io

<html>
		<head>
				<title>PhoenixChat.io</title>
				<meta	name="description"	content="Free,	easy-to-use	React	component	for	real-time	chat	with	prospective	customers."
				<meta	name="viewport"	content="width=device-width,	initial-scale=1"	/>
				<meta	charset="UTF-8">
		</head>
		<body>
				<div	id='root'></div>
				<!--	Webpack	Bundle	-->
				<script	src="bundle.js"></script>
		</body>
</html>

Google	actually	doesn't	care	about	most	meta	tags,	but	it	does	care	about	the	 description 	tag.

The	next	 meta 	tag	is	the	 viewport 	tag,	which	makes	it	possible	to	resize	your	app	based	on	the	size	of
the	screen	that	is	viewing	it--namely,	this	is	what	makes	viewing	your	site	on	a	mobile	device	possible.
Pretty	much	every	app	should	have	this	tag.

We	are	also	including	a	 meta 	tag	that	sets	the	 charset 	to	 UTF-8 .	This	is	not	usually	necessary	since
most	browsers	will	assume	this	is	the	case.	This	allows	you	to	use	lots	of	new	characters	and	symbols.
For	more	on	this,	check	out	UTF-8.

Next	is	the	 body ,	in	which	we	are	creating	a	 div 	with	an	 id 	of	 root .	It	is	within	this	 div 	that	we	will
create	our	entire	app.	Though	it	is	possible	to	render	your	app	directly	to	 document.body ,	it	is	bad
practice	and	should	be	avoided.	If	this	point	is	confusing,	it	will	become	clear	once	we	fill	out	our
index.js 	file.

The	last	thing	we	add	is	a	 script 	tag	that	links	to	 bundle.js .	This	is	where	Webpack	puts	all	of	our
React	code	to	allow	us	to	render	our	app.	You	may	recall	in	our	Webpack	configuration	we	set	our
output 	to	have	a	filename	of	 bundle.js 	and	a	path	of	 dist .	This	is	where	we	reference	that
configuration	option.

Let's	create	a	few	basic	files	that	we'll	use	later	while	building	the	app.	First,	create	an	 app 	directory
within	 /phoenix-chat-frontend ,	and	then	a	file	called	 index.js 	within	app:

$	mkdir	app
$	touch	app/index.js

Now,	within	our	 app/index.js 	file,	we	want	to	write	the	code	that	will	render	our	app.	First,	let's	create	a
React	component	that	will	render	the	text	"Hello	World!"	within	a	 div .

/app/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 28	of	407

https://support.google.com/webmasters/answer/79812?hl=en
https://en.wikipedia.org/wiki/UTF-8
https://www.learnphoenix.io

import	React	from	"react"

class	HelloWorld	extends	React.Component	{
		render()	{
				return	(<div>Hello	World!</div>)
		}
}

The	next	thing	we	need	to	do	is	render	that	component	to	the	DOM.	For	that,	we	need	 react-dom .	Chance
your	code	to	the	following	to	tell	ReactDOM	to	render	your	component	under	the	 div 	we	created	in	our
index.html 	file	with	an	 id 	of	 root .

/app/index.js
commit: coming soon

import	React	from	"react"
import	ReactDOM	from	"react-dom"

class	HelloWorld	extends	React.Component	{
		render()	{
				return	(<div>Hello	World!</div>)
		}
}

ReactDOM.render(
		<HelloWorld	/>,
		document.getElementById("root")
)

Hello	World!

We're	finally	done	with	configuration!	Now	it's	time	to	start	the	app.	Within	the	 phoenix-chat-frontend/
directory,	run	the	following	commands	to	install	all	your	 npm 	dependencies	and	start	your	app	(using	the
script	we	created	at	the	beginning	of	this	lesson):

$	npm	install	&&	npm	start

You	should	now	have	an	app	that	renders	"Hello	World!"	to	the	screen	like	this

coming	soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 29	of	407

https://www.learnphoenix.io

Additional

There	are	a	few	optional	configurations	you	can	do	that	will	save	you	some	headache	down	the	road.	If
you're	using	git	for	version	tracking,	you	should	probably	add	a	 .gitignore 	to	make	sure	you	don't
commit	your	 node_modules .	Within	a	 .gitignore 	file	in	the	root	of	your	app,	simply	add	the	line
node_modules 	and	git	will	not	track	anything	in	that	folder.

If	you're	on	a	Mac,	you	should	probably	add	 .DS_Store 	to	this	list	as	well,	because	they're	annoying.	And
while	you're	at	it,	add	 npm-debug.log 	incase	you	try	to	run	 npm	start 	from	the	wrong	directory,	or	cause
any	other	errors	with	npm.	And	since	everything	in	 dist 	will	be	created	from	the	contents	of	 app ,	we
can	safely	ignore	its	contents.

$	touch	.gitignore

/.gitignore
commit: coming soon

node_modules
.DS_Store
npm-debug.log
dist

A	few	additional	notes	regarding	common	practices.	JavaScript	generally	uses	 camelCase ,	Elixir	uses
PascalCase ,	and	erlang	uses	 under_scores .	You	will	occasionally	use	erlang	code	within	Phoenix.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 30	of	407

https://www.learnphoenix.io

Routes	and	views

React	components
React	router
Hash	history

In	this	section,	we	set	up	our	router	using	 react-router ,	which	has	become	the	default	router	for	React.
We're	also	going	to	create	a	few	basic	views	so	that	our	router	has	something	to	display.

We're	also	going	to	go	some	of	the	very	basics	of	how	routers	work	and	the	various	routing	options.	For
the	time	being,	we're	going	to	stick	to	a	hash	router	(explained	below).

Components

The	first	thing	we	should	do	is	create	a	few	components	for	our	router	to	render.	For	now,	let's	create	a
Home 	component	for	our	root	route	(/)	and	a	 Settings 	component	for	our	user	profile	and	settings
(/settings).

Because	React	allows	us	to	reuse	components,	we	should	be	as	explicit	as	possible	with	our	component
names.	At	some	point	in	the	future,	we	will	have	a	 Message 	component	that	will	be	used	once	for	every
message	in	a	chat	between	customer	and	representative,	and	may	even	be	shared	across	applications.

For	the	sake	of	clarity,	we	will	avoid	using	plural	names	whenever	possible.	 Comment 	vs.	 Comments 	will
always	lead	to	confusion	down	the	road.	As	we	add	more	components,	it	will	become	abundantly	clear
why	this	is	necessary.

We	will	want	to	keep	all	of	these	organized	in	a	 components/ 	directory	under	 app/ .	Let's	create	that	now
along	with	directories	and	files	for	each	of	our	new	components.	Remember,	directory	changes	may	not
be	included	in	the	remainder	of	this	course	for	the	sake	of	brevity.

$	mkdir	-p	app/components/{Home,Settings}
$	touch	app/components/{Home/index.js,Settings/index.js}

Note	the	 -p 	flag	in	our	 mkdir 	command.	This	tells	bash	that	if	the	directory	does	not	exist,	go	ahead
and	make	it.	If	we	did	not	use	this,	we	would	have	to	run	 mkdir	app/components 	first.

And	while	we're	at	it,	let's	create	some	generic	content	in	each	of	those	 index.js 	files	we	just	created.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 31	of	407

https://www.learnphoenix.io

/app/components/Home/index.js
commit: coming soon

import	React	from	"react"

export	class	Home	extends	React.Component	{
		render()	{
				return	(
						<div>Home	component</div>
)
		}
}

export	default	Home

/app/components/Settings/index.js
commit: coming soon

import	React	from	"react"

export	class	Settings	extends	React.Component	{
		render()	{
				return	(
						<div>Settings	component</div>
)
		}
}

export	default	Settings

React	Router

We	are	going	to	use	the	popular	React	Router	for	our	routing.	If	you	are	not	familiar	with	what	routing	is,
it's	the	thing	that	handles	your	url	path,	such	as	 http://github.com/learnphoenix ,	and	directs	you	to	the
proper	view.	Without	a	router,	your	app	will	be	limited	to	a	single	page	(this	is	not	strictly	true	as	there	are
ways	around	using	a	router,	but	this	is	generally	true).

Now	that	we	have	a	few	components	set	up,	we	should	direct	our	router	to	access	them.	In	order	to	use
React	Router,	we	need	to	add	a	few	dependencies.

$	npm	install	--save	history	react-router

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 32	of	407

https://github.com/rackt/react-router
https://www.learnphoenix.io

React	Router	requires	the	 history 	package	and	does	not	automatically	install	it	for	you.

The	next	thing	we	need	to	do	is	change	the	 index.js 	file	within	our	 app 	directory	to	use	our	router.
Rather	than	use	 ReactDOM 	to	directly	render	directly	to	the	DOM,	we're	going	to	go	through	React	Router
to	render	the	appropriate	content	based	on	the	current	path.

Add	the	following	code	the	 index.js 	file	at	the	root	of	your	project.	Each	line	will	be	described	in	detail
after	the	code	block.

/app/index.js
commit: coming soon

import	React	from	"react"
import	ReactDOM	from	"react-dom"
import	{	Router,	Route,	IndexRoute,	hashHistory	}	from	"react-router"

import	{	default	as	Home	}	from	"./components/Home"
import	{	default	as	Settings	}	from	"./components/Settings"

const	App	=	props	=>	(<div>{props.children}</div>)

ReactDOM.render(
		<Router	history={hashHistory}>
				<Route	path="/"	component={App}>
						<IndexRoute	component={Home}	/>
						<Route	path="settings"	component={Settings}	/>
				</Route>
		</Router>,
		document.getElementById("root")
)

The	first	thing	we	have	here	is	a	list	of	our	dependencies	for	this	file.	 React 	and	 ReactDOM 	should	look
familiar.	From	 react-router ,	we	need	 Router ,	 Route ,	and	 IndexRoute .	The	 Router 	is	the	outer
element	that	controls	our	routes,	 Route 	is	each	individual	route,	and	 IndexRoute 	displays	a	component
when	you	get	to	the	 / 	root	route.

Also,	since	we're	exporting	both	a	named	export	(export	class	Home	...)	and	a	default	export	(export
default	Home),	we	are	specifying	that	we	are	importing	the	 default 	import	using	the	syntax	 {	default
as	...	} .	This	is	not	strictly	necessary,	and	your	app	will	not	throw	an	error,	but	it's	the	recommended
syntax	as	of	July	2016.

A	note	on	ES2016	arrow	function	syntax:	We've	also	(temporarily)	changed	around	our	 App 	component	to
show	of	the	different	ways	in	which	you	can	write	functions	in	ES2015.	When	writing	arrow	functions	in
ES2015:

parentheses	are	optional	when	there	is	only	one	argument	(in	this	case	"props"	is	the	only

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 33	of	407

https://www.learnphoenix.io

argument)
if	the	function	is	only	one	line,	it	is	implicitly	returned	(you	do	not	need	to	type	out	"return")
curly	braces	are	optional	for	single-line	functions
you	can	destructure	the	arguments.

In	other	words,	all	the	following	are	equivalent:

const	App	=	function	(props)	{
		return	(
				<div>
						{props.children}
				</div>
)
}.bind(this)

const	App	=	(props)	=>	{
		return	(
				<div>
						{props.children}
				</div>
)
}

const	App	=	(props)	=>	{	return	(<div>{props.children}</div>)}

const	App	=	props	=>	(<div>{props.children}</div>)

const	App	=	({	children	})	=>	(<div>{children}</div>)

The	 hashHistory 	bit	is	something	that	React	Router	is	using	to	create	URLs.	It	does	not	require	server-
side	configuration,	so	it	is	ideal	for	single	page	apps	like	this	one.	Eventually	we	might	want	to	change
this	over	to	 browserHistory ,	but	we	will	hold	off	on	that	until	we	deal	with	server-side	rendering	and
other	options	that	require	us	to	run	our	frontend	through	a	server.

Then	we	import	the	three	components	we	just	made	so	they	can	be	rendered	by	the	router	when	the	user
hits	the	relevant	url.

The	next	thing	we	need	to	do	is	create	a	an	 App 	component	that	holds	all	of	our	other	components.
Anything	in	this	component	will	be	rendered	in	every	view,	so	use	it	sparingly.	Within	this	component,	we
render	all	of	the	child	components	as	we	define	in	our	router	below.

The	last	thing	we	need	to	do	is	set	up	our	routes.	You	should	be	able	to	see	a	pretty	obvious	hierarchy	of
routes,	with	the	 App 	component	holding	each	of	two	child	components(Home ,	 Settings)	each	of	which
has	its	own	path.

So	now,	if	you	go	to	 localhost:3000 ,	you	should	see	your	Home	component.	If	you	go	to

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 34	of	407

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://www.learnphoenix.io

localhost:3000/#/settings ,	you	should	see	your	settings	component.

Hash	history

There	are	a	few	things	to	note	about	 hashHistory .	Your	routes	will	all	have	a	 # 	in	them.	So	if	you	want
to	view	the	settings,	it	will	be	accessible	at	 localhost:3000/#/settings 	rather	than	just
localhost:3000/settings .

What's	actually	happening	under	the	hood	is	there	is	an	event	listener	that	listens	for	a	change	in	the	url,
and	whenever	it	changes,	it	triggers	a	function.	When	you	enter	a	url,	your	server	ignores	anything	that
comes	after	a	 # 	by	default.	This	is	because	data	after	a	hash	(referred	to	as	a	 fragment)	is	generally
used	to	change	things	only	on	the	client;	it	is	often	used	to	set	scroll	position.

You	can	try	this	out	if	you	want	by	typing	in	 https://github.com/#learnphoenix .	You'll	notice	that	what
you	actually	see	is	the	GitHub	homepage.	This	is	because	when	you	make	a	request	to	a	particular	url
(e.g.	 https://github.com/learnphoenix),	you're	sending	a	message	to	the	server	that	says,	"give	me	the
data	I	need	for	 github.com 	from	the	 /learnphoenix 	route",	but	when	you	use	a	hash	router,	the	server	is
only	asked	for	 github.com 	and	the	client	handles	the	routing	for	everything	after	the	hash	(#)	using
react-router .

There	is	also	some	random	stuff	that	gets	put	on	the	end	of	your	url,	such	as	 _k=vm23gw .	This	is	for
people	who	are	using	an	older	browser	that	does	not	support	the	HTML5	push	API.	This	is	not	strictly
necessary	and	can	be	disabled	if	you	are	not	worried	about	supporting	old	browsers.

It's	actually	really	easy	to	create	your	own	basic	router.	All	you	have	to	do	is	listen	for	changes	in	your	url
path	and	run	a	function	that	renders	a	new	view	when	a	particular	route	is	hit.	There's	nothing	magical
about	routers;	try	running	 window.location 	in	your	browser	console	to	see	what	you	have	access	to.
That	said,	there	are	many	additional	features	and	edge	cases	that	make	using	something	like	 react-
router 	more	practical.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 35	of	407

https://www.learnphoenix.io

Set	Up	Styles	in	Webpack

Style	loaders
CSS	Modules

Now	that	we	have	a	few	routes	set	up,	we	should	start	building	out	our	frontend	components	so	we	can
render	something	more	interesting	to	the	user.	But	before	we	do	that,	we	need	to	configure	our	styling.

There	is	a	seemingly	limitless	number	of	options	when	it	comes	to	styling.	You	have	LESS,	Sass,	Stylus,
plain-old	CSS,	as	well	as	extra	features	such	as	PostCSS	and	CSSNext,	autoprefixers,	and	some	React-
specific	bits	such	as	the	 style-loader ,	and	 react-css-modules .

We	are	going	to	use	the	following,	and	we'll	go	over	why:

style-loader	and	css-loader
react-css-modules

postcss-loader

postcss-cssnext

Preprocessors	(LESS,	Sass,	Coffeescript,	etc)	save	countless	hours	of	development	time	and	allow	for
additional	features.	That	said,	the	next	CSS	specs	are	pretty	similar	to	what	you'll	get	from	a	preprocessor
and	 postcss-cssnext 	gives	you	all	of	those	features	now.	You	can	think	of	it	as	Babel	for	styles.	Also,
CSSNext	gives	you	a	built-in	 autoprefixer ,	so	we	won't	need	to	install	one	ourselves.

The	 style-loader 	and	 css-loader 	are	loaders	that	every	React	project	needs	in	order	to	add	styling	to
a	component.	After	you	compile	down	to	CSS,	you	need	to	use	the	 style-loader 	to	put	that	CSS	into
your	React	component,	so	you	will	always	see	it	as	the	last	loader	in	any	styling	configuration.	For
example:

{	test:	/\.scss$/,	loaders:	'style!css!sass'	}

So,	in	effect,	you	are	starting	with	a	 .scss 	file,	converting	it	to	CSS,	then	using	the	 style-loader 	to	add
that	CSS	to	your	React	component.

We	are	also	using	an	 autoprefixer 	so	we	don't	have	to	worry	about	those	pesky	vendor	prefixes.
Remember,	this	is	built-in	to	the	latest	version	of	 postcss-cssnext .	If	you	are	not	familiar	with	vendor
prefixes,	they	are	those	annoying	extra	bits	of	styling	you	need	to	add	to	make	your	styles	work	with
different	browsers.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 36	of	407

http://lesscss.org/
http://sass-lang.com/
http://stylus-lang.com/
http://www.w3schools.com/css/
https://github.com/postcss/postcss
http://cssnext.io/
https://github.com/postcss/autoprefixer
https://github.com/webpack/style-loader
https://github.com/gajus/react-css-modules
http://cssnext.io/features/
https://developer.mozilla.org/en-US/docs/Glossary/Vendor_Prefix
https://www.learnphoenix.io

		-webkit-	(Chrome,	newer	versions	of	Opera.)
		-moz-	(Firefox)
		-o-	(Old	versions	of	Opera)
		-ms-	(Internet	Explorer)

These	prefixes	exist	because	when	a	new	experimental	CSS	feature	is	proposed,	browsers	will	try	to
implement	that	feature	differently.	The	prefix	tells	the	browser	how	to	apply	that	style	in	a	way	that	is
compatible	with	the	browser	you	are	using.

The	last	piece	we're	going	to	add	is	also	the	most	interesting.	The	 react-css-modules 	configuration
allows	you	create	locally-scoped	CSS,	so	you	no	longer	need	to	keep	a	massive	dictionary	of	globally-
scoped	CSS!	Or	as	it	says	in	the	docs:

A	CSS	Module	is	a	CSS	file	in	which	all	class	names	and	animation	names	are	scoped	locally
by	default.	All	URLs	(url(...))	and	@imports	are	in	module	request	format	(./xxx	and	../xxx
means	relative,	xxx	and	xxx/yyy	means	in	modules	folder,	i.	e.	in	node_modules).

React	CSS	Modules	is	likely	to	become	the	new	gold-standard	of	organizing	styles,	as	it	is	much	easier	to
create	and	manage	styles	in	JavaScript	than	it	is	in	CSS.

Webpack	configuration

The	first	thing	to	do	is	to	add	the	necessary	dependencies	to	our	 package.json 	file:

$	npm	install	--save-dev	style-loader	css-loader	\
		postcss-loader	postcss-cssnext
$	npm	install	--save	react-css-modules

But	first,	we	have	to	set	up	the	loader	to	handle	CSS	files.	We're	also	going	to	have	to	do	some	additional
configuration	to	get	our	CSS	modules	working	properly.

/webpack.config.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 37	of	407

https://github.com/css-modules/css-modules
https://www.learnphoenix.io

		module:	{
				loaders:	[
						...
						{
								test:	/\.css$/,
								loader:	'style!css?modules&importLoaders=1&localIdentName=[local]_[hash:base64:5]!postcss'
								include:	path.join(__dirname,	'app'),
								exclude:	/node_modules/
						}
]
		}

This	probably	looks	confusing	because	of	the	way	the	modules	loader	works.	In	the	code	above,	we	are
effectively	calling	in	order	(recall,	it	runs	from	right	to	left)	 postcss ,	 css 	with	the	 modules 	option,	and
then	 style .	The	confusing	bit	is	that	 modules 	has	a	bunch	of	options	that	you	pass	into	it.

The	first	option	is	 importLoaders ,	which	you	set	to	 1 ,	which	simply	means	"true".

The	second	option	is	 localIdentName ,	which	you	set	to	an	expression	that	looks	like	this:
[local]_[hash:base64:5] .	This	will	take	the	name	of	the	local	style	(for	example	 .column),	and	add	a
randomly	generated	string	of	5	characters	at	the	end	of	it.	So,	in	the	example	above,	you	might	end	up
with	a	class	of	 column_3nrwE .

Now	we	need	to	configure	our	 postcss 	loader	to	use	the	autoprefixer.	Fortunately,	this	is	quite	simple.
Within	our	 webpack.config.js 	file,	add	the	following	(make	sure	you	add	cssnext	at	the	top	of	the	file):

/webpack.config.js
commit: coming soon

var	cssnext	=	require('postcss-cssnext')

		...
		module:	{
				...
		},
		resolve:	{
				...
		},
		postcss:	function	()	{
				return	[cssnext]
		},
		...

Resetting	default	css	and	globals

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 38	of	407

https://www.learnphoenix.io

We're	almost	ready	to	get	started	making	some	components.	The	last	thing	we	need	to	do	is	remove	the
default	styling	provided	by	our	browser.	You	can	do	this	with	a	global	reset	stylesheet	(which	is	what
we're	using),	or	you	can	use	a	package	like	Normalize.	It's	a	matter	of	preference	and	it	depends	on	the
level	of	customization	you	want.

Within	our	 app 	directory,	create	a	new	directory	called	 styles 	and	create	a	new	file	called	 reset.css :

$	mkdir	app/styles
$	touch	app/styles/reset.css

Within	this	directory,	we	will	create	all	of	our	shared	styles.	This	will	include	things	like	buttons,	forms
and	inputs,	and	any	other	styles	that	are	shared	across	multiple	components.

We	are	not	going	to	use	a	frontend	framework	such	as	Bootstrap	or	Foundation.	We	are	going	to	build	all
of	our	own	styles	from	scratch.	If	this	sounds	intimidating,	I	assure	you	it	is	not	as	much	work	as	you
think.	We	are	going	to	copy	the	global	reset	from	meyerweb.com,	with	a	few	slight	variations.	Copy	and
paste	the	following	into	your	 reset.css 	file:

/app/styles/reset.css
commit: coming soon

/*	http://meyerweb.com/eric/tools/css/reset/
			v2.0	|	20110126
			License:	none	(public	domain)
*/

html,	body,	div,	span,	applet,	object,	iframe,
h1,	h2,	h3,	h4,	h5,	h6,	p,	blockquote,	pre,
a,	abbr,	acronym,	address,	big,	cite,	code,
del,	dfn,	em,	img,	ins,	kbd,	q,	s,	samp,
small,	strike,	strong,	sub,	sup,	tt,	var,
b,	u,	i,	center,
dl,	dt,	dd,	ol,	ul,	li,
fieldset,	form,	label,	legend,
table,	caption,	tbody,	tfoot,	thead,	tr,	th,	td,
article,	aside,	canvas,	details,	embed,
figure,	figcaption,	footer,	header,	hgroup,
menu,	nav,	output,	ruby,	section,	summary,
time,	mark,	audio,	video	{
				margin:	0;
				color:	#333;
				padding:	0;
				border:	0;
				font-size:	100%;
				font-family:	"Roboto",	arial,	sans-serif;
				vertical-align:	baseline;

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 39	of	407

https://necolas.github.io/normalize.css/
http://meyerweb.com/eric/tools/css/reset/
https://www.learnphoenix.io

				vertical-align:	baseline;
				box-sizing:	border-box;
}
/*	HTML5	display-role	reset	for	older	browsers	*/
article,	aside,	details,	figcaption,	figure,
footer,	header,	hgroup,	menu,	nav,	section	{
				display:	block;
}
body	{
				line-height:	1;
}
ol,	ul	{
				list-style:	none;
}
blockquote,	q	{
				quotes:	none;
}
blockquote:before,	blockquote:after,
q:before,	q:after	{
				content:	'';
				content:	none;
}
table	{
				border-collapse:	collapse;
				border-spacing:	0;
}

a	{
				color:	#42A5F5;
				text-decoration:	none;
}

And	to	have	this	reset	take	effect,	import	them	to	the	top	of	your	 app/index.js 	file:

/app/index.js
commit: coming soon

import	"./styles/reset.css"

...

Remember,	when	you	make	changes	to	your	webpack	configuration,	you	need	to	restart	your	node	server
for	those	changes	to	take	effect.

At	this	point,	you	probably	understand	the	sentiment	behind	 JavaScript	Fatigue...	but	at	least	we're
almost	ready	to	start	building	our	app!

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 40	of	407

https://medium.com/@ericclemmons/javascript-fatigue-48d4011b6fc4#.4cz5j0cgi
https://www.learnphoenix.io

Style	a	React	Component

Creating	and	styling	the	Sidebar
CSS	best	practices

Creating	a	Sidebar	component

Now	that	we	finally	a	basic	Webpack	configuration	ready,	let's	create	a	new	 Sidebar 	component	and	use
our	 css-modules 	to	style	it.

$	mkdir	app/components/Sidebar
$	touch	app/components/Sidebar/{index.js,style.css}

Within	this	new	component,	we	need	to	define	our	dependencies,	create	a	placeholder	component,	then
export	that	component	wrapped	in	our	styles.

/app/components/Sidebar/index.js
commit: coming soon

import	React	from	"react"
import	cssModules	from	"react-css-modules"
import	style	from	"./style.css"

export	const	Sidebar	=	()	=>	{
		return	(
				<div>
						This	is	the	sidebar
				</div>
)
}

export	default	cssModules(Sidebar,	style)

The	third	and	fourth	lines	import	our	styles	from	our	 styles.css 	file	and	the	 cssModules 	function	which
allows	us	to	export	this	component	with	its	local	styles.	You'll	see	at	the	bottom	of	the	file	that,	rather
than	simply	exporting	the	 Sidebar 	component,	we	are	wrapping	it	in	the	 cssModules 	function	and
pairing	it	with	the	styles	that	we	imported	above.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 41	of	407

https://www.learnphoenix.io

A	note	on	relative	vs.	absolute	paths:	For	the	most	part,	we	want	to	use	absolute	paths.	Unfortunately,	the
coverage	package	we're	going	to	use	(Istanbul/nyc)	does	not	sufficiently	support	the	use	of	 jsdom 	in
favor	of	Karma	(to	be	explained	in	a	future	lesson),	so	we	will	not	be	able	to	run	webpack	when	running
our	tests,	so	for	now,	we	will	have	to	use	relative	paths.

Maintaining	this	consistency	makes	it	much	easier	to	move	files	around	since	if	everything	is	absolute,
you	can	merely	find	and	replace.	If	on	the	other	hand,	everything	is	relative,	you	have	to	change	the
relative	path	all	over	your	app,	which	can	be	a	nightmare.	Unfortunately,	we	do	not	have	a	choice	at	the
moment,	so	we	will	use	relative	paths	so	we	don't	have	to	run	our	tests	through	webpack.

We	want	our	 Sidebar 	to	look	roughly	like	the	image	below:

image	coming	soon

We	will	use	Flexbox	for	most	of	our	alignment	because	it	is	now	widely	supported	and	much,	much	better
than	hacking	away	with	tables.	It's	also	the	standard	for	React	Native.	If	you	break	this	 Sidebar
component	down,	you	can	see	that	our	 Sidebar 	is	really	a	single	column	of	fixed	width	which	contains	a
list	of	contact	cards.

image	coming	soon

We	will	eventually	split	these	individual	components	into	smaller	pieces,	but	for	now,	we	can	just	put
them	all	under	the	single	 Sidebar 	component.

Let's	start	with	something	small:

/app/components/Sidebar/index.js
commit: coming soon

...
export	const	Sidebar	=	()	=>	{
		return	(
				<div>
						<h3>John	Smith</h3>
						<p>Last	active:	{Math.floor((Math.random()	*	10)	+	1)}	minutes	ago.</p>
				</div>
)
}
...

In	order	to	get	this	to	render,	we	have	to	import	this	component	into	another	component.	Since	we're
going	to	want	to	render	the	 Sidebar 	on	on	the	root	route,	we	should	import	it	into	our	 Home 	component.

/app/components/Home/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 42	of	407

https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://www.learnphoenix.io

...
import	{	default	as	Sidebar	}	from	"../Sidebar"

export	class	Home	extends	React.Component	{
		render()	{
				return	(
						<div>
								<Sidebar	/>
								Home	component
						</div>
)
		}
}
...

Now	when	you	refresh	your	page,	you'll	see	your	 Sidebar .

But	it	hardly	looks	like	a	sidebar...	So	now	we	need	to	style	it.

Optional	formatting	for	styles

There	are	several	options	when	it	comes	to	styling	with	 react-css-modules .	One	is	to	import	your	styles
and	reference	each	style	as	a	property	of	the	style	object.

.container	{
		background:	red;
}

import	React	from	"react"
import	cssModules	from	"react-css-modules"
import	style	from	"./style.css"

const	HelloWorld	=	()	=>	{
		return	(
				<div	className={style.container}>
						Hello	World!
				</div>
)
}

Another	option	is	the	 styleName 	reference	that	 react-css-modules 	gives	us.	This	allows	us	to	use	a
string	rather	than	an	object	reference.	Because	of	the	way	components	are	wrapped	using	 cssModules ,

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 43	of	407

https://www.learnphoenix.io

you'll	get	better	errors	(compilation	instead	of	runtime)	when	you	mess	up	or	forget	to	add	a	style.

const	HelloWorld	=	()	=>	{
		return	(
				<div	styleName="container">
						Hello	World!
				</div>
)
}

That	said,	we're	going	to	use	the	 className 	with	the	 style 	object	because	it's	currently	the	most	widely
supported.

A	note	on	using	multiple	classes	for	a	single	element:	Don't	do	it.	But	if	you	must,	you	can	set	an	option
within	 react-css-modules 	to	allow	you	to	include	multiple	modules	for	a	single	element.	Just	be	aware,
once	you	start	down	the	road	of	multiple	class	names,	you	start	accumulating	dead	code	that	is	time
consuming	and	tedious	to	refactor	out	of	your	codebase.

Styling	the	Sidebar	component

The	first	thing	we	should	do	is	give	our	 Sidebar 	a	few	 className 	attributes	so	we	can	reference	them	in
our	 style.css 	file:

/app/components/Sidebar/index.js
commit: coming soon

...
export	const	Sidebar	=	()	=>	{
		return	(
				<div	className={style.sidebar}>
						<h3>John	Smith</h3>
						<p>Last	active:	{Math.floor((Math.random()	*	10)	+	1)}	minutes	ago.</p>
				</div>
)
}
...

Then	within	our	 style.css 	file,	add	the	classes	that	we	will	use	to	style	our	 Sidebar :

/app/components/Sidebar/style.css
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 44	of	407

https://github.com/gajus/react-css-modules#multiple-css-modules
https://www.learnphoenix.io

.sidebar	{
		position:	absolute;
		left:	0;
		top:	0;
		height:	100vh;
		width:	300px;
		background:	#eeeeee;
		overflow-y:	scroll;
		border-right:	1px	solid	#ccc;
}

Most	of	this	styling	is	straightforward.	If	you	are	not	comfortable	with	Flexbox,	I	recommend	checking
out	Flexbox	Froggy,	which	is	a	game	that	will	get	you	up	to	speed	in	about	10	minutes.

You	may	have	noticed	that	our	"Home	component"	text	disappeared.	That's	because	it's	hidden	behind
the	absolutely	positioned	 Sidebar .	Let's	create	a	wrapper	in	our	 Home 	component	that	will	eventually
contain	all	of	our	chat	messages.

import	React	from	"react"
import	cssModules	from	"react-css-modules"
import	style	from	"./style.css"

import	{	default	as	Sidebar	}	from	"../Sidebar"

export	class	Home	extends	React.Component	{
		render()	{
				return	(
						<div>
								<Sidebar	/>
								<div	className={style.chatWrapper}>
										Home	component
								</div>
						</div>
)
		}
}

export	default	cssModules(Home,	style)

Then	let's	put	300px	of	margin	on	the	left	so	that	all	of	our	content	displays	on	the	page.

Also	note	that	you	cannot	use	dashes	(-)	in	the	names	of	your	styles	when	using	object	notation
because	JavaScript	will	interpret	them	as	a	mathematical	expression.	As	it	turns	out,	camelCase	is
already	supported	by	CSS,	so	this	shouldn't	cause	any	problems	over	the	long-run.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 45	of	407

http://flexboxfroggy.com/
https://www.learnphoenix.io

$	touch	app/components/Home/style.css

.chatWrapper	{
		margin-left:	300px;
}

Additional

A	note	on	nesting:	Nesting	your	styles	is	generally	considered	bad	practice.	It	makes	refactoring	harder
and	can	lead	to	a	lot	of	confusion.	There	are	some	exceptions.

Some	people	prefer	to	nest	things	like	 :hover 	or	other	pseudo-classes,	as	they	could	make	it	easier	to
understand	the	full	functionality	of	a	particular	selector.	This	is	also	the	case	with	nested	 @media 	queries,
since	it	can	be	useful	to	quickly	see	which	element	is	being	affected	by	a	particular	media	query.	It's
mostly	a	matter	of	preference,	but	the	larger	style	guides	tend	to	avoid	nesting,	so	we	will	also	avoid	it.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 46	of	407

https://www.learnphoenix.io

Snippets	and	Aliases

Snippets
Aliases
.vimrc

Sometimes	there	is	no	way	around	writing	repetitive	code.	Every	React	component	needs	to	have	some
of	the	same	boilerplate	to	make	it	function,	and	there	are	some	bash	commands	that	you	have	to	type
over	and	over	again.	This	is	where	snippets	and	aliases	come	into	play.	This	section	is	not	strictly
necessary	for	the	rest	of	the	series,	but	it	might	save	you	a	lot	of	time	down	the	road.

Snippets

One	handy	feature	you	can	do	in	most	text	editors	is	create	a	 snippet .	If	you	are	using	Atom,	you	can
change	the	 snippets.cson 	file	(.cson 	is	 .json 	but	for	CoffeeScript)	and	add	a	text	snippet.

$	atom	~/.atom/snippets.cson

There	should	already	be	a	file	there	with	instructions	on	how	to	create	a	snippet.	These	will	save	you	a	lot
of	time	and	you	can	create	your	own	if	you	find	yourself	typing	out	the	same	boilerplate	code,	over	and
over	again.	The	code	below	will	generate	boilerplate	for	our	typical	React	component.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 47	of	407

https://www.learnphoenix.io

#	path:	~/.atom/snippets.cson

'.source.js':
		'Standard	component':
				'prefix':	'react'
				'body':	'''
						import	React	from	"react"
						import	cssModules	from	"react-css-modules"
						import	style	from	"./style.css"

						class	$1	extends	React.Component	{
								constructor(props)	{
										super(props)
								}

								render()	{
										return	(
												<div>
														$1	component
												</div>
)
								}
						}

						export	default	cssModules($1,	style)
				'''

If	you	are	not	familiar	with	CoffeeScript,	know	that	the	whitespace	matters.	Each	tab	is	the	same	as	if	you
nested	something	within	curly	braces.	Multiline	strings	also	start	and	end	with	three	apostrophes	 ''' .

The	first	line	tells	Atom	that	you	want	to	target	files	that	end	in	 .js .	Then	we	name	our	snippet,	in	this
case	"Standard	component",	but	you	can	name	it	whatever	you	want.	The	 prefix 	is	what	you	type	into
your	text	editor	before	hitting	the	 tab 	key.	Again,	you	can	name	this	whatever	you	want.	Finally,	the	 body
is	the	code	that	is	written	when	you	press	 tab 	after	typing	the	prefix.

A	handy	thing	to	note	is	the	 $1 	keyword.	In	Atom,	after	you	initiate	a	snippet,	you	can	specify	where	you
want	the	cursor	to	end	up	so	you	can	start	tying.	If	you	want	to	get	really	fancy	as	we	have	done	above,
you	can	specify	multiple	cursors	so	you	can	type	things	like	the	name	of	the	component	in	multiple
places	as	the	same	time.	If	you	have	a	second	place	you	want	to	jump	to,	you	can	use	 $2 	and	press	 tab
to	jump	to	it.

The	code	above	will	generate	your	typical	React	component	and	will	save	you	a	ton	of	time	over	the
course	of	this	project.	As	you	find	yourself	writing	certain	code	over	and	over	again,	consider	writing	your
own	snippet.

Another	snippet	that	will	come	in	handy	is	a	basic	test	for	a	React	component	to	make	sure	it	renders
properly.	The	syntax	will	make	sense	once	we	go	over	testing	with	 enzyme 	in	a	future	lesson.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 48	of	407

https://www.learnphoenix.io

'.source.js':
		'Standard	component':
				...
		'Standard	test':
				'prefix':	'test'
				'body':	'''
						import	React	from	'react'
						import	expect	from	'expect'
						import	{	shallow	}	from	'enzyme'

						import	{	$1	}	from	'./'

						describe('<$1	/>',	()	=>	{
								it('should	render',	()	=>	{
										const	renderedComponent	=	shallow(
												<$1	/>
)
										expect(renderedComponent.is('div')).toEqual(true)
								})
						})
				'''

Aliases

Aliases	let	you	run	complex	command	line	tasks	with	fewer	characters.	For	example,	instead	of	typing
out	 git	add	. ,	you	could	write	an	alias	that	lets	you	type	out	something	as	simple	as	 ga 	which	will
accomplish	the	same	thing.

But	this	also	comes	in	handy	for	much	more	complicated	tasks.	In	this	app,	we	will	create	a	lot	of
components,	and	each	component	will	have	an	 index.js ,	 spec.js ,	 style.css ,	and	a	 README.md 	file.
You	could	type	them	all	out	one	by	one	every	time,	or	you	could	write	an	alias	to	make	this	easier.

If	you're	on	a	Mac,	your	aliases	live	in	 ~/.bash_profile .	If	you	do	not	have	this	file,	you	should	go	ahead
and	create	it.

$	touch	~/.bash_profile

Here	are	a	few	simple	git	commands	that	save	a	couple	minutes	every	day.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 49	of	407

https://www.learnphoenix.io

alias	gs="git	status"
alias	gd="git	diff	--stat"
alias	ga="git	add	--all"

.vimrc

Coming	soon!

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 50	of	407

https://www.learnphoenix.io

Unit	Tests	with	Enzyme

What	is	a	unit	test?
Enzyme	and	shallow	rendering
jsdom	and	DOM	rendering
Istanbul/nyc	and	test	coverage

React	makes	unit	testing	extremely	simple.	Since	every	component	is	just	a	function	and	since	most	of
our	components	are	pure	functions,	it's	easy	to	isolate	just	the	pieces	of	the	component	you	want	to	test
without	any	side	effects.

We	are	going	to	use	Enzyme,	which	is	a	testing	utility	for	React	that	clears	up	some	of	the	awkward
syntax	of	React's	 TestUtils .

One	other	advantage	of	testing	React	components	is	that	you	can	test	them	without	the	need	to	render
them	to	a	DOM	using	something	called	shallow	rendering.	Shallow	rendering	is	extremely	performant	and
lets	you	run	through	your	tests	at	blazing	speed.	This	is	because	pulling	up	a	DOM	and	rendering	to	it
takes	significant	time,	while	simply	calling	a	function	is	really	fast.

What	is	a	unit	test?

A	unit	test	is	the	smallest	possible	testing	unit	and	should	only	test	one	thing.	Unit	tests	are	different	than
integration	tests	because	integration	tests	are	in	place	to	make	sure	that	our	pieces	work	together.	In
short,	unit	tests	make	sure	our	pieces	work	by	themselves,	while	integration	tests	make	sure	our	pieces
work	together.

An	example	of	a	unit	tests	would	be	taking	a	single	React	component	and	testing	to	make	sure	it	does
everything	we	want	it	to	do.	We	might	want	that	component	to	render	a	particular	element	to	the	DOM,	or
trigger	a	specific	event.	Now,	the	tricky	part	about	unit	tests	is	that	we	wouldn't	actually	care	whether	or
not	that	event	actually	did	anything--all	we	care	about	was	that	the	event	was	triggered.

Functions	(especially	pure	functions)	are	really	easy	to	test	because	they	will	always	give	the	same
output	given	a	certain	input.

What	to	test?

We	are	going	to	test	our	 Home 	component,	which	is	just	a	wrapper.	All	we	really	need	to	tests	is	that	a

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 51	of	407

https://github.com/airbnb/enzyme
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://www.learnphoenix.io

<div> 	renders.

For	more	complex	components,	you	want	to	test	to	make	sure	that	everything	works	the	way	it's
supposed	to	given	certain	inputs.	You	don't	want	to	rely	on	a	database	call	or	on	anything	outside	the
specific	component	that	you	are	testing.

There	is	also	the	question	of	whether	testing	is	worth	the	time	for	a	particular	component.	When	it	comes
to	unit	testing	in	React,	it's	really	easy	to	go	overboard.	As	a	rule	of	thumb,	if	the	CEO	is	going	to	give	a
live	demo,	you	want	to	make	sure	you	have	really	comprehensive	tests	for	everything	he	would	do	in	that
demo.

It	is	also	worth	considering	how	you	might	later	refactor	a	component,	and	how	your	tests	would	ensure
that	the	component	still	operates	the	same	way	after	the	refactor.	For	example,	in	a	 Button 	component,
you'd	want	to	make	sure	that	your	component	rendered	its	 children 	and	any	other	properties	that	are
required	for	that	component	to	render	properly.

Setting	up	Enzyme

The	first	thing	we	need	to	do	is	install	 enzyme 	and	all	other	dependencies	we	will	need.

$	npm	install	--save-dev	enzyme	mocha	expect	react-addons-test-utils

Because	we	are	using	 css-modules 	we	will	need	to	pass	in	an	empty	object	as	our	 style 	object	and
pass	in	a	 noop 	(short	for	"no	operation"	and	pronounced	"no	op")	for	images	and	other	non-JavaScript
files	(thanks	to	Ole	Michelson	for	solving	some	of	this	issue).	Create	a	 .test-setup.js 	file	and	include
the	following	to	accomplish	this	goal:

We	also	need	to	add	 react-addons-test-utils 	because	it	is	a	dependency	of	Enzyme.

$	touch	.test-setup.js

/.test-setup.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 52	of	407

https://ole.michelsen.dk/blog/testing-reactjs-with-coverage-using-mocha-babel-istanbul.html
https://www.learnphoenix.io

const	noop	=	()	=>	{}
const	empty	=	()	=>	({})

require.extensions['.css']	=	empty
require.extensions['.ico']	=	noop
require.extensions['.png']	=	noop
require.extensions['.jpg']	=	noop
require.extensions['.svg']	=	noop

We	are	also	adding	 mocha 	so	we	can	run	our	tests	with	Mocha	using	the	command	line	 mocha .

Writing	a	unit	test

At	this	point,	our	 Home 	component	is	pretty	simple.	All	we	are	going	to	test	is	that	it	renders.	Create	a	file
called	 spec.js 	within	our	 Home 	directory	and	add	the	following.

$	touch	app/components/Home/spec.js

/app/components/Home/spec.js
commit: coming soon

import	React	from	"react"
import	expect	from	"expect"
import	{	shallow	}	from	"enzyme"

import	{	Home	}	from	"./"

describe("<Home	/>",	()	=>	{
		it("should	render",	()	=>	{
				const	renderedComponent	=	shallow(
						<Home	/>
)
				expect(renderedComponent.is("div")).toEqual(true)
		})
})

We're	going	to	use	 expect ,	which	is	a	simple	assertion	library	that	replaces	 assert ,	 sinon ,	and	 chai
for	our	purposes.	Almost	all	of	our	assertions	are	going	to	come	down	to	whether	a	certain	statement	is
true 	or	 false .	Generally	speaking,	if	you're	coming	up	with	complex	assertions	you're	probably	over-
complicating	things.	It	also	gives	us	access	to	 spy ,	which	we	will	go	over	later.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 53	of	407

https://www.learnphoenix.io

From	 enzyme 	we	get	 shallow ,	which	is	a	function	that	lets	us	shallow	render	our	component	without	a
DOM.	The	 shallow 	API	is	really	comprehensive	and	has	good	documentation.	It	would	be	worth	your
time	to	look	over	all	the	functions	you	have	at	your	disposal	here.

The	next	part	is	the	 describe 	block,	where	we	(not	surprisingly)	describe	the	thing	that	we	are	testing.
Within	that	 describe 	block	will	be	a	series	of	 it 	blocks	that	actually	contain	the	tests	we	intend	to	run.
it 	blocks	usually	follow	the	word	"should",	and	that's	a	good	way	to	think	about	what	the	code	in	the	 it

block	should	do.	In	this	case,	it	should	render	the	children	of	our	 Home 	component.

The	last	line	is	where	we	make	our	assertion.	If	 renderedComponent 	has	been	shallow	rendered	properly,
then	it	will	return	a	truthy	value,	which	 expect 	will	pass.	If	the	component	is	not	rendered	properly,	then
our	test	will	not	pass.

This	is	the	only	test	you'll	need	for	most	of	your	components.	Basically,	we're	just	testing	that	the
component	was	able	to	render	without	exploding.

If	you	find	yourself	testing	a	lot	of	logic	within	your	component,	you	should	really	consider	pulling	that
logic	out	into	a	separate	part	of	your	app	(likely	Redux,	which	we	will	go	over	later).	Ideally,	you	want	to
keep	your	components	as	dumb	as	possible,	meaning	they	just	render	content	that	is	passed	into	them
and	don't	execute	any	logic.

Running	our	tests

The	last	piece	is	actually	running	the	tests.	This	is	going	to	require	a	relatively	complicated	script	in	our
package.json 	file.

But	since	we	are	not	running	our	tests	through	webpack,	we	need	to	make	sure	we	let	Babel	transpile	our
code.	We	can	use	 babel-register 	to	transpile	our	code	before	passing	it	on	to	 mocha .

$	npm	install	--save-dev	babel-register

/package.json
commit: coming soon

		...
		"scripts":	{
				...
				"test":	"mocha	--require	babel-register	--require	.test-setup.js	-R	spec	app/**/spec.js"
		},
		...

What	we're	doing	here	is	telling	 mocha 	to	run	our	tests,	but	first	passing	it	through	Babel	(--require

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 54	of	407

https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://www.learnphoenix.io

babel-register),	then	changing	out	our	 resolve.extensions 	with	 .test-setup.js 	so	we	don't	have	to
use	webpack,	then	recursively	looking	for	all	 spec.js 	files	within	the	 app 	directory.

Now	you	can	run	it.

$	npm	test

You	should	get	an	output	like	the	following.

		<Home	/>
				should	render

		1	passing	(32ms)

It's	important	to	make	your	test	fail	in	a	predictable	way	so	you	know	that	you	set	your	test	up	properly.
Sometimes	without	knowing	it,	you	might	set	up	a	test	that	passes	no	matter	what	you	give	it.	We're	not
going	to	do	that	here	for	the	sake	of	brevity,	but	you	should	make	this	practice	a	habit.

Full	and	static	rendering

At	a	certain	point,	you'll	need	to	run	unit	tests	that	require	a	DOM.	If	you	want	to	check	to	make	sure	a
certain	action	happened	on	 componendDidMount ,	for	example,	you'll	need	to	fully	render	the	component
so	you	have	access	to	the	lifecycle	methods.	To	accomplish	this,	you	will	need	Enzyme's	Full	Render	API,
which	has	a	syntax	almost	identical	to	the	shallow	render	API.

But	before	we	can	get	this	to	work,	we	need	a	DOM	running.	The	easiest	and	most	efficient	way	to	do	this
is	with	jsdom,	which	is	a	magical	JavaScript	implementation	of	the	DOM	that	lets	you	run	your	tests
extremely	quickly	since	it's	all	done	in	JavaScript.

Setting	up	 jsdom 	is	a	lot	easier	than	you	might	expect.	Enzyme	provides	an	explanation	of	how	to	set	it
up,	and	we	will	walk	through	it	here.

We	can	copy-paste	the	code	from	the	documentation	to	the	bottom	of	our	existing	 .test-setup.js 	file.

/.test-setup.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 55	of	407

https://github.com/airbnb/enzyme/blob/master/docs/api/mount.md
https://github.com/tmpvar/jsdom
https://github.com/airbnb/enzyme/blob/master/docs/guides/jsdom.md
https://www.learnphoenix.io

const	noop	=	()	=>	{}
const	empty	=	()	=>	({})

require.extensions['.css']	=	empty
require.extensions['.ico']	=	noop
require.extensions['.png']	=	noop
require.extensions['.jpg']	=	noop
require.extensions['.svg']	=	noop

var	jsdom	=	require('jsdom').jsdom

var	exposedProperties	=	['window',	'navigator',	'document']

global.document	=	jsdom('')
global.window	=	document.defaultView
Object.keys(document.defaultView).forEach((property)	=>	{
		if	(typeof	global[property]	===	'undefined')	{
				exposedProperties.push(property)
				global[property]	=	document.defaultView[property]
		}
})

global.navigator	=	{
		userAgent:	'node.js'
}

What	this	code	is	doing	is	taking	our	React	code	and	putting	it	into	the	global	namespace	so	it	can	be
used	by	 jsdom .

Then	install	 jsdom .

$	npm	install	--save-dev	jsdom

And	that's	all.	Now	you	can	run	tests	with	 mount 	and	 static ,	as	well	as	 shallow 	as	you	have	before.
The	app	is	too	simple	to	require	tests	of	this	sort,	so	we	demonstrate	the	difference	between	these	types
of	tests	when	it	becomes	necessary.

Just	be	sure	you	are	running	a	more	recent	version	of	node.	You	must	be	using	at	least	node	4. 	If	you	do
not	know	what	version	of	node	you	are	using,	run	the	following	in	your	terminal.

$	node	-v

If	you	find	that	your	version	of	node	is	not	at	least	4.0,	then	update	it	with	 brew ,	 nvm ,	or	whatever	method
you	prefer.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 56	of	407

https://www.learnphoenix.io

$	brew	update
$	brew	upgrade	node

Istanbul	and	test	coverage

Another	feature	that	you	see	in	nearly	every	production	app	is	test	coverage.	Test	coverage	is	an
automated	way	to	let	you	know	how	much	of	your	app	is	covered	by	tests.	If	you	have	no	tests,	your	test
coverage	is	0%.	If	you	have	tests	for	every	function	and	for	every	line	of	code,	your	test	coverage	will	be
100%.	Most	companies	aim	to	have	tests	coverage	of	80%-90%,	depending	on	their	risk	tolerance.

Istanbul	is	the	most	popular	tool	for	automated	test	coverage	and	it's	used	by	just	about	every	serious
open	source	project.	It's	also	surprisingly	easy	to	set	up.	Start	by	installing	it.	For	whatever	reason,	they
decided	to	call	the	Babel-compatible	command	line	tool	for	Istanbul	 nyc .

$	npm	install	--save-dev	nyc

Then	we	need	to	change	our	 package.json 	scripts	to	run	 nyc 	over	our	existing	tests	so	it	can
automatically	detect	how	much	of	our	code	is	covered	by	tests.	We	don't	need	to	run	this	every	time,	so
we	will	make	it	a	separate	command.	This	is	going	to	look	a	little	bit	awkward.

/package.json
commit: coming soon

		...
		"scripts":	{
				...
				"cover":	"nyc	-x	'**/*spec.js'	-n	'app'	-r	text	-r	html	-r	lcov	npm	test",
				...
		}
		...

While	this	command	might	look	complicated,	it's	actually	pretty	reasonable.	These	commands	tell	 nyc 	to
exclude	(-x)	all	of	our	 spec.js 	files	from	our	coverage	report	(because	we	don't	a	report	on	how	well
our	tests	are	tested),	include	(-n)	everything	within	the	 app 	directory,	use	the	text,	html,	and	lcov
reporters	(-r)	and	run	 npm	test ,	defined	within	our	 scripts ,	to	run	the	tests.

So	now,	if	you	run	 npm	run	cover ,	you	will	see	your	app	with	test	coverage.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 57	of	407

https://github.com/gotwarlost/istanbul
https://www.learnphoenix.io

-----------|----------|----------|----------|----------|----------------|
File	% Stmts	% Branch	% Funcs	% Lines	Uncovered Lines
All	files		|							90	|						100	|								0	|							90	|																|
	Home						|						100	|						100	|						100	|						100	|																|
		index.js	|						100	|						100	|						100	|						100	|																|
	Sidebar			|							80	|						100	|								0	|							80	|																|
		index.js	|							80	|						100	|								0	|							80	|														6	|
-----------|----------|----------|----------|----------|----------------|

You	should	also	add	the	 coverage 	directory	to	 .gitignore 	so	it	doesn't	get	pushed	to	your	repo.

/.gitignore
commit: coming soon

node_modules
.DS_Store
npm-debug.log
dist
coverage
.nyc_output

If	you're	looking	for	something	prettier	than	the	terminal	output,	you	can	use	your	browser	to	open	the
index.html 	file	within	 coverage/lcov-report .	This	will	also	give	you	hints	as	to	where	you	should	write
additional	tests	to	improve	your	test	coverage.

Additional

We	will	write	additional	tests	as	we	go	along.	Testing	is	an	important	part	of	ensuring	the	long-term
stability	of	your	app.	Refactoring	is	inevitable,	and	if	you	have	good	tests,	you	can	ensure	that	you	don't
break	everything	when	you	change	around	your	components.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 58	of	407

https://www.learnphoenix.io

Basics	of	Elixir	and	Functional	Programming

Functional	programming
Elixir	basics
Types
Pattern	matching

Now	that	we	finally	have	our	React	app	mostly	set	up,	we	can	start	building	out	our	Phoenix	backend.	But
before	we	jump	into	Phoenix,	we	should	go	into	some	of	the	basics	of	functional	programming	and	Elixir.
This	is	a	long	and	dense	chapter,	so	you	might	want	to	come	back	to	it	after	a	few	lessons	when	you've
had	a	chance	to	play	around	with	Phoenix.

Elixir	is	a	functional	programming	language.	We	could	write	an	entire	course	simply	going	over	the
features	of	the	language,	but	in	this	lesson	we	will	just	go	over	some	of	the	specifics	of	the	syntax	that
you	will	need	to	know	before	moving	forward.

Most	of	what	is	covered	in	this	lesson	are	the	specifics	of	Elixir	as	they	relate	to	Phoenix.	The	intricacies
of	Phoenix	will	be	covered	in	later	lessons	as	they	come	up.

Before	we	dive	into	Elixir	and	Phoenix,	we'll	explore	the	fundamentals	of	functional	programming.

Basics	of	functional	programming

There	are	two	camps	in	computer	programming:	Functional	programming	(often	abbreviated	FP)	and
Object	Oriented	Programming	(often	abbreviated	OOP).	There	is	overlap	between	these	camps,	but	they
differ	in	their	approach	to	programming.

Most	people	have	experience	with	OOP,	which	intentionally	mimics	objects	representing	real	life	things
and	interactions.	Another	big	part	of	object	oriented	programming	is	 state .	State	refers	to	information
stored	in	an	application,	object,	or	variables.	Many	popular	programming	languages	are	object	oriented
such	as	Java,	JavaScript,	C++,	and	Ruby	to	name	a	few.

For	example,	one	can	imagine	a	real-life	object,	such	as	a	block	of	clay.	You	can	then	mutate	that	block
of	clay,	apply	heat,	and	end	up	with	a	vase.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 59	of	407

https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://www.learnphoenix.io

vase	=	Clay.new
vase.shape
vase.heat
vase.glaze

In	the	above	example	the	vase	contains	information	about	itself	and	whether	it	has	been	shaped,	heated,
or	glazed;	this	is	state.	Another	example	of	state,	using	JavaScript,	is	the	 += 	or	 -= 	operators	which
modify	an	existing	variable	rather	than	return	a	new	one:

var	counter	=	0;

counter	+=	5;
counter	-=	1;
counter	+=	2;

console.log(counter);	//	->	6

Functional	programming	is	a	bit	more	abstract,	and	functional	programming	advocates	are	more
hardcore	about	definitions	than	object	oriented	folks.	You'll	hear	a	lot	about	"immutable	data"	and	"pure
functions",	and	a	variety	of	other	terms.	We	will	go	over	the	terms	that	are	relevant	to	working	with
Phoenix	and	Elixir.

One	of	the	core	concepts	of	functional	programming	is	the	"pure	function".	A	pure	function	is	a	function
that	always	yields	the	same	results	with	the	same	arguments	and	has	no	side	effects.	You	may	also	hear
them	referred	to	as	"idempotent"	(pronounced	īdemˈpōt(ə)nt),	which	is	a	fancy	way	of	saying	"it	has	no
side	effects".

A	side	effect	is	something	like	writing	to	a	database,	or	making	a	change	to	something	that	is	outside	the
scope	of	a	function.	They	are	changes	that,	if	run	again,	may	produce	a	different	outcome.	Additionally,
pure	functions	need	everything	passed	to	them	as	arguments;	retrieving	values	elsewhere	could	lead	to	a
different	outcome.

Here	is	an	example	of	an	 impure	function:

var	counter	=	0;

function	addOne()	{
		counter	+=	1;
}

addOne()

Our	example	has	a	state,	 counter ,	outside	the	scope	of	the	function	that	is	modified	by	our	function.	If

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 60	of	407

https://www.learnphoenix.io

you	run	it	once,	the	result	is	 1 .	If	you	run	the	exact	same	function	twice,	the	result	is	 2 .

This	side	effect	wouldn't	be	possible	with	a	pure	function.	An	example	of	a	pure	function	would	be	the
following:

function	addOne(counter)	{
		return	counter	+	1;
}

var	counterPlusOne	=	addOne(2);

In	this	example,	we	are	passing	the	counter	in	as	an	argument	to	the	function,	which	then	adds	one	and
returns	the	new	result.	No	matter	how	many	times	you	run	this	function,	it	will	always	give	you	the	same
result	(3).

Pure	functions	are	important	to	functional	programming	because	they	allow	us	to	chain	together
functions,	perform	multiple	transformations	to	data,	and	get	a	predictable	result	without	side-effects.
This	lack	of	side-effects	is	the	foundation	of	Elixir's	fault	tolerance	and	ability	to	re-try	code	without	fear;
this	is	something	we'll	discuss	more	later.	As	we	will	see	shortly,	 Plugs 	are	an	important	part	of	Phoenix
and	are	themselves,	by	necessity,	pure	functions.

In	functional	programming	we	do	not	mutate	data,	instead	we	create	a	new	copy	with	our	changes.	This
may	seem	like	a	lot	of	extra	work	at	first	but	functional	programming	languages	are	designed	for	this.
This	immutable	data	furthers	our	ability	to	ensure	predictable	outcomes	and	allows	for	the	more
advanced	features	of	Elixir's	concurrency	and	fault	tolerance.	Don't	worry	though,	we'll	cover	all	of	this	in
more	depth	in	later	lessons.

If	you	are	interested	in	learning	more	about	functional	programming,	there	is	an	edX	course	that	covers	a
lot	more	than	we	will	cover	in	this	course.

Interactive	Elixir

Elixir	ships	with	IEx,	an	interactive	shell.	With	IEx	we	can	evaluate	Elixir	expressions	and	test	out
functionality	before	adding	it	to	our	code	base.	The	best	way	to	understand	IEx	is	to	experience	it.	In	your
terminal,	run	the	 iex 	command.

$	iex

You'll	get	an	output	similar	to	the	one	below.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 61	of	407

https://www.edx.org/course/introduction-functional-programming-delftx-fp101x-0
https://www.learnphoenix.io

Erlang/OTP	18	[erts-7.1]	[source]	[64-bit]	[smp:8:8]	[async-threads:10]	[hipe]	[kernel-poll:false]

Interactive	Elixir	(1.2.0)	-press	Ctrl+C	to	exit	(type	h	ENTER	for	help)
iex>

We	are	now	in	an	interactive	environment	where	we	can	explore	Elixir	and	evaluate	expressions.	Let's
start	with	trying	to	run	some	simple	Elixir	code.	Inside	IEx	let's	add	together	some	numbers.	If	we	type	in
2	+	2 	and	press	 return ,	the	expression	is	evaluated	and	the	result	is	displayed.

iex>	2	+	2
4
iex>	2.5	+	1
3.5

Basic	types

As	you	might	expect	coming	from	JavaScript,	Ruby,	or	other	major	languages	Elixir	has	support	for	the
basic	types	you'd	expect.	With	IEx	open,	let's	try	working	with	some	integers	and	floats.

iex>	1	+	2
3
iex>	2.0	+	2.5
4.5

Elixir	supports	the	booleans	 true 	and	 false ,	they	are	also	represented	by	the	atoms	(explained
momentarily)	 :true 	and	 :false .	All	values	in	Elixir,	with	the	exception	of	 nil 	and	 false ,	are
considered	truthy.

iex>	true
true
iex>	true	===	:true
true
iex>	false
false
iex>	if	6,	do:	"Truthy"
"Truthy"

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 62	of	407

https://www.learnphoenix.io

Atoms

If	you're	familiar	with	Ruby	then	 atoms 	won't	be	foreign	to	you,	they're	just	like	 symbols .	If	you're	new	to
both,	don't	worry.

In	Elixir	an	 atom 	is	a	constant	who's	name	is	also	its	value.	They	are	lowercased	and	begin	with	a	colon.
:ok 	and	 :error 	are	example	atoms.	What	makes	Atoms	special	is	how	they	use	memory.	When	we	use
the	atom	 :ok 	many	times	the	memory	is	only	allocated	once.	Atoms	are	great	when	we	need	to	reuse
the	same	value	many	times	and	wish	to	conserve	memory.	Unlike	other	values	though,	atoms	are	not
garbage	collected	so	they	should	be	used	sparring;	if	we	always	used	atoms	in	place	of	other	values,	our
memory	would	never	be	freed.

Strings	in	Elixir

Strings	are	UTF-8	encoded	and	use	double	quotes,	let's	try	the	standard	 "Hello	World" :

iex>	"Hello	World"
"Hello	World"

What	about	single	quoted	values	like	 'hello	world' ?	In	Elixir,	single	quotes	are	used	to	denote	char
lists.	A	char	list	is	nothing	more	than	a	list	of	individual	characters:

iex>	'hello	world'
'hello	world'
iex>	is_list('hello	world')
true

Char	lists	can	be	tricky	in	IEx.	If	characters	are	outside	the	ASCII	range	then	a	list	of	character	codes	will
be	displayed	instead;	these	character	codes	are	the	numerical	value	for	each	character:

iex>	'hełło'
[104,	101,	322,	322,	111]

Collections

Collections	are	a	big	part	of	functional	programming.	As	we'll	see,	Elixir	has	a	number	of	different	data

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 63	of	407

https://www.learnphoenix.io

structures	available	to	us.	The	simplest	of	these	collection	is	the	 list .	Lists	may	contain	different	types
of	values	and	do	not	enforce	uniqueness,	we	can	store	the	same	value	in	a	list	many	times.

Let's	try	creating	some	simple	lists	inside	IEx:

iex>	[1,	2,	2,	3,	3,	3]
[1,	2,	2,	3,	3,	3]
iex>	[1,	2,	3,	"a",	"b",	"c"]
[1,	2,	3,	"a",	"b",	"c"]

If	you	don't	have	a	background	in	FP	then	 tuples 	may	seem	strange	to	you	but	tuples	are	a	common
sight	in	Elixir.	A	tuple	is	similar	to	a	list	but	is	stored	in	memory	contiguously,	making	accessing	them	fast
but	modification	expensive.	Tuples	are	differentiated	from	lists	by	using	curly	braces.	Just	like	 list 	our
tuples	can	contain	any	type	of	value	and	do	not	enforce	uniqueness:

iex>	{:ok,	"Success"}
{:ok,	"Success"}
iex>	{10,	"ten",	:ten}
{10,	"ten",	:ten}

You	can	think	of	tuples	as	something	like	a	pair	of	values	that	are	meant	to	be	stored	together.	They
aren't	there	for	efficient	modification.

If	we	combine	lists,	tuples,	and	atoms	together	we	get	 keyword	lists 	in	Elixir.	A	keyword	list	is	a
collection	of	two-element	tuples	who's	first	value	is	an	atom,	very	specific.	Keyword	lists	are	frequently
used	for	options	and	configuration.	A	keyword	list	can	contain	multiple	tuples	with	the	same	key.

iex>	[age:	30,	name:	"user"]
[age:	30,	name:	"user"]
iex>	[{:age,	30},	{:name,	"user"}]
[age:	30,	name:	"user"]

Maps	are	the	go-to	key-value	store	in	Elixir.	We	can	use	any	value	as	a	key	in	our	maps.	To	define	a	 map

we	use	the	 %{} 	syntax:

iex>	map	=	%{"hello"	=>	:world,	:ok	=>	200}
%{:ok	=>	"okay",	"hello"	=>	"world"}
iex>	map[:ok]
200
iex>	map["hello"]
:world

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 64	of	407

https://www.learnphoenix.io

Keys	in	a	map	are	unique,	if	we	add	a	new	value	with	the	same	key	it	will	replace	the	original.

iex>	%{"hello"	=>	"world",	"hello"	=>	"universe"}
%{"hello"	=>	"universe"}

Pattern	Matching

If	you	haven't	used	functional	programming	before	then	 pattern	matching 	may	seem	a	bit	strange	at
first,	but	it	is	arguably	one	of	the	best	features	of	Elixir.	When	we	use	pattern	matching	we	not	only
compare	values	but	structure	as	well.

Through	pattern	matching	we	are	also	able	to	extract	values	from	a	match	into	a	variable,	this	is	known
as	variable	capture.	In	a	moment	we'll	try	some	examples	which	should	help	clear	things	up,	but	first	we
need	to	discuss	the	match	operator.

Unlike	other	languages	Elixir	does	not	use	the	 = 	operator	for	value	assignment,	instead	it	is	use	as	our
match	operator.

Confused	yet?	When	we	make	a	successful	match,	the	matched	value	will	be	returned.	If	the	match	fails,
it	will	raise	an	error.	In	IEx,	let's	start	with	a	few	simple	pattern	matches	to	get	our	feet	wet.

iex(24)>	"hello"	=	"hello"
"hello"
iex>	[1,	2]	=	[1,	2]
[1,	2]
iex>	[1,	2]	=	{1,	2}
**	(MatchError)	no	match	of	right	hand	side	value:	{1,	2}

In	our	next	example	we'll	introduce	variable	capture.	In	it's	simplest	form	variable	capture	does	resemble
an	assignment	(like	the	"="	in	JavaScript)	but	it's	important	to	remember	they're	different.	To	better
visualize	the	difference,	and	to	demonstrate	the	power	of	variable	capture,	let's	try	some	examples.

Start	with	the	simple	 a	=	1 	match.	In	this	instance	the	value	of	 1 	is	captured	in	the	variable	 a .
Although	it	may	look	like	an	assignment,	it's	important	to	remember	it	is	not.	To	better	illustrate	the
difference,	and	power	of	variable	captures,	let's	try	matching	 [1,	b] 	to	 [1,	2] .	Our	match	will	be
successful	and	if	we	look	at	the	variable	 b ,	we	should	get	 2 .

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 65	of	407

https://www.learnphoenix.io

iex>	a	=	2
2
iex>	a
2
iex>	[1,	b]	=	[1,	2]
[1,	2]
iex>	b
2

Be	aware	that	variable	capture	works	right	to	left.	Variables	included	on	the	right	side	of	the	match	are
evaluated	and	their	values	used.	With	our	previous	example	as	a	starting	point,	use	 [a,	b] 	on	the	right
side	of	a	match	to	demonstrate	how	the	values	are	used.

iex>	[1,	2]	=	[a,	b]
**	(CompileError)	iex:1:	undefined	function	a/0

What	if	we	need	to	use	a	variable's	value	in	a	match	but	don't	want	to	reassign	the	value	of	that	variable?
To	accomplish	this,	we	can	use	variable	pinning,	available	to	us	through	the	pin	operator:	 ^ .	Let's	try
some	examples	with	the	pin	operator.

To	begin	let's	capture	a	value	into	a	variable,	something	like	 a	=	1 	will	work.	Next	we'll	use	our	variable
and	pin	operator,	 ^a ,	as	part	of	a	match.	To	demonstrate	a	successful	match,	let's	try	to	match	 [^a,	2]
to	 [1,	2] .	If	we	change	the	right	side	to	 [2,	2] 	we	should	get	a	match	error.

iex>	a	=	1
1
iex>	[^a,	2]	=	[1,	2]
[1,	2]
iex>	[^a,	2]	=	[2,	2]
**	(MatchError)	no	match	of	right	hand	side	value:	[2,	2]

You	may	not	find	yourself	using	variable	pinning	much	but	it's	an	important	piece	to	be	aware	of.

Additional

We're	going	to	go	into	functions	and	modules	in	the	next	lesson	as	well	as	some	of	the	basics	of	Phoenix
and	the	Model-View-Controller.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 66	of	407

https://www.learnphoenix.io

More	Basics	of	Elixir	and	Phoenix

Functions	and	modules
Notes	for	Ruby	developers
Basics	of	Phoenix	and	MVC

Control	Structures

Elixir	supports	 if 	and	 unless 	like	other	modern	languages	such	as	Ruby	and	CoffeeScript.	If	you	aren't
familiar	with	 unless ,	don't	worry	it's	just	syntactic	sugar	for:	 if	!value .

iex>	if	true	do
...>			"truth"
...>	else
...>			"false"
...>	end
"truth"

If	we	replace	 if 	with	 unless ,	we	should	get	the	opposite.

iex>	unless	true	do
...>			"true"
...>	else
...>			"false"
...>	end
"false"

Elixir	doesn't	stop	with	just	 if 	and	 unless ,	it	includes	two	addition	control	structures:	 case 	and	 cond .
The	 case 	structure	is	similar	to	a	 switch 	statement	in	other	languages	but	it	relies	heavily	on	pattern
matching.	The	best	way	to	understand	the	 case 	statement	is	to	try	it	in	IEx.

iex>	case	{:ok,	"Success"}	do
...>			{:ok,	value}	->	value
...>			_	->	"No	match"
...>	end
"Success"

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 67	of	407

https://www.learnphoenix.io

You	may	have	noticed	an	underscore	(_)	above.	An	underscore	is	a	placeholder	that	accepts	any	value.
So	in	the	example	above,	if	the	case	does	not	match	 {:ok,	value} ,	then	it	will	pass	to	 _ 	which	will
match	with	anything	else	and	return	"No	match".

Last	but	not	least	is	 cond .	We	can	use	 cond 	when	we	want	to	match	conditions	and	not	values	or
patterns.	The	 cond 	structure	is	similar	to	 else	if 	in	other	languages.	An	example	will	help	us	better
understand	it's	usage.

iex>	val	=	4
4
iex>	cond	do
...>			val	+	2	<	4	->	"val	<	2"
...>			val	+	2	>=	4	->	"val	>=	2"
...>	end
"val	>=	2"

Pipes

One	of	the	nicest	syntactic	features	of	Elixir	is	the	pipe	operator,	 |> ,	which	allows	you	to	"pipe"	a	value
from	one	function	to	another	function.	This	is	very	similar	to	the	unix	pipeline)	 | 	if	you've	ever	used	that.
In	its	simplest	form,	the	 |> 	takes	the	left	value	and	passes	it	to	the	right	side	as	the	first	argument.

This	is	particularly	useful	because	Elixir	is	just	collections	of	functions,	piping	them	together	makes	the
code	expressive	and	easy	to	understand	at	a	glance.	For	example,	if	were	were	to	make	a	cake	using
functions,	we	could	write.

ingredients
|>	measure
|>	mix
|>	bake
|>	decorate

Each	step	takes	the	result	of	the	previous	function	and	applies	a	transformation	to	it.	This	is	a
surprisingly	powerful	abstraction	that	makes	it	very	easy	to	understand	the	flow	of	your	app	and	makes
for	highly-maintainable	code.

Functions

Functions	in	Elixir,	and	other	functional	programming	languages,	are	considered	first	class	citizens.	That
means	that	all	operations	available	to	other	types	are	available	to	them,	they	can	be	passed	as

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 68	of	407

https://en.wikipedia.org/wiki/Pipeline_(Unix
https://www.learnphoenix.io

arguments	to	other	functions,	assigned	to	variables,	and	returned	from	other	functions.

In	Elixir	there	are	a	couple	types	of	functions,	but	for	this	section	we'll	focus	on	anonymous	functions.	As
the	name	suggests,	anonymous	functions	have	no	name.	If	not	captured	in	a	variable,	an	anonymous
function	would	otherwise	not	exist.	To	define	an	anonymous	function	we'll	use	the	 fn	(arg)	->	body
end 	syntax.	To	call	an	anonymous	function	we	use	the	 .() 	syntax	on	our	variable,	which	is	similar	to
what	you	find	in	other	languages.

Let's	start	with	an	example	function	to	add	two	numbers	together	and	then	try	using	it.

iex>	add	=	fn	(a,	b)	->	a	+	b	end
#Function<12.54118792/2	in	:erl_eval.expr/5>
iex>	add.(1,	2)
3

Elixir	also	includes	a	helpful	shorthand	syntax	for	anonymous	functions.	This	shorthand	makes	use	of	the
& 	operator.	With	the	shorthand	syntax	our	arguments	are	referred	to	as	 &1 ,	 &2 ,	and	so	on.	We	can	try
our	previous	example	using	the	shorthand	syntax.

iex>	add	=	&(&1	+	&2)
&:erlang.+/2
iex>	add.(1,	2)
3

We	learned	about	pattern	matching	using	the	match	operator	(=)	but	we	can	also	use	it	when	specifying
function	signatures.	Let's	expand	on	our	prior	example.	Let's	update	the	function	to	return	the	string
"zero" 	if	someone	tries	to	add	 0 	and	 0 	together:

iex>	add	=	fn
...>									(0,	0)	->	"zero"
...>									(a,	b)	->	a	+	b
...>							end
#Function<12.54118792/2	in	:erl_eval.expr/5>
iex>	add.(1,	2)
2
iex>	add.(0,	0)
"zero"

That's	just	the	start	of	functions	in	Elixir.	In	the	next	section,	and	later	lessons,	we'll	cover	other	function
types	and	how	they	all	fit	together.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 69	of	407

https://www.learnphoenix.io

Modules

At	their	most	basic,	modules	are	collections	of	functions.	With	 defmodule 	we	can	create	a	new	module,
add	functions	to	it,	and	then	re-use	it	elsewhere	in	our	application.	We'll	learn	more	about	modules	in
later	lessons,	but	for	now	we'll	focus	on	the	basics.

We've	already	covered	anonymous	functions	so	let's	take	a	look	at	functions	with	regards	to	modules.	In
our	anonymous	functions	we	used	the	 fn	->	...	end 	syntax,	but	named	functions	(or	functions	in
modules)	use	 def 	and	a	lowercase	name.

Let's	create	a	simple	example	module	that	can	add	two	numbers	together.	We	can	start	by	using
defmodule	Example 	to	define	our	module.	Then	we'll	need	to	use	 def	add(a,	b) 	to	define	our	function,
implementing	the	functionality	should	be	easy.	Once	we've	defined	everything	we	can	use	it	by	calling
Example.add(1,	2) .	If	we	put	it	all	together	we	should	get	something	like	this:

iex>	defmodule	Example	do
...>			def	add(a,	b)	do
...>					a	+	b
...>			end
...>	end
{:module,	Example,
	<<70,	79,	82,	49,	0,	0,	4,	248,	66,	69,	65,	77,	69,	120,	68,	99,	0,	0,	0,	157,	131,	104,	2,	
	{:add,	2}}
iex>	Example.add(1,	2)
3

You	might	be	confused	by	all	the	numbers	that	Elixir	has	outputted	for	us.	For	now,	don't	worry	about	it
because	we	won't	be	using	that	information	any	time	soon.	But	if	you	insist	on	jumping	ahead,	you	can
check	out	Elixir	binaries.

That's	the	tip	of	the	iceberg	for	modules.	In	the	next	lessons	we'll	learn	more	about	composing	our
modules	and	connecting	the	pieces.

Structs

When	we	need	a	named	key-value	store	with	known	keys,	we	turn	to	 structs .	Structs	share	the	name	of
the	module	they're	defined	in	and	use	a	syntax	similar	to	our	maps.	We	define	them	with	 defstruct 	and
a	keyword	list	of	fields	and	default	values.	For	our	example,	let's	create	a	simple	module	and	struct	to
present	a	person:

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 70	of	407

http://elixir-lang.org/getting-started/binaries-strings-and-char-lists.html#binaries-and-bitstrings
https://www.learnphoenix.io

iex>	defmodule	Person	do
...>			defstruct	name:	nil,	age:	0,	location:	nil
...>	end
{:module,	Person,
	<<70,	79,	82,	49,	0,	0,	5,	32,	66,	69,	65,	77,	69,	120,	68,	99,	0,	0,	0,	133,	131,	104,	2,	100
	%Person{age:	0,	location:	nil,	name:	nil}}

Now	that	we	have	our	struct	created,	it's	time	to	use	it.	As	we	already	learned,	structs	and	maps	share	a
similar	syntax.	In	fact,	structs	are	just	maps	with	a	few	extra	features.	Create	a	new	struct	containing
your	information	and	try	to	access	the	fields:

iex>	sean	=	%Person{name:	"Sean",	age:	31,	location:	"US"}
%Person{age:	31,	location:	"US",	name:	"Sean"}
iex>	sean.age
31

Notes	for	Ruby	Developers

It's	no	coincidence	that	Elixir	and	Ruby	share	many	similarities;	Jose,	the	creator	of	Elixir,	was	a
contributor	to	Ruby	and	Rails.

[TODO]	insert	handy	chart	here

Model-View-Controller

Phoenix	is	the	framework	we'll	be	using	with	Elixir.	If	you've	used	an	MVC	framework	such	as	Rails	or
SailsJS,	a	lot	these	topics	will	be	familiar	to	you.

Phoenix	uses	the	standard	Model-View-Controller	(MVC)	architecture	that	we	have	come	to	expect	while
building	web	apps.	In	general,	anything	related	to	the	web	application	can	be	found	in	the	 web 	directory.
In	there	we	will	find	out	 models ,	 views ,	 templates ,	and	 controllers .	For	those	unfamiliar	with	MVC,
we'll	do	high	level	overview.

The	appeal	of	the	MVC	pattern	is	the	separation	of	concerns.	As	you	probably	guessed	there	are	three
components	to	the	MVC	pattern:	models,	views,	and	controllers.	Another	way	of	saying	that	is:	data,	user
interface,	decisions.	In	a	MVC	application	the	 model 	is	responsible	for	managing	data	and	business
rules.	Our	 view 	handles	the	user	interface	be	it	HTML,	XML,	or	JSON.	Finally,	our	 controller 	handles
most	of	the	work	orchestrating	inputs	to	models	and	finally	views.

Most	of	the	logic	of	how	the	user	interacts	with	the	app	will	be	handled	by	the	controller.	You	will	see	this

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 71	of	407

https://www.learnphoenix.io

in	practice	in	short	order,	so	there	is	no	reason	to	go	into	detail	here.

Additional

We	will	cover	Phoenix	and	Elixir	in	more	detail	as	the	concepts	become	relevant	in	the	rest	of	the	tutorial.

In	Phoenix,	most	files	are	named	with	 _ 	underscores.	For	example,	 user_controller.ex .

When	debugging,	most	people	use	 IO.puts 	to	log	some	particular	output	to	the	terminal.	For	example,
IO.puts	"Running!" 	will	simply	return	a	string	if	it	is	called.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 72	of	407

https://www.learnphoenix.io

User	Accounts	and	Signup:	Part	1

Account	creation
JSON	web	token	(JWT)
Migrations
CORS

This	is	the	first	lesson	in	which	we	will	make	significant	changes	to	our	Phoenix	backend.	Just	about
every	app	has	user	accounts,	often	with	varying	degrees	of	complexity.	For	our	app,	we	will	use	a
standard	email-password	combination.

In	this	lesson,	we	create	the	 User 	model	and	add	API	endpoints	so	our	frontend	can	create	and	update
an	account.	We're	also	going	to	create	and	run	a	migration	to	update	our	database.

Creating	our	user

The	first	thing	we	need	to	do	is	create	a	user	model	and	controller,	which	we	cover	in	more	detail	shortly.
Creating	these	components	is	a	standard	part	of	most	Phoenix	applications	so	there	are	helpers
available	to	generate	the	boilerplate.

To	view	a	list	of	the	generators,	and	other	 mix 	tasks	available	to	us,	run	 mix	-h :

$	mix	-h

mix																					#	Runs	the	default	task	(current:	"mix	run")
...
mix	new																	#	Creates	a	new	Elixir	project
mix	phoenix.digest						#	Digests	and	compress	static	files
mix	phoenix.gen.channel	#	Generates	a	Phoenix	channel
mix	phoenix.gen.html				#	Generates	controller,	model	and	views	for	an	HTML	based	resource
mix	phoenix.gen.json				#	Generates	a	controller	and	model	for	a	JSON	based	resource
mix	phoenix.gen.model			#	Generates	an	Ecto	model
mix	phoenix.gen.secret		#	Generates	a	secret
mix	phoenix.new									#	Create	a	new	Phoenix	v1.1.3	application
mix	phoenix.routes						#	Prints	all	routes
mix	phoenix.server						#	Starts	applications	and	their	servers
...

There	are	many	tasks	but	for	now	we'll	focus	only	on	the	Phoenix	ones.	Since	we're	building	a	JSON	API,

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 73	of	407

https://www.learnphoenix.io

let's	try	the	 phoenix.gen.json 	generator.	This	will	cause	an	error	but	the	errors	in	Phoenix	are	quite
helpful	and	will	tell	you	what	you're	missing.

$	mix	phoenix.gen.json

**	(Mix)	mix	phoenix.gen.json	expects	both	singular	and	plural	names
of	the	generated	resource	followed	by	any	number	of	attributes:

				mix	phoenix.gen.json	User	users	name:string

Let's	try	it	again	but	this	time	for	a	user	with	an	email,	encrypted	password,	and	a	username:

$	mix	phoenix.gen.json	User	users	email:string	encrypted_password:string	\
		username:string

You	will	get	output	similar	to	the	following.

*	creating	web/controllers/user_controller.ex
*	creating	web/views/user_view.ex
*	creating	test/controllers/user_controller_test.exs
*	creating	web/views/changeset_view.ex
*	creating	priv/repo/migrations/20160406190555_create_user.exs
*	creating	web/models/user.ex
*	creating	test/models/user_test.exs

Add	the	resource	to	your	api	scope	in	web/router.ex:

				resources	"/users",	UserController,	except:	[:new,	:edit]

Remember	to	update	your	repository	by	running	migrations:

				$	mix	ecto.migrate

This	generates	a	number	of	different	files	and	instructions	for	setting	up	our	user.	We'll	take	this
opportunity	to	discuss	some	of	the	files	and	their	purpose	within	our	project.

The	Controller

In	the	output	from	our	generator	the	very	first	file	is	 web/controllers/user_controller.ex .

Controllers	are	responsible	for	doing	most	of	the	work	for	a	given	request.	When	our	application	receives
a	request	it	will	use	the	router	to	direct	the	request	to	a	controller	and	a	specific	function.	For	example,

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 74	of	407

https://www.learnphoenix.io

when	someone	arrives	at	your	website,	you	need	to	determine	whether	or	not	that	person	is	a	logged-in
user.	The	controller	is	where	your	app	will	check	with	the	database	to	determine	how	to	handle	the
current	connection.

If	you	come	from	a	Rails	background,	the	concept	of	a	controller	should	be	familiar.

Controllers	are	a	big	topic	and	will	be	used	frequently	so	if	you	do	not	understand	them	now,	you	will	after
we	use	them	a	little	more.

The	View

The	second	file	created	is	 web/views/user_view.ex ,	our	view.	If	you're	familiar	with	other	frameworks,
you	might	be	expecting	the	view	to	be	HTML	files	but	that's	not	necessarily	the	case.	In	Phoenix,	our	view
is	a	module	containing	functions	for	rendering	data	into	a	consumable	format	which	can	be	either	JSON
or	HTML.	Since	we're	building	a	JSON	API,	it	will	respond	with	JSON.

Our	layout	and	other	HTML	assets	are	referred	to	as	templates	in	Phoenix.	These	templates	can	be	used
by	our	views	to	generate	the	final	HTML	or	JSON.

By	default	our	generated	boilerplate	includes	our	password	in	the	JSON	response.	Open	the	user	view
and	update	the	 render/3 	function	by	removing	the	 encrypted_password 	reference:

web/views/user_view.ex
commit: coming soon

		...
		def	render("user.json",	%{user:	user})	do
				%{id:	user.id,
						email:	user.email,
						username:	user.username}
		end

The	Migration

A	migration	is	a	set	of	changes	we	want	applied	to	our	database	schema,	such	as	adding	new	tables	and
columns	or	updating	existing	ones.	When	we	look	at	the	generated	migration	we'll	see	it	is	creates	a	new
database	table	for	 "users" 	and	add	a	number	of	column	for	each	of	the	three	fields	we	supplied	the
generator.	The	migration	that	was	generated	for	us	can	be	found	at
priv/repo/migrations/20160406190555_create_user.exs ;	it's	important	to	note	that	your	file	will	almost
certainly	be	different	since	migrations	rely	on	timestamps	at	the	beginning	of	the	file	for	uniqueness.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 75	of	407

https://www.learnphoenix.io

Let's	open	our	migration	make	a	few	changes.	For	starters	we	want	to	make	sure	that	users	enter	a	valid
username	and	email	for	an	account	to	be	created.	We	also	want	to	make	sure	that	email	addresses	are
unique.

/priv/repo/migrations/2016..._create_user.exs
commit: coming soon

defmodule	PhoenixChat.Repo.Migrations.CreateUser	do
		use	Ecto.Migration

		def	change	do
				create	table(:users)	do
						add	:username,	:string,	null:	false
						add	:email,	:string,	null:	false
						add	:encrypted_password,	:string

						timestamps
				end

				create	unique_index(:users,	[:email])
				create	unique_index(:users,	[:username])
		end
end

The	first	change	we	made	was	to	add	 null:	false 	to	both	 :username 	and	 :email ,	this	tells	the
database	that	 null 	values	are	not	to	be	accepted.	In	other	words,	a	value	is	required.	The	second
change	we	made	was	to	add	 create	unique_index/2 .	A	unique	index	is	to	make	sure	a	username	and
email	is	only	used	once.

The	Model

Next	up	is	our	model,	found	in	 web/models/user.ex .	In	Phoenix,	models	are	modules	containing
functions	for	working	with	our	data's	 schema 	and	the	 struct 	that	contains	its	values.	We're	already
familiar	with	structs	and	if	you've	worked	in	another	framework,	you're	probably	already	familiar	with	a
schema,	but	in	case	you	aren't,	a	schema	is	describes	the	different	fields	of	our	table	and	it	is	defined
within	the	 schema 	block.	You	can	think	of	it	as	a	way	to	enforce	a	particular	structure.

Let's	open	our	model	and	add	support	for	the	unique	index	we	added	into	our	migration.

/web/models/user.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 76	of	407

https://www.learnphoenix.io

defmodule	PhoenixChat.User	do
		use	PhoenixChat.Web,	:model

		schema	"users"	do
				field	:email,	:string
				field	:encrypted_password,	:string
				field	:username,	:string

				timestamps
		end

		@required_fields	~w(email	encrypted_password	username)
		@optional_fields	~w()

		def	changeset(model,	params	\\	:empty)	do
				model
				|>	cast(params,	@required_fields,	@optional_fields)
				|>	validate_format(:email,	~r/@/)
				|>	validate_length(:username,	min:	1,	max:	20)
				|>	update_change(:email,	&String.downcase/1)
				|>	unique_constraint(:email)
				|>	update_change(:username,	&String.downcase/1)
				|>	unique_constraint(:username)
		end
end

We've	made	some	changes	to	our	 changeset/2 	function.	A	 changeset 	is	a	function	that	validates	and
transforms	data	into	a	format	the	database	is	expecting.	For	now	we'll	focus	on	a	single	changeset
function	but	it's	possible,	and	common,	to	use	different	functions	for	different	situations.	You	will	see
some	of	these	later	on.

Let's	look	at	the	individual	changeset	changes	we	made.	With	 validate_format(:email,	~r/@/) 	we
check	the	email	field	using	a	regular	expression	to	ensure	it	contains	an	 @ .	The	second	change	we
introduced	is	 validate_length(:username,	min:	1,	max:	20) 	to	ensure	a	username	is	at	least	one
character	and	at	most	20.

Finally,	the	last	change	ties	in	with	the	index	we	added	to	our	migration:	 unique_constraint(:email) .
With	the	 unique_constraint/3 	function	we	can	ensure	the	email	is	not	already	in	use,	thanks	to	our
unique_index .	We	also	do	the	same	for	 :username .

The	Router

The	last	piece	to	our	puzzle	is	the	router,	found	in	 web/router.ex .	The	output	from	our	generator
directed	us	to	make	a	change,	open	the	router	and	update	it	accordingly.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 77	of	407

https://www.learnphoenix.io

When	our	frontend	makes	a	request	to	our	API,	the	first	place	it	hits	is	the	 router .	This	router	sends	that
request	to	the	right	place	so	the	request	can	be	handled	properly.

/web/router.ex
commit: coming soon

defmodule	PhoenixChat.Router	do
		use	PhoenixChat.Web,	:router

		pipeline	:browser	do
				plug	:accepts,	["html"]
				plug	:fetch_session
				plug	:fetch_flash
				plug	:protect_from_forgery
				plug	:put_secure_browser_headers
		end

		pipeline	:api	do
				plug	:accepts,	["json"]
		end

		scope	"/",	PhoenixChat	do
				pipe_through	:browser	#	Use	the	default	browser	stack

				get	"/",	PageController,	:index
		end

		scope	"/api",	PhoenixChat	do
				pipe_through	:api

				resources	"/users",	UserController,	except:	[:show,	:index,	:new,	:edit]
		end
end

With	this	change	we	are	telling	Phoenix	that	any	requests	to	 /users ,	except	 :new 	and	 :edit 	should	be
sent	to	our	 UserController .	We're	also	removing	 :index 	and	 :show 	since	we	don't	want	random	users
to	be	able	to	see	our	list	of	users,	but	for	some	apps,	you'd	want	this	behavior.

There	are	a	few	things	to	notice	in	this	file.	There	are	two	 pipeline 	functions	and	two	 scope 	functions.
Since	we	are	creating	an	API	we	won't	be	using	the	 :browser 	pipeline,	but	you	can	see	that	it	accepts
HTML	and	has	a	series	of	plugs	that	apply	useful	transformations	to	your	connection.	For	our	application
we'll	focus	on	the	 :api 	pipeline.

Within	the	code	we	just	wrote,	you	see	that	any	connection	that	hits	the	 /users 	route	is	"piped	through"
the	 :api 	pipeline.	Be	wary	of	adding	plugs	to	the	API	pipeline,	because	if	you	do,	that	transformation	will
be	applied	to	every	incoming	connection.	This	is	a	very	powerful	tool	and	should	be	used	with	discretion.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 78	of	407

https://www.learnphoenix.io

The	 scope 	allow	us	group	different	routes	together	under	a	common	base	path.	In	our	case,	we	want	to
direct	anyone	hitting	the	 /api/users 	route	to	the	 UserController .

Finally,	we	see	the	 resources/4 	function	which	takes	our	path,	controller,	and	options.	Within	the
Phoenix	router,	 resources/4 ,	is	a	handy	function	that	takes	care	of	generating	all	of	the	standard	routes
for	us.	We	can	see	a	list	of	the	routes	 resources/4 	has	created	by	running	 mix	phoenix.routes 	in	our
command	line:

$	mix	phoenix.routes

If	you	run	the	above	command	you	should	see	something	like	this	(if	you	do	not	see	these,	make	sure
your	app	has	been	compiled):

page_path		GET					/															PhoenixChat.PageController	:index
user_path		POST				/api/users						PhoenixChat.UserController	:create
user_path		PATCH			/api/users/:id		PhoenixChat.UserController	:update
											PUT					/api/users/:id		PhoenixChat.UserController	:update
user_path		DELETE		/api/users/:id		PhoenixChat.UserController	:delete

In	later	sections	we'll	explore	creating	individual	routes	without	the	 resources/4 	helper.

Once	we've	updated	our	migration	we	should	create	the	database	and	run	the	migration.	Running	our
migration	will	apply	the	changes	to	our	database:

$	mix	ecto.create
$	mix	ecto.migrate

If	this	isn't	your	first	time	through	the	tutorial,	you	might	need	to	run	 mix	ecto.drop 	first	to	drop	the	old
database.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 79	of	407

https://www.learnphoenix.io

User	Accounts	and	Signup:	Part	2

Signup
CORS

In	this	lesson,	we	add	the	ability	to	create	a	new	user	with	a	secure,	hashed	password.	Then	we	set	up
our	endpoint	to	handle	incoming	messages	from	our	frontend	so	we	can	connect	and	create	new	users.

Sign-up

Before	we	can	sign-in,	we	need	to	sign-up.	We	have	our	user	boilerplate	done	so	now	we	can	look	at	how
to	register	new	accounts.

In	a	important	part	of	registering	a	new	account	is	picking	a	strong	password.	An	even	more	important
part	of	the	process	is	securely	storing	that	password.	For	this,	we're	going	to	rely	on	the	library
[Comeonin][comeonin].	Before	we	can	use	it,	we	need	to	include	it	as	a	dependency	in	our	 mix.exs 	file;
mix.exs 	is	much	like	to	NPM's	 package.json 	and	Bunder's	 Gemfile .

Make	sure	your	version	of	 phoenix 	is	at	least	1.2	and	that	your	version	of	 phoenix_ecto 	is	at	least	3.0.
Several	features	of	this	app	will	not	work	if	you	are	not	on	the	current	version.

/mix.exs
commit: coming soon

		...
		defp	deps	do
				[
						{:comeonin,	"~>	2.3"},
						{:cowboy,	"~>	1.0"},
						{:gettext,	"~>	0.11"},
						{:phoenix,	"~>	1.2.0"},
						{:phoenix_pubsub,	"~>	1.0"},
						{:phoenix_ecto,	"~>	3.0"},
						{:phoenix_html,	"~>	2.6"},
						{:phoenix_live_reload,	"~>	1.0",	only:	:dev},
						{:postgrex,	">=	0.0.0"}
]
		end

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 80	of	407

https://www.learnphoenix.io

In	addition	to	 deps/0 	we	need	to	update	 applications/0 .	This	is	a	little	bit	different	than	you	might	be
used	to,	but	it's	still	intuitive.	In	Phoenix/Elixir,	some	modules	can	be	managed	independently	and	need	to
be	started	along	with	your	app.	Many	dependencies	you	add	will	need	to	be	added	here.

The	primary	exceptions	are	libraries	that	rely	on	an	existing	application	that	you've	already	started.	For
example,	some	modules	will	use	[HTTPoison][httpoison]	and	don't	need	to	be	started	independently.	We
will	cover	that	in	more	detail	when	it	becomes	relevant.	We	will	cover	these	applications	in	a	later	lesson
but	for	now	we	only	need	to	add	 :comeonin :

/mix.exs
commit: coming soon

def	application	do
		[mod:	{PhoenixChat,	[]},
				applications:	[
						:comeonin,
						:cowboy,
						:gettext,
						:logger,
						:phoenix,
						:phoenix_ecto,
						:phoenix_html,
						:phoenix_pubsub,
						:postgrex
]]
end

Now	you	should	run	 mix	deps.get 	to	get	install	our	dependencies:

$	mix	deps.get

Next,	we'll	revisit	our	model	and	changesets.

Registration	changeset

During	the	registration	process	there	are	some	things	we	need	to	do	then	and	only	then,	like	validating
password	length	and	hashing	our	password	with	[Comeonin][comeonin].	For	these	reasons	we'll	create	a
new	changeset	just	for	registrations.	The	first	challenge	we	have	to	over	come	is	where	to	store	the
unhashed	password,	thankfully	we	can	use	a	 virtual 	field	in	our	schema.

Virtual	fields	are	part	of	the	 schema 	and	 struct 	but	their	values	are	not	persisted	(saved)	to	our
database.	Using	a	virtual	field	allows	us	to	store	both	the	hashed	and	unhashed	versions	of	the	password

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 81	of	407

https://www.learnphoenix.io

in	the	same	struct,	making	our	work	with	changesets	easier.

Let's	begin	by	updating	our	model	in	 web/models/user.ex .	We	will	start	by	including	the	virtual	password
field:

/web/models/user.ex
commit: coming soon

		...
		schema	"users"	do
				field	:email,	:string
				field	:encrypted_password,	:string
				field	:username,	:string
				field	:password,	:string,	virtual:	true

				timestamps
		end

Let's	update	our	original	 changeset/2 	function	to	ignore	the	password:

/web/models/user.ex
commit: coming soon

		...
		@required_fields	~w(email	username)
		@optional_fields	~w()
		...

Now	we	can	create	our	new	 registration_changeset/2 	function.	For	this	changeset	we	want	to	require
our	virtual	password	field,	validate	the	password	length,	and	finally	hash	it	using	Comeonin.	If	you're	not
familiar	with	hashing,	you	can	think	of	it	as	turning	a	plain-text	string	into	a	(pseudo)	random	string	that
can	only	be	decoded	if	you	have	the	right	key.	Let's	make	those	changes	now:

/web/models/user.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 82	of	407

https://hexdocs.pm/comeonin/api-reference.html
https://www.learnphoenix.io

		def	registration_changeset(model,	params)	do
				model
				|>	changeset(params)
				|>	cast(params,	~w(password),	[])
				|>	validate_length(:password,	min:	6,	max:	100)
				|>	put_encrypted_pw
		end

		defp	put_encrypted_pw(changeset)	do
				case	changeset	do
						%Ecto.Changeset{valid?:	true,	changes:	%{password:	pass}}	->
								put_change(changeset,	:encrypted_password,	Comeonin.Bcrypt.hashpwsalt(pass))
						_	->
								changeset
				end
		end

In	addition	to	our	 registration_changeset/2 	function	we've	also	created	 put_encrypted_pw/1 ,	this
private	function	will	hash	our	password	when	a	changeset	is	valid.

Before	we	go	too	much	further,	let's	look	at	why	we	need	a	separate	changeset	for	registration.	The
primary	reason	for	separate	changeset	is	so	we	can	validate	and	hash	passwords	only	when	necessary.
Password	hashing	is	an	expensive	operation	in	which	a	complex	algorithm	is	used	to	convert	our
password	into	a	non-reversible	random	string	of	characters	and	numbers.	When	we	hash	passwords	we
are	able	to	safely	store	them	in	our	database.

Storing	passwords	unhashed	is	a	major	no-no.	Without	hashing,	our	passwords	would	be	available	in
clear	text	to	anyone	with	access	to	the	database,	like	employees	or	a	malicious	attacker.	Hashing
passwords	ensures	your	user's	data	is	just	that	much	safer.

Controller	updates

With	our	registration	changeset	complete,	we	can	update	our	user	controller	in
controllers/user_controller.ex 	to	use	it.	Updating	our	controller	is	easy	thanks	to	changesets.	All	we
need	to	do	is	update	our	 create/2 	function	to	use	 registration_changeset/2 	in	place	of	 changeset/2 .

/web/controllers/user_controller.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 83	of	407

https://www.learnphoenix.io

def	create(conn,	%{"user"	=>	user_params})	do
		changeset	=	User.registration_changeset(%User{},	user_params)

		case	Repo.insert(changeset)	do
				{:ok,	user}	->
						conn
						|>	put_status(:created)
						|>	render("show.json",	user:	user)
				{:error,	changeset}	->
						conn
						|>	put_status(:unprocessable_entity)
						|>	render(PhoenixChat.ChangesetView,	"error.json",	changeset:	changeset)
		end
end

We	can	also	delete	the	 show/2 	and	 index/2 	functions	since	we	aren't	going	to	call	them	from	our
frontend.

Our	registration	API	is	now	ready	for	use.	With	a	valid	email,	password,	and	username	our	controller	will
create	a	new	record	in	the	database	and	return	the	user	as	JSON.

Cross-Origin	Resource	Sharing	(CORS)

If	you've	heard	of	CORS	before	then	reading	this	section	title	may	have	cause	you	to	wince;	don't	worry
we'll	only	be	covering	CORS	at	a	high	level.

Cross-origin	resource	sharing,	or	CORS,	is	a	mechanism	for	limiting	which	domains	and	applications	can
access	our	API.	CORS	isn't	usually	an	issue,	since	we	often	times	serve	the	front-end	application	on	the
same	host	as	the	backend	(as	in,	both	the	backend	and	the	frontend	are	run	from	the	same	server,	like
with	Rails,	Meteor,	etc).

In	our	application	however,	we've	separated	the	front-end	from	the	back-end	and	hosting	them	in	two
totally	separate	places.	While	running	locally,	our	API	is	on	 localhost:4000 ,	while	our	frontend	is	running
on	 localhost:3000 .	Because	of	this,	we	need	to	add	support	for	CORS	to	our	project,	otherwise,	our	API
would	only	accept	requests	originating	from	 localhost:4000 	and	would	ignore	any	requests	that
originate	from	 localhost:3000 .

You	can	think	of	CORS	as	a	doorman	that	checks	to	make	sure	that	the	person	requesting	entrance	is	on
the	list.	If	your	API	is	only	supposed	to	be	used	by	your	frontend,	then	you	can	limit	the	incoming	requests
to	that	domain.	You	can	also	set	CORS	to	accept	all	incoming	traffic	from	any	domain.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 84	of	407

https://www.learnphoenix.io

To	faciliate	supporting	CORS,	we're	going	to	include	the	Corsica	library.	We	need	to	start	by	updating	our
dependencies	in	 mix.exs ,	we	won't	need	to	add	Corsica	as	an	application	though.	When	we're	done,
don't	forget	to	run	 mix	deps.get :

/mix.exs
commit: coming soon

defp	deps	do
		[
				{:comeonin,	"~>	2.3"},
				{:corsica,	"~>	0.4"},
				...
]
end

$	mix	deps.get

Now	that	we	have	Corsica	in	our	project	we	need	to	configure	it.	Lucky	for	us	there	is	only	one	file	we
need	to	change:	 lib/phoenix_chat/endpoint.ex .	Open	the	endpoint	file	and	add	this	changes	at	the
bottom:

/lib/phoenix_chat/endpoint.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 85	of	407

https://github.com/whatyouhide/corsica
https://www.learnphoenix.io

defmodule	PhoenixChat.Endpoint	do
		...
		plug	Corsica,	allow_headers:	~w(Accept	Content-Type	Authorization)
		plug	PhoenixChat.Router
end

Don't	worry	if	you	don't	understand	all	of	this	yet,	we'll	discuss	Plugs	more	shortly.	Just	know	that	any
request	we	receive	will	pass	through	 Corsica 	before	it	hits	our	 Router .

We	are	instructing	Corsica	to	allow	data	with	headers	 Accept ,	 Content-Type ,	and	 Authorization .	This
will	make	more	sense	when	we	implement	an	API	call	from	the	frontend.

The	last	thing	to	do	is	to	start	your	Phoenix	server	so	we	can	start	making	requests.	You	do	this	by
running	 mix	phoenix.server ,	which	will	default	to	 localhost:4000 .

$	mix	phoenix.server

You	will	want	to	keep	this	open	and	running	so	we	can	make	requests	to	our	backend	from	our	React
frontend.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 86	of	407

https://www.learnphoenix.io

Create	a	Reusable	Button	Component

CSS	variables
Buttons
Unit	tests

Before	we	get	too	far,	we're	going	to	need	buttons.	Buttons	are	a	simple	component	that	we	can	easily
make	reusable,	so	rather	than	use	a	global	style	and	use	a	class	like	 button-primary 	as	you	would	with	a
framework	like	Bootstrap,	we're	going	to	create	a	component	that	we	can	reuse.	We're	going	to	have	at
least	three	types	of	buttons	and	we	will	use	 props 	to	tell	the	button	what	to	display.

$	mkdir	app/components/Button
$	touch	app/components/Button/{README.md,spec.js,index.js,style.css}

Our	buttons	will	take	in	two	properties,	 type 	and	 onClick .	The	 type 	will	determine	the	style,	and
onClick 	will	take	in	a	function	that	tell	the	button	what	to	do	when	it's	clicked.	We	will	also	pass	in	the
text	of	the	button	as	 props.children .	We	are	going	to	create	our	button	as	an	efficient	stateless
functional	component.

/app/components/Button/index.js
commit: coming soon

import	React	from	"react"
import	cssModules	from	"react-css-modules"
import	style	from	"./style.css"

export	const	Button	=	props	=>	{
		return	(
				<button
						style={props.style}
						onClick={props.onClick}
						className={style[props.type]}>
						{props.children}
				</button>
)
}

export	default	cssModules(Button,	style)

The	code	above	should	all	look	familiar.	We	can	style	these	components	with	the	same	technique	we

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 87	of	407

https://facebook.github.io/react/blog/2015/10/07/react-v0.14.html#stateless-functional-components
https://www.learnphoenix.io

used	previously,	but	since	different	button	types	will	share	a	lot	of	styling,	we	should	look	into	ways	of
composing	these	to	keep	our	CSS	as	DRY	as	possible.

Style	the	buttons

Now	back	to	our	 Button 	component,	within	our	 style.css 	file,	add	the	following,	which	will	compose
our	buttons	without	repeating	code	(explained	below).

/app/components/Button/style.css
commit: coming soon

.button	{
		color:	white;
		border-radius:	5px;
		border:	1px;
		padding:	0.8rem	2rem;
		cursor:	pointer;
		font-size:	1em;
		align-self:	center;
		outline:	none;
}

.primary	{
		composes:	button;
		background:	rgb(239,	95,	78);
}
.primary:hover	{
		background:	color(rgb(239,	95,	78)	lightness(+7%));
}

.flat	{
		composes:	button;
		background:	white;
		color:	rgb(239,	95,	78);
		border:	1px	solid	rgb(239,	95,	78);
}
.flat:hover	{
		color:	color(rgb(239,	95,	78)	lightness(+15%));
}

.accentPrimary	{
		composes:	button;
		background:	rgb(58,	155,	207);
		color:	white;
}
.accentPrimary:hover	{
		background:	color(rgb(58,	155,	207)	lightness(+10%));
}

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 88	of	407

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://www.learnphoenix.io

}

.accentFlat	{
		composes:	button;
		background:	white;
		color:	rgb(58,	155,	207);
		border:	1px	solid	rgb(58,	155,	207);
}
.accentFlat:hover	{
		color:	color(rgb(58,	155,	207)	lightness(+15%));
}

.disabled	{
		composes:	button;
		cursor:	not-allowed;
}

First,	we're	creating	the	 button 	class,	which	will	contain	all	of	the	styles	that	are	shared	between	the
other	buttons.

Then	we	compose	using	 composes ,	which	we	get	from	CSS	Modules,	a	 flat ,	a	 primary ,	and	a
disabled 	button	from	the	shared	characteristics	of	the	 button ,	as	well	as	an	alternative	color	("accent").

Alternatively,	we	could	use	the	next-version	syntax	for	applying	styles	to	multiple	classes.	You	can	do	this
by	assigning	a	variable	to	 :root ,	then	using	 @apply 	to	add	the	styles	to	other	classes.	For	more	on	this,
see	the	(docs).	The	downside	is	that	this	will	repeat	code	in	your	stylesheet.

Because	we're	using	CSSNext,	we	can	use	the	new	 color 	function	(docs),	which	replace	a	lot	of	the
useful	functions	that	we	get	with	a	preprocessor.	In	this	case,	we	are	taking	a	color	and	making	it	lighter
by	a	certain	percentage.	You	can	also	make	it	darker	by	changing	the	 + 	to	a	 - .

We	should	also	define	our	 PropTypes 	since	we'll	be	using	this	button	a	lot	and	it	will	be	good	to	know	if
we	are	accidentally	causing	an	error.

/app/components/Button/index.js
commit: coming soon

...

Button.propTypes	=	{
		style:	React.PropTypes.object,
		onClick:	React.PropTypes.func,
		type:	React.PropTypes.string.isRequired,
		children:	React.PropTypes.node.isRequired
}

If	you're	not	familiar	with	PropTypes,	you	can	think	of	them	as	a	way	to	warn	you	in	advance	if	you	are	not

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 89	of	407

http://cssnext.io/features/#custom-properties-set-apply
https://github.com/postcss/postcss-color-function
https://www.learnphoenix.io

sending	a	necessary	piece	of	data	to	a	particular	component.	In	the	case	of	our	 Button ,	if	we	do	not
send	 type 	or	 children 	to	our	Button,	it	won't	render	properly,	so	we	require	that	both	of	those	props	are
passed	in.

We	are	setting	 onClick 	as	an	optional	parameter	since	we	may	not	necessarily	want	the	button	to	do
anything	if	we	click	on	it--sometimes	the	action	will	be	handled	by	the	wrapper	outside	of	the	button.

Unit	tests

Now	we	should	write	our	unit	tests	for	our	 Button 	component.	We	know	that	we	want	our	button	to	1.
Render	its	children,	2.	Take	in	 primary ,	 flat ,	and	 disabled 	as	 type ,	3.	Handle	click	events,	and	4.
Render	as	a	 button .

Go	ahead	and	add	all	the	following	tests.	These	should	all	look	very	familiar	as	they	are	almost	identical
to	the	tests	we	wrote	for	our	 Modal 	component.	The	only	difference	here	is	that	we	are	passing	in	the
style	as	 type 	and	checking	to	make	sure	that	component	rendered	with	the	right	style.

/app/components/Button/spec.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 90	of	407

https://www.learnphoenix.io

import	React	from	"react"
import	expect	from	"expect"
import	{	shallow	}	from	"enzyme"

import	{	Button	}	from	"./"

const	props	=	{
		type:	"primary",
		onClick:	()	=>	{}
}

describe("<Button	/>",	()	=>	{
		it("should	render	its	children",	()	=>	{
				const	children	=	(<p>foo</p>)
				const	renderedComponent	=	shallow(
						<Button	{...props}>
								{	children	}
						</Button>
)
				expect(renderedComponent.contains(children))
		})
		it("should	render	a	<button>	element",	()	=>	{
				const	renderedComponent	=	shallow(
						<Button	{...props}>
								Test
						</Button>
)
				expect(renderedComponent.is("button")).toEqual(true)
		})
		it("should	handle	click	events",	()	=>	{
				const	onClickSpy	=	expect.createSpy()
				const	renderedComponent	=	shallow(
						<Button	{...props}	onClick={onClickSpy}>
								Test
						</Button>
)
				renderedComponent.find("button").simulate("click");
				expect(onClickSpy).toHaveBeenCalled();
		})
})

And	now	to	use	your	new	 Button 	component,	all	you	have	to	do	is	import	it	and	pass	in	the	 type 	and
children 	at	a	minimum.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 91	of	407

https://www.learnphoenix.io

Login	and	Signup	Forms

Form	components
Login	and	signup	views

It	is	notoriously	difficult	to	create	reusable	 Form 	components.	That's	because	there	is	so	much	variation
in	the	inputs	and	what	you	end	up	doing	with	them.	Since	we	will	only	have	a	few	forms,	we	are	going	to
make	each	one	separately.	If	we	end	up	creating	lots	of	forms	with	identical	characteristics,	we	can
refactor	them	out	later.

Go	ahead	and	create	 Signup 	and	 Login 	directories	and	populate	them	with	the	standard	files.

$	mkdir	app/components/{Signup,Login}
$	touch	app/components/Signup/{README.md,index.js,style.css,spec.js}	\
		app/components/Login/{README.md,index.js,style.css,spec.js}

Then	we	should	create	the	 Signup 	component	in	our	 index.js 	file.

/app/components/Signup/index.js
commit: coming soon

import	React	from	"react"
import	cssModules	from	"react-css-modules"
import	style	from	"./style.css"

import	{	default	as	Button	}	from	"../Button"

export	class	Signup	extends	React.Component	{
		render()	{
				return	(
						<div	className={style.wrapper}>
								<div	className={style.form}>
										<div	className={style.inputGroup}>
												<input
														placeholder="Username"
														className={style.input}
														type="text"
														id="signup-username"	/>
										</div>
										<div	className={style.inputGroup}>
												<input
														placeholder="Email"
														className={style.input}

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 92	of	407

https://www.learnphoenix.io

														className={style.input}
														type="text"
														id="signup-email"	/>
										</div>
										<div	className={style.inputGroup}>
												<input
														placeholder="Password"
														className={style.input}
														type="password"
														id="signup-password"	/>
										</div>
										<div	className={style.inputGroup}>
												<input
														placeholder="Verify	Password"
														className={style.input}
														type="password"
														id="signup-verify-password"	/>
										</div>
										<Button
												style={{	width:	"100%"	}}
												type="primary">
												Submit
										</Button>
								</div>
						</div>
)
		}
}

export	default	cssModules(Signup,	style)

There	are	many	ways	to	style	inputs.	If	you	have	a	preference	for	another	 input 	style,	by	all	means,	use
that.	For	now,	we're	just	going	to	implement	some	basic	styling	to	make	our	form	more	usable.	Within
style.css ,	add	the	following:

/app/components/Signup/style.css
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 93	of	407

https://www.learnphoenix.io

.wrapper	{
		display:	flex;
		flex-flow:	column	nowrap;
		justify-content:	center;
		padding-bottom:	2rem;
		width:	400px;
}

.form	{
		display:	flex;
		flex-direction:	column;
		justify-content:	center;
		padding:	2rem;
		width:	400px;
}

.input	{
		padding:	1rem	1rem;
		border-radius:	3px;
		border:	1px	solid	#ccc;
		font-size:	1.1em;
		outline:	none;
}

.inputGroup	{
		display:	flex;
		flex-flow:	column	nowrap;
		padding:	10px	0;
}

To	get	this	to	render,	let's	quickly	change	our	 Home 	component	to	the	code	below.

/app/components/Home/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 94	of	407

https://www.learnphoenix.io

import	React	from	"react"
import	cssModules	from	"react-css-modules"
import	style	from	"./style.css"

import	{	default	as	Signup	}	from	"../Signup"

export	class	Home	extends	React.Component	{
		render()	{
				return	(
						<div>
								<Signup	/>
						</div>
)
		}
}

export	default	cssModules(Home,	style)

We	should	also	create	the	 Login ,	which	will	be	almost	identical	but	with	fewer	fields.

/app/components/Login/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 95	of	407

https://www.learnphoenix.io

import	React	from	"react"
import	cssModules	from	"react-css-modules"
import	style	from	"./style.css"

import	{	default	as	Button	}	from	"../Button"

export	class	Login	extends	React.Component	{
		render()	{
				return	(
						<div	className={style.wrapper}>
								<div	className={style.form}>
										<div	className={style.inputGroup}>
												<input
														placeholder="Email"
														className={style.input}
														type="text"
														id="signup-email"	/>
										</div>
										<div	className={style.inputGroup}>
												<input
														placeholder="Password"
														className={style.input}
														type="password"
														id="signup-password"	/>
										</div>
										<Button
												style={{	width:	"100%"	}}
												type="primary">
												Submit
										</Button>
								</div>
						</div>
)
		}
}

export	default	cssModules(Login,	style)

Also	add	the	same	styles	to	the	 style.css 	file.	At	some	point	in	the	future,	we	can	write	code	that	is
more	DRY	with	shared	CSS,	but	for	now,	let's	do	it	the	easy	way	and	just	copy-paste.

We	will	eventually	want	to	submit	our	form,	so	let's	create	a	 submit 	function	that	we	will	attach	to	our
button.

In	each	of	our	forms,	add	a	function	and	update	our	submit	button	to	handle	a	click	event.

/app/components/Signup/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 96	of	407

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://www.learnphoenix.io

...
export	class	Signup	extends	React.Component	{
		constructor(props)	{
				super(props)
				this.submit	=	this.submit.bind(this)
		}

		submit(e)	{
				console.log("Submit	button	clicked")
		}

		render()	{
				return	(
						<div	className={style.wrapper}>

								...

								<Button
										onClick={this.submit}
										style={{	width:	"100%"	}}
										type="primary">
										Submit
								</Button>
						</div>
)
		}
}
...

Add	the	same	 submit 	function	and	 onClick 	event	to	our	 Login 	component.	Be	sure	to	bind	the	 submit
function	in	the	constructor	as	well.

Note:	Whenever	you	write	a	function	that	needs	access	to	the	 this 	context,	you	need	to	bind	it--usually	in
the	constructor.	For	example,	a	component	that	simply	returns	some	jsx	does	not	need	to	be	bound,	while
a	function	that	takes	in	a	value	from	an	event	triggered	by	another	element	does	need	to	be	bound.

Now	when	click	on	the	button,	we	see	a	log	in	our	console	that	says	"Submit	button	clicked".	We	will
eventually	use	this	button	to	submit	the	form,	but	for	now,	we	are	just	going	to	use	it	to	write	our	tests.

Unit	tests

There's	not	a	lot	that	we	need	to	worry	about	as	far	as	unit	tests	go	at	this	point.	We	need	to	make	sure
that	1.	The	form	renders,	2.	The	form	has	a	 submit 	function,	and	3.	The	submit	button	calls	the	submit
function.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 97	of	407

https://www.learnphoenix.io

Remember,	since	our	components	are	just	classes,	we	can	instantiate	them	by	simply	calling	 new
<Component> 	and	immediately	have	access	to	all	their	functions	to	test.

/app/components/Login/spec.js
commit: coming soon

import	React	from	"react"
import	expect	from	"expect"
import	{	shallow	}	from	"enzyme"

import	{	Signup	}	from	'./'

describe('<Signup	/>',	()	=>	{
		it('should	render',	()	=>	{
				const	renderedComponent	=	shallow(
						<Signup	/>
)
				expect(renderedComponent.is('div')).toEqual(true)
		})
		it('should	have	a	submit	function',	()	=>	{
				const	component	=	new	Signup()
				expect(component.submit).toExist()
		})
		//	TODO	need	update
		//	it('should	call	submit	function	when	button	is	clicked',	()	=>	{
		//			const	renderedComponent	=	shallow(
		//					<Signup	/>
		//)
		//			const	spy	=	expect.spyOn(renderedComponent.instance(),	'submit')
		//			renderedComponent.find('button').simulate('click')
		//			expect(spy).toHaveBeenCalled()
		//	})
})

The	first	new	test	is	really	simple.	Since	our	components	are	just	JavaScript	classes,	we	can	don't
actually	have	to	render	them	to	test	certain	parts.	We're	checking	to	make	sure	there	is	a	 submit
function,	and	all	we	need	to	do	to	run	this	test	is	instantiate	the	class	using	 new ,	then	checking	that	the
submit 	function	exists	on	that	 class .	This	is	just	plain-old	JavaScript.

You	probably	noticed	the	use	of	a	 spy 	in	the	last	test.	It	would	behoove	you	to	learn	more	about	spies	for
the	purpose	of	writing	better	tests.	A	good	place	to	start	is	the	expect	documentation	to	see	a	few	use
cases.

Now	that	we	have	our	form	in	place,	we	need	to	submit	it.	We	will	cover	that	in	the	next	lesson.

Styling	the	homepage

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 98	of	407

https://github.com/mjackson/expect#spies
https://www.learnphoenix.io

The	last	thing	we	should	do	is	add	some	basic	styling	to	our	 Home 	as	well	as	our	 Login 	component	in
the	event	the	user	already	has	an	account.	We're	also	going	to	add	an	image	that	we	can	absolutely
position	behind	our	input.

/app/components/Home/index.js
commit: coming soon

...

import	{	default	as	Signup	}	from	"../Signup"
import	{	default	as	Login	}	from	"../Login"

export	class	Home	extends	React.Component	{
		constructor(props)	{
				super(props)
				this.state	=	{
						formState:	"signup"
				}
		}

		render()	{
				return	(
						<div	className={style.leader}>
								<h1	className={style.title}>Phoenix	Chat</h1>
								{this.state.formState	===	"signup"	?	<Signup	/>	:	null}
								{this.state.formState	===	"login"	?	<Login	/>	:	null}
								<img
										role="presentation"
										className={style.circles}
										src="https://s3.amazonaws.com/learnphoenix-static-assets/images/circles-full.png"	/>
						</div>
)
		}
}

export	default	cssModules(Home,	style)

You	may	have	also	noticed	the	 role="presentation" ,	which	is	a	replacement	for	the	 alt 	text	for
images	where	it	does	not	make	sense	to	add	 alt 	text.	In	this	case,	since	this	image	is	just	going	to	be	a
background	image,	we	don't	need	 alt 	text.

And	we	should	center	the	content	to	make	it	look	nicer:

/app/components/Home/style.css
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 99	of	407

https://www.learnphoenix.io

.leader	{
		height:	100vh;
		display:	flex;
		position:	relative;
		align-items:	center;
		justify-content:	center;
		flex-flow:	column	nowrap;
		overflow:	hidden;
		z-index:	100;
		background:	white;
}

.title	{
		font-size:	1.8em;
		color:	rgb(239,	95,	78);
}

.changeLink	{
		cursor:	pointer;
		color:	#42A5F5;
}

.circles	{
		position:	absolute;
		right:	0;
		left:	0;
		top:	0;
		margin:	auto;
		height:	650px;
		opacity:	0.05;
		z-index:	-1;
		transform:	scale(3);
}

The	only	tricky	piece	here	is	how	we're	handling	the	image.	We're	reducing	the	opacity	and	scaling	it	up	by
an	order	of	3.	Then	we're	positioning	it	in	the	center	and	putting	the	 z-index 	at	-1	so	it	stays	behind	our
form.

It's	not	good	practice	to	have	random	 z-index 	numbers	all	over	the	place,	but	in	this	instance,	it	doesn't
matter.	A	common	way	to	do	this	is	to	have	something	like	10	built-in	 z-index 	values	at	100,	200,	...,
1000	and	use	whichever	makes	the	most	sense	for	the	current	element.

For	now,	if	you	want	to	access	the	 Login 	component,	you	can	change	the	hard-coded	 formState 	to
"login".	In	the	future,	this	will	be	handled	programmatically.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 100	of	407

https://www.learnphoenix.io

Connect	the	API

Making	an	API	call	with	fetch
Creating	users	from	the	frontend

We	now	have	a	functional	backend	that	can	take	 POST 	requests	and	create	a	user.	That	user	can't	sign	in
yet,	but	we	can	at	least	create	one	and	check	the	Phoenix	logs	to	make	sure	it	worked.	We're	going	to	use
the	 Signup 	component	to	create	a	user	and	send	that	user	to	our	Phoenix	API.

We	have	not	yet	implemented	Redux,	so	we	are	just	going	to	make	the	API	call	locally	from	within	our
component.	This	is	not	how	we	are	going	to	make	these	calls	in	the	long-run,	but	it	is	the	simplest	way	to
make	these	calls	and	demonstrate	that	our	frontend	and	backend	are	talking	to	each	other.

We're	also	going	to	create	a	 Chat 	component	that	we	will	use	extensively	in	later	lessons	as	our	admin
panel.

Making	HTTP	calls

The	first	thing	we	should	do	is	add	an	HTTP	client.	There	are	a	lot	of	options,	but	we're	going	to	use	 fetch,
which	is	a	polyfill	for	the	soon-to-be	native	promise-based	 fetch 	API.	Many	browsers	already	support
fetch 	without	a	polyfill.

What	 fetch 	will	allow	us	to	do	is	make	an	HTTP	call	to	get	a	resource	from	a	server--in	our	case,	the
Phoenix	API.

$	npm	install	--save-dev	whatwg-fetch

Since	we	only	have	signup	working	on	our	server,	we	only	need	to	worry	about	sending	a	request	to	create
a	user.	If	you	go	back	to	the	Phoenix	backend	and	run	 mix	phoenix.routes ,	you'll	see	a	route	that	looks
like	the	following.

$	mix	phoenix.routes

...
user_path		POST				/api/users						Firestorm.UserController	:create
...

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 101	of	407

https://github.com/github/fetch
https://www.learnphoenix.io

This	is	telling	us	that	we	need	to	send	a	 POST 	request	to	 localhost:4000/api/users 	to	create	a	new
user.	Let's	head	over	to	 Signup 	to	add	 fetch 	and	get	our	form	ready	to	make	a	call	to	our	backend.

New	browsers	have	 fetch 	as	a	native	function,	but	some	do	not.	In	order	to	accommodate	those	older
browsers,	we	need	to	add	fetch	to	our	webpack	configuration.	We're	going	to	add	it	as	an	entry	point,	so
all	our	requests	get	routed	through	the	 whatwg-fetch 	polyfill	before	bundling.

/webpack.config.js
commit: coming soon

...

module.exports	=	{
		devtool:	"eval",
		entry:	[
				"whatwg-fetch",
				"webpack-dev-server/client?http://localhost:3000",
				"./app/index"
],
		...
}

Remember	you	must	now	restart	your	server.	Any	time	you	make	a	change	to	your	webpack
configuration,	you	must	restart	your	server.

Then	we	can	use	 fetch 	globally	without	worrying	about	old	browsers.	Let's	update	our	submit	function
to	use	 fetch 	to	make	a	request	to	our	API	endpoint	(explanation	below	the	code).

/app/components/Signup/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 102	of	407

https://www.learnphoenix.io

...

		...
		submit()	{
				fetch("http://localhost:4000/api/users",	{
						method:	"POST",
						headers:	{
								Accept:	"application/json",
								"Content-Type":	"application/json"
						},
						body:	JSON.stringify({	test:	"not	going	to	work"	})
				})
				.then((res)	=>	{	return	res.json()	})
				.then((res)	=>	{
						console.log(res);
				})
				.catch((err)	=>	{
						console.warn(err);
				})
		}
		...

What	we're	doing	in	the	code	above	is	setting	our	 Button 	to	call	the	 submit 	function	when	it's	clicked.
Then	we	call	 fetch 	with	a	 POST 	method	to	our	API	endpoint	with	an	object	that	won't	work.

Because	 fetch 	is	promise-based,	we	have	access	to	 .then 	and	 .catch .	Anything	within	a	 .then
function	is	run	if	the	HTTP	call	was	successful	and	anything	within	 .catch 	is	run	if	the	call	was	a	failure.
Since	we're	sending	a	bad	request,	we	should	expect	our	 console.log 	within	the	 .catch 	to	run.

One	thing	worth	noting	is	that	we	are	chaining	our	promises	to	include	a	step	that	pulls	out	the	 JSON 	that
we	receive	from	our	server	(return	res.json()).	Many	HTTP	clients	do	this	for	you,	but	 fetch 	does
not.

We	are	also	sending	with	 headers 	that	tell	our	backend	that	we	are	sending	 json 	and	that	we	are
expecting	 json 	in	return.	But	we	can't	just	send	raw	 json ,	so	we	need	to	use	 JSON.stringify() 	to	turn
our	object	into	a	string	so	we	can	pass	that	string	to	our	server.

Go	ahead	and	open	the	signup	modal	and	click	the	submit	button.

Now	check	your	browser	console	and	you	should	see	an	error	with	the	value	 POST
http://localhost:4000/api/users	400	(Bad	Request) .	Great!	That's	what	we	wanted.

You	should	also	check	your	Phoenix	terminal,	where	you	should	see	output	along	the	lines	of	the
following.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 103	of	407

https://www.learnphoenix.io

[debug]	Simple	CORS	request	from	Origin	'http://localhost:3000'	is	allowed
[debug]	Processing	by	PhoenixChat.UserController.create/2
		Parameters:	%{"test"	=>	"not	going	to	work"}
		Pipelines:	[:api]
		...

That's	exactly	the	error	we	wanted	to	see.	Phoenix	was	expecting	the	 user 	key,	but	got	 test 	instead.

So	now	let's	connect	our	submission	with	the	form	and	submit	a	 user 	to	Phoenix.	Remember,	we	will
eventually	use	controlled	components,	but	since	we	just	want	to	get	something	up	and	running	as	quickly
as	possible,	we're	just	going	to	pull	the	values	straight	from	the	inputs.

We	can	do	that	by	changing	our	 submit 	function	to	the	following.

/app/components/Signup/index.js
commit: coming soon

		...
		submit()	{
				const	user	=	{
						username:	document.getElementById("signup-username").value,
						email:	document.getElementById("signup-email").value,
						password:	document.getElementById("signup-password").value
				}
				fetch("http://localhost:4000/api/users",	{
						method:	"POST",
						headers:	{
								Accept:	"application/json",
								"Content-Type":	"application/json"
						},
						body:	JSON.stringify({	user	})
				})
				.then((res)	=>	{	return	res.json()	})
				.then((res)	=>	{
						console.log(res);
				})
				.catch((err)	=>	{
						console.warn(err);
				})
		}
		...

We're	going	to	find	the	elements	with	the	 id 	that	we	want	and	extract	the	value.	We	put	all	those	values
into	a	new	 user 	object,	and	then	pass	that	object	into	our	 post 	call	as	a	parameter.

Recall	that	in	ES6,	if	the	value	in	an	object	is	the	same	as	the	key,	you	can	simply	pass	a	single	variable.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 104	of	407

https://facebook.github.io/react/docs/forms.html#controlled-components
https://www.learnphoenix.io

So	in	the	example	above,	we	are	passing	 user 	instead	of	 user:	user .

Go	ahead	and	fill	out	the	form	and	press	the	button.

In	your	browser	console,	you	should	see	 status:	201 	and	 statusText:	"Created" .	And	if	you	check
your	Phoenix	output,	you'll	see	it	was	successful	there	as	well.

Response	{type:	"cors",	url:	"http://localhost:4000/api/users",	status:	201,	ok:	true,	statusText:

And	if	you	check	your	browser	console,	you	should	see	an	object	with	the	key	 data 	that	contains	the
email ,	 id ,	and	 username 	of	the	username	you	just	created.

And	that's	all	there	is	to	it.	Now	we	have	to	go	back	to	Phoenix	to	give	our	users	the	ability	to	log	in.	But
before	we	do	that,	let's	create	a	new	 Chat 	component	that	will	sit	behind	our	user	authentication,	as	well
as	a	bit	more	styling.

Chat	component

Let's	create	a	new	 Chat 	component	that	will	function	as	our	admin	interface	for	our	app.

$	mkdir	app/components/Chat
$	touch	app/components/Chat/{index.js,spec.js,style.css,README.md}

Then	within	 Chat/index.js ,	add	the	following:

/app/components/Chat/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 105	of	407

https://www.learnphoenix.io

import	React	from	"react"
import	cssModules	from	"react-css-modules"
import	style	from	"./style.css"

import	{	default	as	Sidebar	}	from	"../Sidebar"

export	class	Chat	extends	React.Component	{
		render()	{
				return	(
						<div>
								<Sidebar	/>
								<div	className={style.chatWrapper}>
										chat	me
								</div>
								{this.props.children}
						</div>
)
		}
}

export	default	cssModules(Chat,	style)

And	add	the	wrapper	to	the	 style.css 	file.

/app/components/Chat/style.css
commit: coming soon

.chatWrapper	{
		margin-left:	300px;
}

And	add	a	simple	test	to	make	sure	it	renders	properly.

/app/components/Chat/spec.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 106	of	407

https://www.learnphoenix.io

import	React	from	'react'
import	expect	from	'expect'
import	{	shallow	}	from	'enzyme'

import	{	Chat	}	from	'./'

const	props	=	{}

describe('<Chat	/>',	()	=>	{
		it('should	render',	()	=>	{
				const	renderedComponent	=	shallow(
						<Chat	{...props}	/>
)
				expect(renderedComponent.is('div')).toEqual(true)
		})
})

So	now	we	have	the	ability	to	create	users,	but	they	can't	sign	in.	We're	also	handling	our	API	calls	in	our
local	component,	which	is	bad	practice,	so	it's	about	time	we	introduce	Redux.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 107	of	407

https://www.learnphoenix.io

Basics	of	Redux

Redux	and	Flux
actions,	reducers,	and	store

The	next	step	is	to	log	a	user	in	after	signup.	We're	going	to	handle	this	with	Redux,	so	now	is	a	good	time
to	go	over	the	basics.	If	you	are	not	already	familiar	with	Redux,	I	highly	recommend	checkout	out	these
30	free	videos	sponsored	by	egghead.io.	If	you	are	familiar	with	Redux,	skip	ahead	to	the	"Connecting
Redux"	section.

What	is	Redux?

To	really	understand	Redux,	you	must	first	understand	 state .	Think	of	 state 	as	the	current	status	of
your	app.	Imagine	you're	Facebook.	You	are	currently	logged	in,	you	have	two	chat	windows	open,	and
you	have	just	launched	a	modal	to	upload	a	new	picture.

To	generalize,	the	state	of	your	app	could	be:

{
		currentUser:	"username",
		chat:	[
				{	with:	"friend1"},
				{	with:	"friend2"}
],
		modal:	true,
		imageUrl:	false
}

If	you	wanted	to	replicate	the	exact	status	of	this	page	at	this	point	in	time,	all	you	have	to	do	is	set	your
state 	to	all	of	the	necessary	conditions.	This	is	extremely	powerful,	especially	when	used	in	conjunction
with	Redux.

Redux	consists	of	 actions ,	 reducers ,	and	a	 store .	The	concepts	around	 actions 	and	 store 	are
easy	to	understand--the	 reducers 	are	a	little	bit	more	complicated,	but	still	not	especially	difficult,	and	it
will	become	much	more	clear	once	we	start	implementing	them.

The	basic	concept	is	that	Redux	keeps	your	 state 	at	the	highest	level	of	your	app,	and	that	every
component	within	your	app	gets	its	state	from	that	high-level	container,	whereas	a	normal	React	app	will
have	local	state.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 108	of	407

https://egghead.io/series/getting-started-with-redux
http://egghead.io
https://www.learnphoenix.io

Basics	of	Flux

Before	we	go	into	Redux,	we	should	really	discuss	Flux.	Flux	is	one	of	the	major	innovations	behind	React,
and	it	enforces	uni-directional	data	flow.

Rather	than	go	into	detail	here,	check	out	this	video	where	Facebook	explains	the	origins	of	Flux	and	how
it	works.

Back	in	the	old	days	of	the	internet,	we	used	something	jQuery	to	trigger	events	that	would	directly
manipulate	the	DOM.	For	example,	we	might	have	a	button	in	one	part	of	our	app	that	appends	a	new
item	to	a	list,	or	toggle	a	class	on	a	particular	DOM	element.

These	events	were	not	tied	together	in	any	meaningful	way,	and	any	data	these	components	received
came	from	sporadic	sources.	Tracking	down	the	origin	of	certain	events	and	data	was	notoriously
difficult.

Flux	is	an	attempt	at	solving	that	problem.	Rather	than	allowing	your	models	to	send	data	to	many	views,
Flux	enforces	hierarchy	so	your	views	cannot	directly	make	changes	to	your	data.

We	will	be	using	Redux,	which	is	a	library	that	is	an	implementation	of	Flux.

Working	with	data

Every	interaction	our	app	will	have	with	our	server	will	be	through	Redux,	and	all	of	our	data	is	passed	in
to	our	components	through	Redux,	so	this	is	a	good	time	to	talk	about	how	to	handle	data	more	generally.

A	major	long-term	problem	with	web	APIs,	and	one	not	solved	by	Redux	or	Flux,	is	"over-fetching".	Twitter
is	an	example	of	this,	because	their	API	returns	a	deeply-nested	object	which	always	contains	more	data
than	your	app	needs.

GraphQL	and	Falcor	are	different	approaches	of	solving	this	problem.	They	are	more	efficient,	but	require
more	boilerplate	to	set	up.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 109	of	407

https://facebook.github.io/flux/
https://www.youtube.com/embed/nYkdrAPrdcw?list=PLb0IAmt7-GS188xDYE-u1ShQmFFGbrk0v
https://facebook.github.io/graphql/
http://netflix.github.io/falcor/
https://www.learnphoenix.io

GraphQL	allow	you	to	tell	the	server	specifically	what	you	want	and	return	only	that.	It	is	also	much	more
declarative	and	the	server	figures	out	the	most	efficient	way	to	prepare	your	data.	It	also	takes	more
boilerplate	code	and	is	only	really	necessary	for	apps	that	have	such	scale	that	they	need	to	use	it.

At	this	point	in	our	app,	GraphQL	is	overkill,	and	we'll	just	stick	to	a	simple	JSON	API.	Refactoring	to	use
GraphQL	and	Relay	is	very	doable	and	we	can	cross	that	bridge	if	it	becomes	necessary.

With	a	JSON	API,	you	send	a	 request 	to	a	server	at	a	specific	url	with	the	parameters	that	the	API	needs
to	complete	the	request.	An	example	request	might	look	like	the	code	below,	where	we	are	simply
requesting	data	from	 http://github.com/data.json .

fetch("http://github.com/data.json",	{
				method:	"GET"
		}).then(function(res)	{
				//	Response	here
		}).catch(function(err)	{
				//	If	error,	error	here
		})

You've	probably	heard	a	lot	about	"REST"	APIs.	People	will	argue	endlessly	about	the	 real	definition	of
what	it	means	to	be	"RESTful",	and	that's	because	REST	does	not	have	an	official	definition--it's	a
description	of	an	architecture	style,	not	a	protocol.

But	the	important	part	is	that	REST	APIs	are	stateless,	so	you	pass	the	state	to	the	API	as	parameters.	For
example,	if	you	want	to	create	a	new	user	with	a	REST	API,	you	pass	the	user	details	as	the	parameters	to
the	endpoint.	Most	of	the	APIs	you've	dealt	with	are	REST	APIs,	so	the	concept	should	be	at	least
implicitly	familiar.

fetch("http://learnphoenix.io/create",	{
				method:	"POST",
				body:	"first=Alan&last=Turing&password=badpassword1"
		}).then(function(res)	{
				//	Response	here
		}).catch(function(err)	{
				//	If	error,	error	here
		})

Our	Phoenix	backend	is	a	REST	API,	and	we	will	use	Phoenix	to	handle	requests	that	we	send	from	our
frontend,	as	we	have	already	demonstrated	when	creating	a	user.

Basics	of	Redux

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 110	of	407

https://www.learnphoenix.io

Redux	is	Flux-ish,	with	some	additional	features.	The	code	behind	Redux	is	surprisingly	small,	and	it's
really	just	a	well-thought-out	design	pattern.	The	main	principle	of	Redux	is	that	you	don't	keep	local	state
in	your	components--all	of	your	state	is	held	in	one	place	at	the	highest-possible	level	of	your	app	and
passed	down.

The	way	you	use	it	is	to	wrap	your	entire	app	in	a	Redux	 Provider 	(explained	in	the	next	lesson)	so	that
you	can	later	connect	each	of	your	React	components	to	this	global	data	source	(called	a	 store).

The	 store 	is	dumb.	It's	just	an	object	that	holds	your	state.

In	order	to	process	the	data	and	make	any	changes	to	your	data,	you	need	to	pass	it	through	a	series	of
reducers .	These	reducers	are	actually	quite	simple	and	 reduce 	is	an	important	function	in	functional
programming.

If	you	are	not	familiar	with	what	a	 reducer 	does,	think	of	it	as	taking	a	long	list	of	information	and
applying	some	transformation	to	each	item	in	order.	For	example,	say	you	have	a	list	of	numbers:

var	list	=	[3,	1,	-3,	5,	1]

If	you	wanted	to	combine	all	of	these	values	into	a	single	value	by	adding	them	you	could	write	a	 for
loop	to	go	over	each	of	them,	but	that	would	not	be	very	efficient.	Instead,	you	can	write	a	reducer	that
takes	in	the	 previous 	and	 current 	values	as	parameters	and	combines	them	within	the	 reduce
function.

var	list	=	[3,	1,	-3,	5,	1]

var	output	=	list.reduce(function(previous,	current)	{
		return	previous	+	current
})
console.log(output)	//	->	7

Now,	think	of	this	in	terms	of	Redux.	Let's	say	we	have	a	list	of	actions:

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 111	of	407

https://www.learnphoenix.io

var	list	=	[
		{	modal:	open	},
		{	modal:	close	},
		{	modal:	open	},
		{	chat:	{
						name:	"Eric",
						isOpen:	true
				}
		},
		{	chat:	{
						name:	"Eric",
						isOpen:	false
				}
		},
		{	chat:	{
						name:	"John",
						isOpen:	true
				}
		}
]

What	is	the	current	status	of	this	app?	Is	the	modal	open	or	closed?	Who	has	an	active	chat	window?	As
you	will	see	when	we	start	building	our	reducers,	we	can	 reduce 	a	list	of	actions	to	the	current	state	of
the	application.

Reducers	listen	to	 actions 	and	mutates	some	piece	of	state	based	on	the	action.

For	example,	in	a	"todo"	app,	the	 action 	might	be	something	like	"create	a	new	list	item"	or	"mark	as
completed".	The	action	passes	any	relevant	data	to	the	reducer,	which	changes	the	current	state	of	the
app	to	reflect	the	change	that	the	action	wanted	made.	"Mark	as	completed",	for	example,	would	change
the	specific	item	in	your	state	and	change	the	 completed 	key	to	 true .

Whenever	the	old	state	does	not	equal	the	new	state,	Redux	will	fire	all	of	the	event	listeners	and	update
all	of	the	data	in	your	app	that	was	listening	for	something	that	got	changed.	This	means	that	if	you
changed	something	in	the	todo	list,	your	profile	page	would	not	necessarily	need	to	be	updated	because	it
does	not	contain	any	data	related	to	the	todo	list.

action 	is	a	way	to	trigger	those	reducers.	They	are,	by	default,	synchronous.	Since	much	of	what	you	will
be	doing	in	a	web	app	is	asynchronous,	you	will	quickly	need	some	additional	plugins,	such	as	 thunk
and	potentially	other	middleware.

Actions	allow	you	to	be	more	declarative.	If	you	are	not	familiar	with	the	difference	between	declarative
and	imperative,	 declarative 	means	saying	what	you	want,	while	 imperative 	means	describing	how
you	will	do	it.	For	example,	a	declarative	approach	to	data	fetching	would	be	something	like	GraphQL,	in
which	you	tell	your	backend	what	data	you	want	and	GraphQL	sorts	out	the	details	of	how	to	get	that	data
for	you.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 112	of	407

https://www.learnphoenix.io

Setting	up	Redux

The	first	thing	we	need	to	do	is	add	 redux 	as	a	dependency,	as	well	as	several	other	Redux-related
dependencies.

$	npm	install	--save	redux	react-redux	react-router-redux

The	 react-redux 	module	binds	Redux	to	React	and	is	necessary	to	get	Redux	working	with	React.	The
redux 	module	contains	all	of	the	core	functionality	that	we	need.	The	 react-router-redux 	wraps	our
react-router 	so	we	can	keep	track	of	the	state	of	our	routes--without	this,	our	routes	are	considered	a
side-effect.

We're	going	to	keep	all	of	our	Redux-related	files	in	a	new	 app/redux 	directory.	Eventually	we	will	have
too	many	actions	and	reducers	to	fit	in	a	single	file,	but	that	is	easy	to	refactor	and	we	can	do	that	when	it
becomes	necessary.

$	mkdir	app/redux

Within	this	directory,	we	will	have	three	files:	 actions.js ,	 reducers.js ,	and	 store.js .

$	touch	app/redux/{actions,reducers,store}.js

We	will	go	over	each	of	these	in	more	detail	in	the	next	section.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 113	of	407

https://www.learnphoenix.io

Actions,	Reducers,	and	Store

Proof	of	concept
Connect	to	API

In	this	section,	we	create	our	actions,	reducers,	and	our	store.	From	there,	we	use	our	action	to	make	a
call	to	our	API	and	use	our	reducer	to	pass	that	data	to	our	connected	components.

The	action

The	easiest	place	to	start	is	to	create	an	action.	Since	we	already	have	the	functionality	to	create	and	log
in	users,	we	will	create	two	actions	that	we	will	use	to	handle	our	users.	We	will	go	over	the	syntax	of	the
actions	below	the	code.

/app/redux/actions.js
commit: coming soon

const	Actions	=	{}

Actions.userNew	=	function	userNew(user)	{
		return	{
				type:	"USER_NEW",
				payload:	{
						user
				}
		}
}

Actions.userLogin	=	function	userLogin(user)	{
		return	{
				type:	"USER_LOGIN",
				payload:	{
						user
				}
		}
}

export	default	Actions

First	we	are	declaring	an	 Actions 	object	in	which	we	will	add	all	of	our	actions.	This	allows	us	to	export

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 114	of	407

https://www.learnphoenix.io

a	single	object	that	contains	all	of	our	actions,	so	we	can	later	call	these	actions	with	something	like
Actions.userNew 	after	an	import	statement	 import	Actions	from	'./redux/actions' .

Then	we	define	our	first	action.	Every	action	must	have	a	 type .	That	is	the	only	required	field.	The	next
field	passes	in	our	data.	It	is	common	to	call	this	something	like	 payload ,	but	you	can	use	whatever	term
you	want.	I	would	avoid	using	the	keyword	 data 	because	our	Phoenix	server	responds	with	 data ,	unless
you	want	to	end	up	accessing	your	data	by	calling	something	like	 data.data.data.user .

Within	our	 payload ,	we	are	passing	in	a	 user 	object	that	we	get	from	the	component	that	dispatched
this	action	(probably	a	form	of	some	sort).	This	value	gets	passed	to	our	 reducer 	which	uses	it	to
change	the	state	of	our	app.

For	now,	we	are	just	doing	a	proof	of	concept,	so	we	aren't	going	to	make	an	API	call	to	register	and	log	in
our	user.	We	will	just	use	our	action	to	set	the	state	of	our	user	in	our	global	Redux	 store .

You	will	see	in	the	docs	for	Redux	that	people	declare	their	actions	as	string	constants,	like	the	code
below.

const	USER_LOGIN	=	"USER_LOGIN"

This	is	not	necessary	and	we	will	not	be	doing	this	because	it's	more	effort	than	it's	worth	at	this	point	in
our	app.	That	said,	if	you're	building	a	huge	app,	there	are	perfectly	legitimate	reasons	why	you	would
want	to	put	in	this	extra	work.

If	you	have	a	variable	called	 userNew 	but	you	called	 newUser 	somewhere	in	your	app,	it	will	fail,	but	it	will
fail	silently.	This	is	because	your	app	will	compile	properly	and	run	up	until	you	try	to	dispatch	that	action,
at	which	point	it	will	cause	a	run-time	error.

If	you	used	a	constant,	you	would	get	a	compile-time	error	rather	than	a	run-time	error	because	you'd	be
calling	an	undeclared	variable,	so	your	code	wouldn't	work	unless	you	used	the	right	variable.	This	would
prevent	you	from	deploying	bad	code.

The	reducer

The	reducer	is	what	takes	in	our	actions	and	turns	those	into	the	current	state	of	the	app.	 Reducers
should	only	make	calculations	and	should	never	have	side	effects.	When	you	make	an	API	call,	you	must
do	this	from	your	action,	not	your	reducer.

We	are	going	to	use	the	native	 Object.assign 	to	make	our	immutable	data	changes,	but	you	can	use	a
library	if	you	prefer.	An	example	would	be	lodash.	What	these	functions	do	is	make	a	copy	of	our	state
object	in	order	to	keep	our	data	immutable.	More	on	this	later.

Now	we	need	to	create	our	reducer.	The	name	of	the	reducer	function	is	the	variable	name	we	will	use

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 115	of	407

https://lodash.com/docs
https://www.learnphoenix.io

when	we	want	to	access	the	value	in	the	store.	We	are	going	to	store	all	user-related	values	in	a	valiable
called	 user ,	so	we	will	name	our	reducer	 user .

/app/redux/reducers.js
commit: coming soon

import	{	combineReducers	}	from	"redux"

function	user(state	=	{},	action)	{
		switch	(action.type)	{
				case	"USER_NEW":
						return	state
				case	"USER_LOGIN":
						return	Object.assign({},	state,	{
								email:	action.payload.user.email
						})
				default:	return	state
		}
}

const	reducers	=	combineReducers({
		user
})

export	default	reducers

Our	 user 	reducer	takes	in	two	values:	 state 	and	 action .	 state 	is	the	previous	state	of	the	app	before
going	through	the	reducer,	and	 action 	is	the	action	it	receives	from	the	action	we	dispatched.

We	are	going	to	use	an	ES6	feature	that	allows	us	to	set	default	values	to	our	parameters.	We	are	setting
our	default	value	of	 state 	to	an	empty	object	({}),	so	if	 user 	has	not	been	given	any	values	before,	we
will	start	it	off	with	an	empty	object.

Next	we	write	a	 switch 	statement	that	checks	the	 action.type .	Recall	from	the	actions	we	created	that
each	one	has	a	 type .	If	the	type	matches	the	action	we	passed,	we	tell	the	reducer	what	to	do.	In	the
example	above,	the	 USER_NEW 	simply	passes	along	state	without	any	changes,	while	 USER_LOGIN
assigns	the	key	 email 	to	the	value	that	we	passed	in	our	action's	 payload .

It	is	important	to	add	a	 default 	case	that	passes	the	state	unchanged	if	there	are	no	other	matches.	If
you	do	not	do	this,	your	app	will	break	if	nothing	matches,	and	since	we	will	have	multiple	reducers,	it	is
inevitable	that	you	will	pass	actions	that	don't	match	one	of	your	reducers.

The	 combineReducers 	function	allows	us	to	declare	all	of	our	reducers	in	separate	functions	and
combine	them	before	we	export.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 116	of	407

https://www.learnphoenix.io

The	store

Now	we	need	to	configure	our	store	to	take	in	that	reducer.	Within	 redux/store.js ,	add	the	following.

/app/redux/store.js
commit: coming soon

import	{	createStore	}	from	"redux"
import	reducers	from	"./reducers"

const	store	=	createStore(reducers)

export	default	store

The	last	thing	we	need	to	do	to	set	up	Redux	is	tie	our	store	into	our	router.	Within	 app/index.js ,	we
need	to	wrap	our	entire	app	in	a	 Provider 	that	passes	our	store	down	to	each	child	component.	It	does
this	somewhat	magically,	and	all	we	need	to	do	is	import	our	store	and	pass	it	into	the	 Provider
component.

/app/index.js
commit: coming soon

...
import	{	Provider	}	from	"react-redux"
import	store	from	"./redux/store"

...

ReactDOM.render(
		<Provider	store={store}>
				<Router	history={hashHistory}>
						<Route	path="/"	component={App}>
								<IndexRoute	component={Home}	/>
								<Route	path="settings"	component={Settings}	/>
						</Route>
				</Router>
		</Provider>,
		document.getElementById("root")
)

A	note	on	capitalization:	One	thing	to	note	is	that	our	 Provider 	is	capitalized.	Because	it	is	a	component
that	we	are	using	in	 jsx ,	if	you	do	not	capitalize	it,	your	app	will	break.	Capital	letters	are	more	than	a
convention:	they	are	the	rule.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 117	of	407

https://www.learnphoenix.io

Proof	of	concept

The	last	thing	we	will	do	is	prove	that	this	all	works.	This	is	not	how	we	will	implement	Redux	in	the	final
product,	but	it	will	show	how	the	pieces	all	fit	together.

Within	our	 Login 	component,	let's	connect	our	store	to	our	component.	We	do	this	with	the	 connect
function	that	 react-redux 	gives	us.	At	the	top	of	our	component,	import	 connect 	and	at	the	bottom	we
have	to	create	a	new	function,	described	below	the	codeblock.

Recall	that,	for	now,	to	see	the	 Login 	form,	you	have	to	change	the	 formState 	in	our	 Home 	component
to	"login".

/app/components/Login/index.js
commit: coming soon

import	{	connect	}	from	"react-redux"

...

const	mapStateToProps	=	state	=>	({
		user:	state.user
})

export	default	connect(mapStateToProps)(cssModules(Login,	style))

Recall	that	with	one-line	ES2015	arrow	functions	implicitly	 return 	the	value	after	the	arrow.	So	these	two
are	equivalent:

const	mapStateToProps	=	state	=>	{
		return	{
				user:	state.user
		}
}

const	mapStateToProps	=	state	=>	({
		user:	state.user
})

The	 mapStateToProps 	function	takes	the	state	of	the	app	from	your	 store 	(recall	we	set	the	default
value	of	 user 	in	our	reducer	to	an	empty	object	 {})	and	maps	that	over	to	the	 props 	of	your	current
component.	In	this	case,	we	are	taking	 state.user 	from	our	global	 store 	and	assigning
this.props.user 	of	our	current	component	to	that	same	value.	A	more	accurate	name	for	this	might	be

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 118	of	407

https://www.learnphoenix.io

mapStateOfStoreToPropsOfComponent ,	but	that's	perhaps	a	bit	too	verbose.

To	show	that	this	is	working,	let's	add	a	 console.log 	within	our	 render 	function	before	we	 return 	our
component.

...
		render()	{
				console.log(this.props.user)
				return	(
						...
)
		}

Now,	if	you	change	the	state	of	 formState 	in	your	 Home 	component	to	"login",	you'll	see	an	empty	object
in	your	console.	This	is	because	we	are	currently	receiving	the	default,	empty	object	from	our	reducer.

Object	{}

The	next	step	is	to	 dispatch 	an	action	with	the	values	from	the	form	that	will	allow	us	to	change	the
value	of	 this.props.user .

We	do	this	by	importing	our	 Actions 	and	using	the	 dispatch 	function	that	we	get	when	we	 connect 	our
Login 	component	using	 react-redux .

/app/components/Login/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 119	of	407

https://www.learnphoenix.io

import	Actions	from	"../../redux/actions"
		...

export	class	Login	extends	React.Component	{
		constructor(props)	{
				super(props)
				this.submit	=	this.submit.bind(this)
		}

		submit()	{
				const	user	=	{
						email:	document.getElementById("signup-email").value,
						password:	document.getElementById("signup-password").value
				}
				this.props.dispatch(Actions.userLogin(user))
		}

		render()	{
				return	(
						<div	className={style.wrapper}>
								<div	className={style.form}>
										...
										<Button
												onClick={this.submit}
												style={{	width:	"100%"	}}
												type="primary">
												Submit
										</Button>
								</div>
						</div>
)
		}
}

...

Now	go	ahead	and	fill	out	the	login	form	and	submit	it.	You'll	see	a	new	log	to	your	console	that	has	the
email	address	you	submitted.

Object	{email:	"alan@turing.com",	password:	"badpassword1"}

This	worked	by	taking	the	values	from	the	inputs,	dispatching	those	values	as	the	 userLogin 	action,
which	hits	our	 user 	reducer,	which	triggers	the	 USER_LOGIN 	type,	which	assigns	 user 	to	 {	email:
action.payload.user.email	} .

You	may	recall	that	when	 props 	are	updated,	your	component	automatically	updates.	In	this	case,	since

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 120	of	407

https://www.learnphoenix.io

Login 	is	connected	to	 this.props.user ,	which	was	mapped	from	 state.user ,	our	 console.log 	was
called	again	with	the	updated	value.

If	that	seems	like	a	roundabout	way	of	updating	data,	you're	not	alone,	but	the	long-term	benefits	of
keeping	your	data	flow	uni-directional	far	out-weight	the	upfront	cost	of	setting	up	some	extra	code.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 121	of	407

https://www.learnphoenix.io

Login	and	Authentication:	Part	1

Sign	in
Ueberauth	and	Guardian
Plugs

In	this	section,	we	go	over	Elixir	plugs	and	add	user	authentication	with	Ueberauth	and	Guardian.	We	also
set	up	an	authentication	controller	(AuthController)	to	handle	requests	that	need	authorization.

Account	login

Now	that	we	can	register	for	an	account,	we'll	want	to	sign	in.	But	what	does	it	mean	to	"log	in"?	The
question	is	more	complex	than	most	people	realize.	There	are	many	ways	of	approaching	this	problem,
but	we	are	going	to	use	a	JSON	web	token	(JWT)	for	user	authentication.

A	JSON	web	token	is	a	random	string	that	our	server	generates	after	a	user	passes	in	valid	credentials
(username	and	password).	A	JSON	web	token	looks	something	like	this:

2b125jQggWD1BFWECdbQyxe4KXVB18Sgi64m9Iu2MgCciljCCsIG

When	a	user	passes	valid	credentials	to	our	server,	our	server	will	respond	with	a	JSON	web	token	that
we	can	store	in	our	browser	either	in	 cookies 	or	 localStorage .	For	a	user	to	be	considered	"logged	in",
we	send	that	JSON	web	token	in	a	request	to	our	server	asking,	"Is	this	JSON	web	token	still	valid?"	If	the
response	is	in	the	affirmative,	then	the	user	is	logged	in.	If	the	response	is	negative,	then	the	user	is	not
logged	in.

When	a	user	logs	out,	we	remove	the	JSON	web	token	from	 localStorage 	and	send	a	request	to	our
server	to	invalidate	the	token	to	ensure	it	cannot	be	used	again.	This	prevents	what	is	called	a	replay
attack	where	someone	uses	an	old	JSON	web	token	to	gain	access	to	your	account.

The	basic	strategy	we're	going	to	use	follows	the	flow	chart	below.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 122	of	407

https://en.wikipedia.org/wiki/Replay_attack
https://www.learnphoenix.io

For	more	information	on	how	JSON	web	tokens	work,	check	out	jwt.io.

For	authentication	we'll	work	with	Überauth	(often	spelled	Ueberauth,	without	the	u-umlaut	--	this	is	how
we	will	refer	to	it	going	forward).	Ueberauth	is	an	authentication	framework	that	allows	us	to	use	many
different	strategies	to	authenticate	users.	For	now	we'll	use	Ueberauth	Identity	to	implement	our	email-
password	authentication	but	later	we	can	use	Ueberauth	Twitter,	Ueberauth	Facebook,	and	several
others.

In	addition	to	Ueberauth	and	Ueberauth	Identity,	we'll	use	Guardian	to	generate	our	JSON	web	tokens.	If
you're	not	familiar	with	JSON	web	tokens,	we	will	cover	them	in	greater	detail	later.

If	you're	interested	to	see	how	Ueberauth	works	with	multiple	strategies,	take	a	look	at	the	Ueberauth
Example	project	provided	by	the	Ueberauth	team.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 123	of	407

https://jwt.io
https://github.com/ueberauth
https://en.wikipedia.org/wiki/%C3%9C
https://github.com/ueberauth/ueberauth_identity
https://github.com/ueberauth/ueberauth_twitter
https://github.com/ueberauth/ueberauth_facebook
https://github.com/ueberauth/guardian
https://github.com/ueberauth/ueberauth_example
https://www.learnphoenix.io

Let's	go	ahead	and	add	 ueberauth ,	 ueberauth_identity ,	and	 guardian 	to	our	project's	dependecies	in
mix.exs :

/mix.exs
commit: coming soon

defp	deps	do
		[
				{:comeonin,	"~>	2.3"},
				...
				{:ueberauth,	"~>	0.2"},
				{:ueberauth_identity,	"~>	0.2"},
				{:guardian,	"~>	0.10"}
]
end

We	need	to	add	both	 ueberauth 	and	 ueberauth_identity 	to	our	project's	applications:

/mix.exs
commit: coming soon

def	application	do
		[mod:	{PhoenixChat,	[]},
				applications:	[
						:comeonin,
						...
						:ueberauth,
						:ueberauth_identity
]]
end

Let's	run	 mix	deps.get 	and	get	our	new	dependencies:

$	mix	deps.get

Configuring	Ueberauth

The	next	thing	to	do	is	configure	Ueberauth.	Within	 config/config.exs ,	add	the	following:

/config/config.exs
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 124	of	407

https://www.learnphoenix.io

config	:ueberauth,	Ueberauth,
		providers:	[
				identity:	{
						Ueberauth.Strategy.Identity,
						[callback_methods:	["POST"]]
				}
]

This	is	taken	straight	from	the	docs,	but	what	it	is	doing	is	telling	Ueberauth	that	we	are	using	the
identity 	strategy	to	log	in	users	with	a	username-password	combination.	At	some	point	later	on,	we
can	add	Twitter	and	Facebook	login	to	the	 providers 	list.

Configuring	Guardian

While	we're	in	 config/config.exs 	let's	add	our	Guardian	configuration:

/config/config.exs
commit: coming soon

config	:guardian,	Guardian,
		issuer:	"PhoenixChat",
		ttl:	{30,	:days},
		secret_key:	"uw/27wdrIquPn2fktwfJg9tg8qOl5ysTPCFjISw1TCCaLlfWgRUAea1SuWcfERzX",
		serializer:	PhoenixChat.GuardianSerializer,
		permissions:	%{default:	[:read,	:write]}

Before	we	go	any	further,	let's	generate	a	new	 secret_key 	(it's	not	very	secret	otherwise).	We	can	either
come	up	with	a	random	string	or	we	can	use	the	handy	generator	provided	by	Phoenix:

$	mix	phoenix.gen.secret

Copy	and	paste	the	output	into	the	 secret_key 	value	above	and	we're	done.	For	now	storing	the
secret_key 	in	the	file	is	fine	but	later	we	will	move	this	into	a	system	environment	variable;	relying	on
our	system's	environment	lets	us	remove	passwords	and	secret	keys	from	our	code	and	source	control,
limiting	its	exposure.

The	last	step	of	our	Guardian	configuration	is	to	create	the	 PhoenixChat.GuardianSerializer 	we
specified.	We'll	put	this	file	in	a	new	directory	within	the	 web 	directory:

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 125	of	407

https://www.learnphoenix.io

$	mkdir	web/auth
$	touch	web/auth/guardian_serializer.ex

Let's	open	the	serializer	at	 web/auth/guardian_serializer.ex 	and	update	the	file	to	look	like	this:

/web/auth/guardian_serializer.ex
commit: coming soon

defmodule	PhoenixChat.GuardianSerializer	do
		@behaviour	Guardian.Serializer

		alias	PhoenixChat.{Repo,	User}

		def	for_token(%User{id:	id}),	do:	{:ok,	"User:#{id}"}
		def	for_token(_),	do:	{:error,	"Unknown	resource	type"}

		def	from_token("User:"	<>	id),	do:	{:ok,	Repo.get(User,	id)}
		def	from_token(_),	do:	{:error,	"Unknown	resource	type"}
end

We	don't	need	to	dig	into	this	too	much	as	this	is	verbatim	from	the	Guardian	documentation.	Once	we
start	using	our	authentication	system,	we	can	come	back	to	this	and	it	will	make	more	sense.	The
serializer	is	what	ties	Guardian	in	with	our	user	systems.	Guardian	relies	on	the	 for_token/1 	function	to
convert	a	given	 %User{} 	into	a	token.	The	 from_token/1 	function	does	the	opposite,	retrieving	our	user
from	a	given	token.

A	quick	thing	to	note	is	 @behaviour .	Elixir	is	built	on	Erlang,	which	uses	the	British	version	of	some
English	words.	Just	keep	that	in	mind	going	forward.

The	next	few	steps	require	a	deeper	dive	into	Phoenix.

Plugs

In	many	ways,	every	app	is	just	a	series	of	functions.	React	has	popularized	this	approach	on	the
frontend,	each	function	either	transforms	data	or	triggers	a	side-effect	like	rendering	to	the	DOM	or	a
change	to	the	database.

Plug	is	a	library	that	takes	a	connection	and	returns	a	modified	version	of	the	connection.	With	plugs	you
can	authenticate	users,	validate	requests,	send	HTTP	responses,	sanitize	inputs,	and	trigger	background
work.	Throughout	this	course,	we'll	cover	these	and	many	other	uses	for	plugs.

Since	plugs	are	so	flexible	it's	no	surprise	that	our	Phoenix	app	is	nothing	more	than	a	series	of	plugs.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 126	of	407

https://www.learnphoenix.io

Creating	our	AuthController

For	this	controller	we're	not	going	to	use	a	generator.	Instead,	we're	going	to	create	it	manually	so	we	can
take	a	closer	look	at	the	different	components.

The	way	the	Phoenix	directory	structure	is	set	up	everything	web-related	lives	within	the	 web 	directory.
Since	we	are	building	a	web	API,	most	of	what	we	are	doing	will	be	within	this	directory.

Let's	create	our	auth	controller:

$	touch	web/controllers/auth_controller.ex

Now	update	the	new	file	to	look	like	this:

/web/controller/auth_controller.ex
commit: coming soon

defmodule	PhoenixChat.AuthController	do
		use	PhoenixChat.Web,	:controller
		plug	Ueberauth

end

Here	we	define	our	new	module	and	include	some	helper	methods	from	the	 PhoenixChat.Web 	module	for
controllers.	We've	also	included	a	plug	for	Ueberauth	in	our	controller.	When	requests	come	into	our
controller,	they	will	be	routed	through	the	Ueberauth	plug.	We'll	revisit	the	Ueberauth	plug	shortly.

Note	on	debugging	in	Elixir:	In	Elixir,	you	can	log	to	the	terminal	with	 IO.puts 	or	 Logger.debug 	after
adding	 require	Logger .	This	is	one	of	the	primary	means	by	which	you	can	debug	your	apps.	It's
identical	to	 console.log() 	if	you're	a	JavaScript	developer	or	 puts 	if	you're	a	Ruby	developer.

In	fact,	we	will	keep	this	controller	mostly	empty	for	the	time	being	and	just	add	a	log	to	show	that	it	was
hit.	This	will	cause	an	error,	but	it	will	show	that	the	request	was	hit.	Change	your	 AuthController 	to	the
following:

/web/controller/auth_controller.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 127	of	407

https://www.learnphoenix.io

defmodule	PhoenixChat.AuthController	do
		use	PhoenixChat.Web,	:controller

		def	test(conn,	_params)	do
				IO.puts	"AuthController	called!"
				conn
		end
end

Open	 web/router.ex 	and	make	the	following	changes:

/web/router.ex
commit: coming soon

...

		scope	"/api",	PhoenixChat	do
				pipe_through	:api

				get	"/auth",	AuthController,	:test
				resources	"/users",	UserController,	except:	[:new,	:edit]
		end

...

For	now	we	want	to	direct	anyone	who	runs	a	 GET 	request	to	 /api/auth 	to	be	routed	to	the
AuthController 	and	the	 test/2 	function	we	created.

To	try	out	our	new	route,	start	your	server:

$	mix	phoenix.server

Generated	PhoenixChat	app
[info]	Running	PhoenixChat.Endpoint	with	Cowboy	using	http	on	port	4000

Open	up	a	browser	and	visit	 localhost:4000/api/auth .	We	won't	see	anything	in	the	browser	because
we	aren't	telling	Phoenix	to	render	any	HTML,	but	if	you	head	over	to	your	terminal	(the	one	in	which	you
ran	 mix	pheonix.server),	you	should	see	the	output	"AuthController	called!"	just	before	the	error.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 128	of	407

https://www.learnphoenix.io

[info]	GET	/api/auth
AuthController	called!
[debug]	Processing	by	PhoenixChat.AuthController.test/2
		Parameters:	%{}
		Pipelines:	[:api]
		...

This	is	a	contrived	example,	but	you	can	see	the	following	happen:

connection
|>	router
|>	api_pipeline
|>	AuthController.test

The	connection	was	sent	through	a	series	of	functions	and	transformations	before	finally	being	returned
to	the	user.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 129	of	407

https://www.learnphoenix.io

Login	and	Authentication:	Part	2

Authentication
Automatic	login	on	signup

Now	that	we	have	the	concept,	it's	time	to	implement	this	for	our	user	login.	In	this	section,	we	add	an
authentication	pipeline	for	routes	that	need	authentication	and	we	add	an	endpoint	that	allows	our
frontend	to	login.

Adding	authentication

Let's	make	our	 AuthController 	a	bit	more	useful	and	finish	setting	up	Ueberauth	and	Guardian.
Following	along	with	their	documentation,	let's	update	our	router:

/web/router.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 130	of	407

https://www.learnphoenix.io

defmodule	PhoenixChat.Router	do
		use	PhoenixChat.Web,	:router

		...

		pipeline	:api	do
				plug	:accepts,	["json"]
		end

		pipeline	:api_auth	do
				plug	Guardian.Plug.VerifyHeader,	realm:	"Bearer"
				plug	Guardian.Plug.LoadResource
		end

	...

		scope	"/api",	PhoenixChat	do
				pipe_through	:api

				resources	"/users",	UserController,	except:	[:show,	:index,	:new,	:edit]
		end

		scope	"/auth",	PhoenixChat	do
				pipe_through	[:api,	:api_auth]

				post	"/:identity/callback",	AuthController,	:callback
		end
end

In	addition	to	creating	an	"/auth"	scope,	we	created	a	new	 pipeline .	Our	new	pipeline	takes	care	to	verify
our	 Authorization 	header	and	load	the	resource	using	our	serializer.	We	learned	about	the	serializer
when	we	configured	Guardian,	so	let's	discuss	the	authorization	header.

Under-the-hood	Guardian	relies	on	an	HTTP	header,	 Authorization ,	to	pass	the	JSON	web	token
between	the	frontend	and	the	backend.	If	you	don't	know	what	an	authorization	header	is,	it	will	become
abundantly	clear	later	on	when	we	head	back	over	to	the	frontend	to	make	a	call	with	an	authorization
header.

Now	we	need	to	implement	the	callback	function	we	specified.	Open	up	our	 AuthController 	and	change
it	to	include	our	 callback/2 	function.	We	can	also	get	rid	of	the	 test 	function.

/web/controller/auth_controller.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 131	of	407

https://www.learnphoenix.io

defmodule	PhoenixChat.AuthController	do
		use	PhoenixChat.Web,	:controller

		alias	PhoenixChat.{ErrorView,	UserView,	User,	AuthController}

		plug	Ueberauth

		def	callback(%{assigns:	%{ueberauth_auth:	auth}}	=	conn,	_params)	do
				result	=	with	{:ok,	user}	<-	user_from_auth(auth),
																		:ok	<-	validate_pass(user.encrypted_password,	auth.credentials.other.password),
																		do:	signin_user(conn,	user)

				case	result	do
						{:ok,	user,	token}	->
								conn
								|>	put_status(:created)
								|>	render(UserView,	"show.json",	user:	user,	token:	token)
						{:error,	reason}	->
								conn
								|>	put_status(:bad_request)
								|>	render(ErrorView,	"error.json",	error:	reason)
				end
		end
end

If	we	read	down	the	function,	what	we're	doing	is:	get	the	user	from	Ueberauth,	validate	the	password,
and	sign	in	the	user.	If	it's	successful	we'll	render	the	user	view	along	with	our	JSON	web	token.	In	the
event	of	an	error,	we'll	show	the	error	view	instead.

Let's	implement	the	individual	functions	that	make	up	our	callback,	we'll	start	with	 user_from_auth/1 .
For	this	function	we	need	to	lookup	a	user	by	the	email	address	provided	by	Ueberauth.	Add	the	following
function	to	 web/controller/auth_controller.ex ,	below	the	callback.

/web/controller/auth_controller.ex
commit: coming soon

		...
		defp	user_from_auth(auth)	do
				result	=	Repo.get_by(User,	email:	auth.info.email)
				case	result	do
						nil	->	{:error,	%{"email"	=>	["invalid	email"]}}
						user	->	{:ok,	user}
				end
		end

The	next	step	in	our	authentication	process	is	validating	the	password.	We'll	use	pattern	matching	in	our

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 132	of	407

https://www.learnphoenix.io

validate_pass/2 	function	to	handle	missing	or	blank	passwords	and	Comeonin	to	compare	the	clear
text	password	and	the	one	stored	in	the	database.	To	handle	the	comparison	we'll	rely	on	Comeonin	and
the	Bcrypt	module.

Bcrypt	is	the	hashing	algorithm	we	used	in	our	 registration_changeset/2 	to	compute	our	hashed
password.	The	code	below	is	what	we	should	end	up	with.

/web/controller/auth_controller.ex
commit: coming soon

		...
		defp	validate_pass(_encrypted,	password)	when	password	in	[nil,	""]	do
				{:error,	"password	required"}
		end

		defp	validate_pass(encrypted,	password)	do
				if	Comeonin.Bcrypt.checkpw(password,	encrypted)	do
						:ok
				else
						{:error,	"invalid	password"}
				end
		end

Lastly,	we	need	to	sign	in	so	we	can	retrieve	the	user	and	JSON	web	token:

/web/controller/auth_controller.ex
commit: coming soon

		...
		defp	signin_user(conn,	user)	do
				token	=	conn
												|>	Guardian.Plug.api_sign_in(user)
												|>	Guardian.Plug.current_token
				{:ok,	user,	token}
		end

That's	it	for	the	controller	but	there's	still	one	step	left:	updating	our	user	view	to	support	the	JSON	web
token.	We	can	start	by	creating	a	new	function	similar	to	 "user.json" 	but	including	our	token.	Then	we
can	use	pattern	matching	in	 "show.json" 	to	render	the	JSON	with	or	without	the	JWT	token.

With	all	the	pieces	together,	this	is	how	our	view	should	appear:

/web/views/user_view.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 133	of	407

https://www.learnphoenix.io

defmodule	PhoenixChat.UserView	do
		use	PhoenixChat.Web,	:view

		alias	PhoenixChat.{UserView}

		def	render("index.json",	%{users:	users})	do
				%{data:	render_many(users,	UserView,	"user.json")}
		end

		def	render("show.json",	%{user:	user,	token:	token})	do
				%{data:	render_one(user,	UserView,	"user_token.json",	token:	token)}
		end

		def	render("show.json",	%{user:	user})	do
				%{data:	render_one(user,	UserView,	"user.json")}
		end

		def	render("user.json",	%{user:	user})	do
				%{email:	user.email,
						id:	user.id,
						username:	user.username}
		end

		def	render("user_token.json",	%{user:	user,	token:	token})	do
				%{email:	user.email,
						id:	user.id,
						token:	token,
						username:	user.username}
		end
end

One	thing	our	frontend	application	will	need	to	know,	is	who	current	user	is.	To	facilate	this,	let's	build	an
endpoint	to	return	the	user	given	a	JSON	web	token.	This	will	be	our	"/me"	endpoint,	let's	go	ahead	and
add	the	endpoint	to	the	router:

/web/router.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 134	of	407

https://www.learnphoenix.io

...

		scope	"/auth",	PhoenixChat	do
				pipe_through	[:api,	:api_auth]

				get	"/me",	AuthController,	:me
				post	"/:identity/callback",	AuthController,	:callback
				delete	"/signout",	AuthController,	:delete
		end

...

Now	we	can	go	back	to	our	 AuthController 	and	implement	our	 me 	function.	For	now	all	we	want	our
endpoint	to	do	is	retrieve	the	currently	logged	in	user	and	return	their	info	to	us.	If	they're	not	logged	in,	an
HTTP	error	code	will	do.	To	do	this,	we're	going	to	introduce	a	new	Guardian	plug:	 EnsureAuthenicated .

With	 EnsureAuthenticated ,	Guardian	will	check	to	see	whether	our	incoming	HTTP	request	contains	our
Authentication	header.	In	the	event	that	it	does	not,	Guardian	will	take	care	of	returning	the	appropriate
error	code	and	won't	run	any	other	functions	in	the	module.	The	first	step	is	to	add	the	plug	to	the	top	of
our	controller:

/web/controllers/auth_controller.ex
commit: coming soon

defmodule	PhoenixChat.AuthController	do
		use	PhoenixChat.Web,	:controller

		alias	PhoenixChat.{ErrorView,	UserView,	User,	AuthController}

		plug	Ueberauth
		plug	Guardian.Plug.EnsureAuthenticated,	[handler:	AuthController]	when	action	in	[:delete,	

		...
end

By	now	we	should	be	somewhat	familiar	with	what	this	does	but	just	in	case,	let's	go	over	it.	Here	we	are
adding	a	new	plug	to	our	request	pipeline,	 EnsureAuthentication ,	passing	a	set	of	options	(namely	the
error	handler),	and	lastly	we	use	a	guard	to	apply	the	plug	only	for	requests	to	our	 /me 	or	 /signout
routes.	This	is	because	(obviously)	we	don't	want	to	ensure	a	user	is	authenticated	before	that	user	can
login.

To	get	everything	working	we	only	need	to	implement	our	 me 	function	now.	Since	we	know
EnsureAuthenticated 	will	take	care	of	logged	out	users,	our	method	is	pretty	simple.	We	need	to	retrieve
the	current	user	and	return	them	using	the	 UserView .	Add	the	following	to	our	 auth_controller .

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 135	of	407

https://www.learnphoenix.io

/web/controllers/auth_controller.ex
commit: coming soon

		...

		def	me(conn,	_params)	do
				user	=	Guardian.Plug.current_resource(conn)
				render(conn,	UserView,	"show.json",	user:	user)
		end

		...

We're	not	quite	done.	According	to	the	Guardian	docs	for	 EnsureAuthenticated ,	we	will	need	to	add
another	function	in	the	event	a	user	is	not	authenticated.	From	the	docs:

Looks	for	a	previously	verified	token.	If	one	is	found,	continues,	otherwise	it	will	call	the
:unauthenticated 	function	of	your	handler.

While	we're	at	it,	let's	also	add	an	 :unauthorized 	function	in	case	we	want	to	use	the
EnsurePermissions 	plug	in	the	future.

/web/controllers/auth_controller.ex
commit: coming soon

		...
		def	unauthenticated(conn,	_params)	do
				conn
				|>	put_status(:unauthorized)
				|>	render(ErrorView,	"error.json",	errors:	%{"account"	=>	["insufficient	privilege"]})
		end

		def	unauthorized(conn,	_params)	do
				conn
				|>	put_status(:forbidden)
				|>	render(ErrorView,	"error.json",	error:	%{"account"	=>	["unauthorized"]})
		end

It's	probably	worthwhile	to	at	least	skim	the	rest	of	the	 Guardian	docs	so	you	know	about	some	of	the
functionality.	Knowing	what	is	available	and	what	is	required	will	help	a	lot	when	debugging.

Automatic	login	on	signup

Now	that	we	can	sign	a	user	up	and	login	independently,	let's	automatically	log	a	user	in	upon	signup.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 136	of	407

https://github.com/ueberauth/guardian#guardianplugensureauthenticated
https://github.com/ueberauth/guardian
https://www.learnphoenix.io

This	is	actually	really	simple.	Since	"login"	really	just	means	returning	a	valid	token	to	a	user,	we	can
generate	a	token	after	an	account	has	successfully	been	created	and	pass	that	along	to	the	user.	We	only
have	to	change	two	lines	of	code.

/web/controllers/user_controller.ex
commit: coming soon

def	create(conn,	%{"user"	=>	user_params})	do
		changeset	=	User.registration_changeset(%User{},	user_params)

		case	Repo.insert(changeset)	do
				{:ok,	user}	->
						{:ok,	token,	_claims}	=	Guardian.encode_and_sign(user,	:token)

						conn
						|>	put_status(:created)
						|>	render("show.json",	user:	user,	token:	token)
				{:error,	changeset}	->
						conn
						|>	put_status(:unprocessable_entity)
						|>	render(PhoenixChat.ChangesetView,	"error.json",	changeset:	changeset)
		end
end

Now	we	have	everything	we	need	to	register	for	an	account	and	sign-in.	Let's	head	back	to	the	frontend	to
connect	it.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 137	of	407

https://www.learnphoenix.io

Move	Logic	to	Redux

Asynchronous	actions
Updating	the	user

So	now	that	we	understand	some	of	the	concepts	of	Redux	and	have	our	 store 	connected	to	our	app,
we	can	start	building	our	app	for	real.	The	first	thing	we	should	connect	is	our	user.

We	want	to	be	able	to:

create	a	new	user
log	that	user	in
authenticate	that	user
log	that	user	out.

Since	the	user	is	something	that	we	will	want	to	have	access	to	in	our	entire	app,	it	makes	sense	to	hold
this	value	in	the	highest-order	component	we	have	and	pass	that	value	down	to	all	children,	which	in	this
case	is	our	 App 	component.	But	since	we're	using	Redux,	we	can	keep	that	value	in	our	global	 store
and	pull	it	out	using	 connect .

Asynchronous	actions

Before	we	get	much	further,	configure	our	app	to	work	properly	with	Redux.	The	first	thing	we	should
reconfigure	is	our	 Signup 	component	and	the	associated	action.	We	want	to	move	our	asynchronous
request	out	of	our	component	and	into	our	action,	and	we	want	to	connect	our	component	to	Redux.

But	Redux	doesn't	support	asynchronous	calls	without	middleware.	That's	where	we	need	something	like
thunk 	comes	in.	From	the	docs:

A	thunk	is	a	function	that	wraps	an	expression	to	delay	its	evaluation.

It's	a	handy	way	for	us	to	make	asynchronous	calls	within	our	actions.

$	npm	install	--save	redux-thunk

And	in	order	to	apply	that	middleware,	we	need	to	add	some	additional	configuration	to	our	 store .
Within	 store.js 	we	need	to	import	a	few	more	functions	and	add	 thunk 	to	an	 applyMiddleware 	call.
We	are	also	using	 compose ,	which	allows	us	to	create	a	wrapper	function	that	composes	of	other

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 138	of	407

https://www.learnphoenix.io

functions	in	order.

/app/redux/store.js
commit: coming soon

import	{	createStore,	compose,	applyMiddleware	}	from	"redux"
import	thunk	from	"redux-thunk"
import	reducers	from	"./reducers"

const	middlewares	=	[thunk]

const	createStoreWrapper	=	compose(
		applyMiddleware(...middlewares)
)(createStore)

const	store	=	createStoreWrapper(reducers)

export	default	store

Now	that	we've	applied	our	 thunk 	middleware,	we	can	start	running	asynchronous	actions	from	our
Actions .	The	first	one	we	want	to	change	is	 userNew .

/app/redux/actions.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 139	of	407

https://www.learnphoenix.io

...

Actions.userNew	=	function	userNew(user)	{
		return	dispatch	=>	fetch("http://localhost:4000/api/users",	{
				method:	"POST",
				headers:	{
						Accept:	"application/json",
						"Content-Type":	"application/json"
				},
				body:	JSON.stringify({	user	})
		})
		.then((res)	=>	{
				return	res.json()
		})
		.then((res)	=>	{
				//	TODO:	More	on	this	later
				console.log(res)
		})
		.catch((err)	=>	{
				console.warn(err)
		})
}
...

Here	we	are	returning	a	function	that	takes	in	 dispatch 	as	a	parameter	(used	by	 thunk)	and	makes	an
asynchronous	call	to	our	server.	If	there	is	an	error,	we	log	the	error.

We	should	also	change	the	 userLogin 	action	to	make	a	call	to	our	backend.	If	you	go	to	your	Phoenix
backend	and	check	 mix	phoenix.routes 	you'll	see	the	route	for	login	(/auth/identity/callback).

You'll	notice	a	few	things	different	about	this	action.	For	one,	we	are	taking	the	token	we	receive	from	the
server	and	saving	it	to	 localStorage .	If	you	don't	know	what	localStorage	is,	you	can	think	of	it	as	the
better	version	of	cookies,	which	are	pieces	of	information	you	can	store	on	the	browser	that	can	only	be
accessed	by	the	website	that	sets	them.	In	fact,	 localStorage 	is	supposed	to	be	the	replacement	for
cookies.

After	we	set	the	token	to	 localStorage ,	we	 dispatch 	an	action	to	our	 reducer .	Recall	that	our	reducer
is	already	set	up	to	handle	a	 USER_LOGIN 	action.

/app/redux/actions.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 140	of	407

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://www.learnphoenix.io

Actions.userLogin	=	function	userLogin(user)	{
		return	dispatch	=>	fetch("http://localhost:4000/auth/identity/callback",	{
				method:	"POST",
				headers:	{
						Accept:	"application/json",
						"Content-Type":	"application/json"
				},
				body:	JSON.stringify({
						email:	user.email,
						password:	user.password
				})
		})
		.then((res)	=>	{	return	res.json()	})
		.then((res)	=>	{
				/*	If	success,	log	the	user	in	*/
				localStorage.token	=	res.data.token
				/*	Then	send	action	to	reducer	*/
				dispatch({
						type:	"USER_LOGIN",
						payload:	{
								user:	res.data
						}
				})
		})
		.catch((err)	=>	{
				console.warn(err)
		})
}

If	you're	a	security	nut,	you	can	be	extra	careful	and	store	your	token	in	a	session	cookie	with	an
httpOnly 	flag.	This	will	prevent	XSS	attacks	and	side	channel	(BREACH)	attacks.	That	said,
localStorage 	is	more	common	and	perfectly	fine	for	our	purposes.

Now	within	our	 user 	reducer,	we	want	to	set	the	value	of	our	user	to	the	value	returned	by	the	server.
While	we're	at	it,	let's	add	some	default	values	for	our	 user 	so	we	don't	run	into	errors	later	when	we
assign	these	values	to	DOM	elements	via	 props 	and	also	destructure	our	payload	for	easier	reading.

/app/redux/reducers.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 141	of	407

https://www.learnphoenix.io

...

function	user(state	=	{
		email:	"",
		username:	"",
		id:	""
},	action)	{
		switch	(action.type)	{
				case	"USER_NEW":
						return	Object.assign({},	state,	{
								email:	action.payload.user.email,
								username:	action.payload.user.username,
								id:	action.payload.user.id
						})
				case	"USER_LOGIN":
						return	Object.assign({},	state,	{
								email:	action.payload.user.email,
								username:	action.payload.user.username,
								id:	action.payload.user.id
						})
				default:	return	state
		}
}

...

Let's	also	update	our	 userNew 	function	to	handle	the	response	from	our	server.

/app/redux/actions.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 142	of	407

https://www.learnphoenix.io

...
Actions.userNew	=	function	userNew(user)	{
		return	dispatch	=>	fetch("http://localhost:4000/api/users",	{
				method:	"POST",
				headers:	{
						Accept:	"application/json",
						"Content-Type":	"application/json"
				},
				body:	JSON.stringify({	user	})
		})
		.then((res)	=>	{
				return	res.json()
		})
		.then((res)	=>	{
				/*	If	success,	log	the	user	in	*/
				localStorage.token	=	res.data.token
				/*	Then	send	action	to	reducer	*/
				dispatch({
						type:	"USER_NEW",
						payload:	{
								user:	res.data
						}
				})
		})
		.catch((err)	=>	{
				console.warn(err)
		})
}
...

Connecting	the	login	form

Now	that	we	have	everything	in	place	on	the	backend	to	handle	user	login,	let's	send	off	the	request.
Recall	that	we	already	set	up	our	 Login 	component	to	send	the	request	via	redux--we	just	previously
hadn't	sent	the	http	request.

Go	ahead	and	login	with	valid	credentials	(the	account	you	created	earlier,	or	a	new	one)	and	you'll	see
the	returned	username	and	email	from	the	server.

What's	more,	if	you	check	 localStorage.token 	in	your	browser	console,	you'll	see	your	current,	valid
JSON	web	token	that	we	will	later	use	for	authentication.

Connecting	the	signup	form

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 143	of	407

https://www.learnphoenix.io

Since	login	is	working	with	Redux,	we	should	change	our	 Signup 	to	use	the	Redux	action	as	well.	First
import	 connect 	and	 Actions 	from	Redux,	then	we	need	to	replace	the	 fetch 	call	with	a	dispatched
Redux	action	and	connect	our	component	in	our	export.

/app/components/Signup/index.js
commit: coming soon

import	React	from	"react"
import	cssModules	from	"react-css-modules"
import	{	connect	}	from	"react-redux"
import	style	from	"./style.css"
import	Actions	from	"../../redux/actions"

...

export	class	Signup	extends	React.Component	{
		constructor(props)	{
				super(props)
				this.submit	=	this.submit.bind(this)
		}

		submit()	{
				const	user	=	{
						username:	document.getElementById("signup-username").value,
						email:	document.getElementById("signup-email").value,
						password:	document.getElementById("signup-password").value
				}
				this.props.dispatch(Actions.userNew(user))
		}

		...
}

export	default	connect()(cssModules(Signup,	style))

Now	when	you	submit	your	form,	you're	dispatching	the	action	through	Redux	instead	of	through	the	form
component.	If	you	try	it	with	a	new	username	and	email,	you	should	see	the	same	successful	output	in
your	browser	console.

>	Fetch	complete:	POST	"http://localhost:4000/api/users".
>	Object	{data:	Object}

Toggling	between	signup/login	forms

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 144	of	407

https://www.learnphoenix.io

Now	is	a	good	time	to	refactor	our	 Home 	component	to	allow	us	to	easily	toggle	between	login	and
signup	forms.	First,	let's	create	a	new	function	that	allows	us	to	toggle	the	state.

/app/components/Home/index.js
commit: coming soon

...
export	class	Home	extends	React.Component	{
		constructor(props)	{
				super(props)
				this.state	=	{
						formState:	"login"
				}
				this.setFormState	=	this.setFormState.bind(this)
		}

		setFormState(formState)	{
				this.setState({	formState	})
		}
...
}

Then	let's	create	a	function	that	determines	the	content	below	our	form	that	when	clicked	will	change	the
state	of	our	form.

/app/components/Home/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 145	of	407

https://www.learnphoenix.io

...
export	class	Home	extends	React.Component	{
		constructor(props)	{
				super(props)
				this.state	=	{
						formState:	"login"
				}
				this.setFormState	=	this.setFormState.bind(this)
		}

		...

		renderToggleContent()	{
				switch	(this.state.formState)	{
						case	"login":
								return	(
										<div
												className={style.changeLink}
												onClick={()	=>	this.setFormState("signup")}>
												Need	an	account?	Signup.
										</div>
)
						case	"signup":
								return	(
										<div
												className={style.changeLink}
												onClick={()	=>	this.setFormState("login")}>
												Have	an	account?	Login.
										</div>
)
						default:	return	null
				}
		}

		render()	{
				return	(
						<div	className={style.leader}>
								<h1	className={style.title}>Phoenix	Chat</h1>
								{	this.state.formState	===	"signup"	?	<Signup	/>	:	null	}
								{	this.state.formState	===	"login"	?	<Login	/>	:	null	}
								{	this.renderToggleContent()	}
								<img
										role="presentation"
										className={style.circles}
										src="https://s3.amazonaws.com/learnphoenix-static-assets/images/circles-full.png"	/>
						</div>
)
		}
}

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 146	of	407

https://www.learnphoenix.io

One	thing	that	you	will	often	see	in	React	code	is	the	use	of	 bind 	to	pass	a	value	to	your	function	using
JSX.	Now	that	we	have	ES2015,	we	can	use	arrow	functions,	which	automatically	bind	to	the	context
this .	So	for	example,	the	two	onClick	functions	below	are	the	same:

//	ES2015,	and	what	we	will	use
onClick={()	=>	this.setFormState("login")}>

//	ES5
onClick={this.setFormState.bind(this,	"login")}

Also	note	that	if	you	need	access	to	the	event,	you	will	need	to	pass	it	as	a	parameter	if	you	use	ES2015
syntax.

//	ES2015	syntax,	passing	event	as	second	parameter
onClick={e	=>	this.setFormState("login",	e)}

And	now,	when	you	click	on	the	link,	it	toggles	the	form.	Granted,	it's	not	styled,	but	we	can	do	that	later.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 147	of	407

https://www.learnphoenix.io

Check	Login	Status

auth/me

Grant	special	access

At	this	point,	we	have	the	ability	to	create	an	account,	log	a	user	in,	and	get	a	valid	JSON	web	token.	So
now	we	need	to	check	with	our	server	that	the	token	is	valid	to	determine	whether	or	not	the	user	has
access	to	certain	views	and	data.

Setting	up	userAuth	action

The	way	we	do	this	is	by	sending	a	request	to	the	 auth/me 	route	we	set	up	in	our	Phoenix	server.	If	you
recall,	the	 auth/me 	route	takes	the	token	from	the	 Authorization 	header	and	checks	to	make	sure	it's
valid.	If	it	is,	it	returns	the	data	we	requested	(in	this	case,	username	and	email).

This	should	look	familiar,	with	the	exception	of	the	 Authorization 	header	line.	The	standard	syntax	for
sending	an	 Authorization 	header	is	in	the	syntax:	 Bearer	<token> ,	as	you	can	see	if	you	search	for	the
word	 bearer 	in	this	handy	introduction	to	jwt.	If	there	is	no	token,	it	passes	an	empty	string.

/app/redux/actions.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 148	of	407

https://jwt.io/introduction/
https://www.learnphoenix.io

Actions.userAuth	=	function	userAuth()	{
		return	dispatch	=>	fetch("http://localhost:4000/auth/me",	{
				method:	"GET",
				headers:	{
						Accept:	"application/json",
						"Content-Type":	"application/json",
						Authorization:	`Bearer	${localStorage.token}`	||	""
				}
		})
		.then((res)	=>	{	return	res.json()	})
		.then((res)	=>	{
				dispatch({
						type:	"USER_AUTH",
						payload:	{
								user:	res.data
						}
				})
		})
		.catch((err)	=>	{
				console.warn(err)
		})
}

Then	we	have	to	add	our	 USER_AUTH 	action	as	a	 case 	to	our	 user 	reducer.

/app/redux/reducers.js
commit: coming soon

		...
				case	"USER_AUTH":
						return	Object.assign({},	state,	{
								email:	action.payload.user.email,
								username:	action.payload.user.username,
								id:	action.payload.user.id
						})
		...

Automatic	authentication

There	are	a	few	times	in	which	we	would	like	to	automatically	check	to	see	if	a	user	is	logged	in.	The	first
is	when	the	app	initially	renders,	as	the	user	might	have	come	from	another	session	and	still	has	a	valid
token.	The	other	times	we	want	to	automatically	log	a	user	in	are	when	we	have	a	change	in	user	status,
such	as	after	we	run	 userNew 	or	 userLogin .

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 149	of	407

https://www.learnphoenix.io

Since	we	want	to	do	this	for	the	whole	app,	we	should	run	this	when	the	 App 	component	renders.	So	the
first	thing	we	should	do	is	refactor	our	App	component	into	it's	own	directory	so	we	can	access	its
componentDidMount 	function	and	un-muddle	our	 app/index.js 	file.

$	mkdir	app/components/App
$	touch	app/components/App/{index.js,spec.js,style.css,README.md}

Then	create	our	component	and	 dispatch 	our	 userAuth 	action	within	 componentDidMount .

/app/components/Apps/index.js
commit: coming soon

import	React	from	"react"
import	{	connect	}	from	"react-redux"
import	Actions	from	"../../redux/actions"

export	class	App	extends	React.Component	{
		componentDidMount()	{
				this.props.dispatch(Actions.userAuth())
		}

		render()	{
				return	(
						<div>
								{this.props.children}
						</div>
)
		}
}

export	default	connect()(App)

And	lets	add	that	functionality	to	both	of	our	actions	as	well,	since	we	want	to	authenticate	the	user
immediately	after	login	and	account	creation.	Remember,	when	we	create	an	account	or	login,	all	we're
doing	is	adding	a	web	token	to	 localStorage .	We	have	to	use	 auth/me 	to	actually	validate	that	user.

/app/redux/actions.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 150	of	407

https://www.learnphoenix.io

...
Actions.userNew	=	function	userNew(user)	{
		...
		.then((res)	=>	{
				/*	If	success,	log	the	user	in	*/
				localStorage.token	=	res.data.token
				/*	Then	send	action	to	reducer	*/
				dispatch({
						type:	"USER_NEW",
						payload:	{
								user:	res.data
						}
				})
				dispatch(Actions.userAuth())
		})
		...
}

Actions.userLogin	=	function	userLogin(user)	{
		...
		.then((res)	=>	{
				/*	If	success,	log	the	user	in	*/
				localStorage.token	=	res.data.token
				/*	Then	send	action	to	reducer	*/
				dispatch({
						type:	"USER_LOGIN",
						payload:	{
								user:	res.data
						}
				})
				dispatch(Actions.userAuth())
		})
		...
}

While	we're	at	it,	let's	write	a	few	tests	for	this	component.	We	want	to	make	sure	that	the	component:

renders
dispatches	on	componentDidMount
dispatches	Actions.userAuth()	on	componentDidMount

We	will	need	to	import	our	 Actions 	in	order	to	run	these	tests	and	make	ample	use	of	our	 spy .	More
details	about	each	test	below	the	codeblock.

/app/components/App/spec.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 151	of	407

https://www.learnphoenix.io

import	React	from	'react'
import	expect	from	'expect'
import	{	shallow,	mount	}	from	'enzyme'

import	Actions	from	'../../redux/actions'

import	{	App	}	from	'./'

const	props	=	{}

describe('<App	/>',	()	=>	{
		it('should	render',	()	=>	{
				const	renderedComponent	=	shallow(
						<App	{...props}	/>
)
				expect(renderedComponent.is('div')).toEqual(true)
		})
		it('calls	dispatch	on	componentDidMount',	()	=>	{
				const	spy	=	expect.createSpy()
				const	renderedComponent	=	mount(
						<App	dispatch={spy}	/>
)
				expect(spy).toHaveBeenCalled()
		})
		it('calls	dispatch	with	Actions.userAuth',	()	=>	{
				const	spy	=	expect.createSpy()
				const	renderedComponent	=	mount(
						<App	dispatch={spy}	/>
)
				expect(spy).toHaveBeenCalledWith(Actions.userAuth())
		})
})

The	first	test	is	simple	and	it's	something	you've	seen	before.

The	second	test	is	a	little	bit	more	complicated.	The	first	difference	is	that	we're	rendering	the	component
with	 mount 	rather	than	 shallow .	This	takes	longer,	but	it's	necessary	since	a	 shallow 	render	does	not
give	you	access	to	the	lifecycle	methods	such	as	 componentDidMount .	Then	we're	passing	in	our	spy	as
this.props.dispatch ,	so	when	 componentDidMount 	is	triggered,	it	calls	our	 spy 	rather	than	what	would
have	ordinarily	been	passed	in	as	the	 dispatch 	function	from	redux.

The	third	test	is	similar	to	the	second	test,	but	we	are	making	a	different	assertion.	In	this	case,	we	are
checking	to	make	sure	that	 componentDidMount 	attempted	to	call	our	 dispatch 	function	with	the	right
parameter.	If	it	called	it	with	 Actions.userAuth() ,	then	the	test	will	pass.

In	theory,	we	could	also	test	that	 componentDidMount 	was	called,	but	at	that	point	we'd	be	testing	that
React	itself	is	working,	and	that's	outside	the	scope	of	our	unit	tests.	It's	safe	to	assume	that	anything
implicit	in	React	will	work	properly.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 152	of	407

https://facebook.github.io/react/docs/component-specs.html
https://www.learnphoenix.io

So	now	we	need	to	change	our	 app/index.js 	file	to	take	in	the	new	 App 	component.	All	we	have	to	do	is
import	our	new	App	component	and	delete	the	old	one.

/app/index.js
commit: coming soon

...
import	{	default	as	App	}	from	"./components/App"
...

And	that's	that.	Your	user	is	now	being	authenticated	automatically	when	the	page	renders.	You	can
check	this	by	using	 console.log 	on	your	props	to	a	connected	component,	such	as	the	 Login
component	(for	now).

Authenticated	pages

So	now	that	we	can	determine	whether	a	user	is	logged	in,	we	can	give	that	user	access	to	pages	that
only	logged	in	users	would	have.

In	this	case,	if	a	user	is	logged	in,	we	want	them	to	see	the	 Chat 	component	rather	than	the	login/signup
screen	when	they	get	to	the	 Home 	page.

The	first	step	is	to	connect	our	 Home 	component	to	redux	so	it	knows	whether	or	not	the	user	is	signed	in.

/app/components/Home/index.js
commit: coming soon

...
import	{	connect	}	from	"react-redux"

...

const	mapStateToProps	=	state	=>	({
		user:	state.user
})

export	default	connect(mapStateToProps)(cssModules(Home,	style))

Then	import	our	 Chat 	component	and	have	it	render	if	the	user	is	currently	logged	in.

/app/components/Home/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 153	of	407

https://www.learnphoenix.io

import	{	default	as	Chat	}	from	"../Chat"

...

		render()	{
				if	(this.props.user.email)	{
						return	(<Chat	/>)
				}
				return	(
						<div	className={style.leader}>
								...
)
		}
		...

And	since	we're	already	logged	in,	when	you	refresh	the	page,	you	should	see	our	 Chat 	component
instead	of	the	login	screen.

At	this	point,	we	effectively	have	the	outline	of	what	will	become	our	interface	for	a	company
representative.	This	is	the	primary	means	by	which	an	administrator	can	communicate	with	an
anonymous	customer	visiting	the	site.

A	Note	on	Frontend	Security

You	might	be	thinking,	"But	is	it	really	safe	to	determine	the	authentication	status	based	on	 props.user ?"
If	you	were,	kudos.

Security	does	not	happen	on	the	client.	The	best	you	can	do	on	the	client	is	give	the	appearance	of
security	by	disabling	links	and	guiding	the	user	to	the	proper	view.	Someone	can	always	jump	into	the
console	and	do	whatever	they	want	on	the	client	since	our	entire	app	is	available	in	our	 bundle.js 	file.

That	said,	an	app	with	this	architecture	is	still	secure	because	our	data	is	secure	and	comes	from	our
server.	Sure,	someone	can	spend	a	lot	of	time	figuring	out	how	to	get	access	to	the	 Chat 	component
even	though	they're	not	supposed	to	have	access,	but	what	can	they	do	with	it?	They	can	only	get	the
data	to	populate	that	component	if	they	have	a	valid	token	and	pass	that	to	the	server,	which	only	then
will	respond	with	the	data.

So	keep	in	mind	that	whatever	you	put	in	a	view,	you	cannot	hide	from	your	users.	Take	this	tutorial
series,	for	example.	You	could,	in	theory,	change	the	links	on	the	course	list	into	something	valid	and
potentially	be	able	to	click	on	it.	But	since	the	data	does	not	live	on	the	client,	but	in	markdown	files	on
the	server,	the	page	will	be	empty	when	you	get	there	and	you	have	no	way	to	get	access	to	the	data
without	a	valid	token,	which	you	can	only	get	if	you	are	authorized	by	the	server.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 154	of	407

https://www.learnphoenix.io

In	short,	that's	a	long-winded	way	of	saying	that	security	is	on	the	server	not	the	client.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 155	of	407

https://www.learnphoenix.io

NPM	Package	for	a	React	Component:	Part	1

Create	the	chat	component
Publish	to	NPM

So	now	that	we	have	the	ability	to	sign	up	and	login,	as	well	as	a	basic	interface	for	chat,	we	need	to
create	the	interface	for	the	anonymous	customer.

The	primary	use-case	of	this	app	is	as	an	NPM	installation	on	an	existing	project	to	add	chat
functionality.	Fortunately,	this	is	really	easy	for	us	to	do	because	of	React's	modular	nature.

This	piece	of	the	app	is	gives	us	the	chat	functionality	that	you	can	easily	install	on	any	client	and	it's	the
medium	through	which	our	potential	customers	will	contact	the	company	representatives.	When	it's
finished,	it	will	look	like	the	images	below.

Installing	dependencies

The	first	thing	we	need	to	is	create	a	new	directory	and	initialize	a	new	NPM	package.	This	is	the	same	as
the	last	time	we	initialized	NPM.	Do	not	create	this	directory	within	the	existing	phoenix-chat-frontend
directory;	this	is	a	separate	project.	So	the	directory	structure	will	look	roughly	like	the	following,	with	three
separate	directories:

phoenix-chat
		|--	node_modules
		|--	dist
		|--	src

phoenix-chat-frontend

phoenix-chat-api

$	mkdir	phoenix-chat
$	cd	phoenix-chat	&&	npm	init

Then	we're	going	install	 babel 	which	will	allow	us	to	use	React	with	 jsx 	and	 ES2015 	syntax.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 156	of	407

https://www.learnphoenix.io

$	npm	install	--save-dev	babel-cli	babel-preset-react	\
		babel-preset-es2015	babel-preset-stage-0

Then,	just	as	we	did	with	our	frontend	app,	we	need	to	add	Babel	presets	to	package.json.

/package.json
commit: coming soon

...
		"devDependencies":	{
				...
		},
		"babel":	{
				"presets":	[
						"es2015",
						"react",
						"stage-0"
]
		}
...

Creating	the	PhoenixChat	component

Now	we	need	to	create	our	 PhoenixChat 	component.	We	will	start	with	the	fixed-position	chat	bubble	in
the	bottom	right,	then	build	out	the	chat	interface.

To	start,	we	need	a	 jsx 	file	and	a	 style.js 	file	that	will	contain	out	 style 	object.	You	may	recall	from
an	earlier	section	that	there	are	many	ways	to	import	styles	in	React.	For	this	project,	we	are	going	to	use
inline-styling.

$	mkdir	src	dist
$	touch	src/{PhoenixChat.jsx,style.js,README.md}	README.md

And	since	placeholder	content	is	boring,	lets	add	a	chat	image.	At	some	point,	you	should	upload	your
own	image	to	S3	and	use	that	URL	for	static	asset	hosting,	but	for	now,	we'll	just	use	Github	and	a	filter	to
turn	the	image	white.

Then	let's	create	the	chat	bubble	component.

/src/PhoenixChat.jsx
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 157	of	407

https://www.learnphoenix.io

import	React	from	'react'
import	style	from	'./style.js'

export	class	PhoenixChat	extends	React.Component	{
		constructor(props)	{
				super(props)
		}

		render()	{
				return	(
						<div
								style={style.chatButton}>
								<img
										src="https://github.com/LearnPhoenix/graphics/blob/master/phoenix-chat-icon.png?raw=true"
										style={style.chatImage}	/>
						</div>
)
		}
}

export	default	PhoenixChat

Then	we	need	to	add	styling	to	this	component	within	our	 style.js 	file.	We're	just	going	to	use	pure
JavaScript	styling,	both	because	it's	worth	knowing	how	to	do	and	because	it's	quick	and	easy.

/src/style.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 158	of	407

https://www.learnphoenix.io

export	const	style	=	{
		chatButton:	{
				position:	"fixed",
				right:	"20px",
				bottom:	"20px",
				background:	"rgb(58,	155,	207)",
				color:	"white",
				zIndex:	"1000",
				height:	"60px",
				width:	"60px",
				border:	"1px	solid	#ccc",
				borderRadius:	"50%",
				display:	"flex",
				justifyContent:	"center",
				alignItems:	"center",
				cursor:	"pointer",
				boxShadow:	"2px	4px	2px	-2px	rgba(0,0,0,0.3)"
		},
		chatImage:	{
				display:	"block",
				height:	"40px",
				width:	"40px",
				filter:	"invert(100%)",
				WebkitFilter:	"invert(100%)",
				MozFilter:	"invert(100%)"
		}
}

export	default	style

Connecting	in	development

Before	we	can	check	to	make	sure	this	works	properly,	we	have	to	change	around	a	few	things	in	our
package.json 	file	and	link	this	package	to	our	existing	frontend	(at	least	temporarily).

We're	going	to	add	two	scripts	to	 package.json ,	and	change	the	main	import	file.	The	first,	 watch ,	will
watch	for	changes	and	automatically	compile	your	code	as	you	go.	This	is	what	you'll	have	running	while
in	development.	 build 	will	prepare	the	app	for	production,	and	 version 	prepares	the	next	version	for
deployment.

We	are	also	changing	the	import	file	to	 dist/phoenix-chat.js ,	which	is	where	our	 babel 	command	line
tool	will	output	the	resulting	file.

/package.json
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 159	of	407

https://www.learnphoenix.io

...
		"main":	"./dist/PhoenixChat.js",
		"scripts":	{
				"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1",
				"watch":	"babel	src	--watch	--out-dir	dist",
				"build":	"babel	src	--out-dir	dist"
		},

Now	that	we	have	our	package	ready,	it's	time	to	link	it	to	our	 phoenix-chat-frontend .	We	can	use	 npm
link 	to	create	a	globally-installed	symbolic	link	that	you	can	use	to	locally	install	the	package	in	a
different	app.	First	let's	build	the	package.

$	npm	run	build

Then	we're	going	to	create	an	 npm	link 	between	our	package	and	our	 node_modules 	for	our	 phoenix-
chat-frontend .	Do	this	by	running	 npm	link 	within	the	 phoenix-chat 	directory	to	create	the	global
module,	then	running	 npm	link	phoenix-chat 	from	within	 phoenix-chat-frontend 	to	link	the	module.

$	npm	link
$	cd	../phoenix-chat-frontend
$	npm	link	phoenix-chat

Unfortunately	with	the	current	version	of	npm	this	will	not	work,	because	two	copies	of	React	will	end	up
being	installed	and	you	won't	be	able	to	use	 refs 	(see	this	specific	issue	if	you	are	interested) .
According	to	the	docs,	this	is	intentional,	but	it's	an	easy	fix	with	webpack.	Within	 phoenix-chat-
frontend ,	add	the	following	to	your	webpack	configuration:

...
		resolve:	{
				extensions:	['',	'.js'],
				fallback:	path.join(__dirname,	"node_modules")
		},
		resolveLoader:	{
				fallback:	path.join(__dirname,	"node_modules")
		},
...

Now	if	you	look	in	your	 node_modules 	directory	within	your	frontend	app,	you	should	see	a	 phoenix-chat
module	installed.	Keep	in	mind	that	if	you	 npm	prune 	or	re-download	this	repo,	you	will	have	to	re-link	this
package	since	it	wont	be	downloaded	from	an	 npm	install .

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 160	of	407

https://gist.github.com/jimfb/4faa6cbfb1ef476bd105
http://webpack.github.io/docs/troubleshooting.html#npm-linked-modules-doesn-t-find-their-dependencies
https://www.learnphoenix.io

Now	we're	going	to	run	the	 phoenix-chat-frontend 	and	add	this	component	to	our	 Home 	component.

/app/components/Home/index.js
commit: coming soon

import	PhoenixChat	from	"phoenix-chat"

export	class	Home	extends	React.Component	{
		...

		render()	{
				if	(this.props.user.email)	{
						return	(
								<Chat>
										<PhoenixChat	/>
								</Chat>
)
				}
				return	(
						<div	className={style.leader}>
								<h1	className={style.title}>Phoenix	Chat</h1>
								{	this.state.formState	===	"signup"	?	<Signup	/>	:	null	}
								{	this.state.formState	===	"login"	?	<Login	/>	:	null	}
								{	this.renderToggleContent()	}
								<img
										role="presentation"
										className={style.circles}
										src="https://s3.amazonaws.com/learnphoenix-static-assets/images/circles-full.png"	/>
								<PhoenixChat	/>
						</div>
)
		}
		...
}

Obviously,	in	the	long-run,	there	is	no	reason	to	have	an	anonymous	chat	window	on	the	same	screen	as
the	administrator,	since	he	would	be	anonymously	messaging	himself,	but	this	makes	testing	a	lot	easier.

Now	you	should	see	the	chat	bubble	appear	in	the	bottom	right.

From	here,	we	can	continue	working	on	our	npm	module	while	watching	our	changes	take	effect	in
realtime.	Within	the	 phoenix-chat 	directory,	run	the	 watch 	command	to	keep	your	project	updated	as
you	make	changes.

$	npm	run	watch

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 161	of	407

https://www.learnphoenix.io

But	this	component	isn't	really	all	that	useful,	since	it's	just	a	button	that	doesn't	do	anything.	In	the	next
lesson,	we'll	add	some	more	functionality.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 162	of	407

https://www.learnphoenix.io

NPM	Package	for	a	React	Component:	Part	2

Build	the	chat	interface

At	this	point,	our	npm	package	is	not	especially	functional--it's	just	a	button	that	hovers	over	the	bottom-
right	of	your	app.	So	in	order	to	make	it	useful,	we	need	to	add	a	chat	interface	where	users	can	input	a
message	and	(eventually)	send	it	to	our	administrator.

Chat	interface

The	first	thing	we	need	to	do	is	break	the	button	out	into	its	own	component	called	 PhoenixChatButton ,
then	create	the	 PhoenixChatSidebar 	component,	and	finally	tie	them	together	based	on	user	actions.

So	first,	let's	refactor	the	 PhoenixChat 	component	so	it	knows	it's	state	(whether	the	chat	is	open	or
closed)	and	create	a	function	that	toggles	the	state	of	the	component.

/src/PhoenixChat.jsx
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 163	of	407

https://www.learnphoenix.io

export	class	PhoenixChat	extends	React.Component	{
		constructor(props)	{
				super(props)
				this.state	=	{
						isOpen:	false
				}
				this.toggleChat	=	this.toggleChat.bind(this)
		}

		toggleChat()	{
				this.setState({	isOpen:	!this.state.isOpen	})
		}

		render()	{
				return	(
						<div>
								{	this.state.isOpen
										?	<PhoenixChatSidebar	toggleChat={this.toggleChat}	/>
										:	<PhoenixChatButton	toggleChat={this.toggleChat}	/>	}
						</div>
)
		}
}

Now	we	should	create	the	 PhoenixChatButton 	based	on	the	component	we	made	previously,	but	with	an
onClick 	that	toggles	the	chat	sidebar	when	a	user	clicks	on	it.	We're	going	to	add	this	to	the	same	file	to
keep	things	simple,	but	you	can	create	a	new	file	and	import	this	into	 src/PhoenixChat.jsx 	if	you	prefer.

/src/PhoenixChat.jsx
commit: coming soon

export	class	PhoenixChatButton	extends	React.Component	{
		render()	{
				return	(
						<div
								onClick={this.props.toggleChat}
								style={style.chatButton}>
								<img
										src="https://github.com/LearnPhoenix/graphics/blob/master/phoenix-chat-icon.png?raw=true"
										style={style.chatImage}	/>
						</div>
)
		}
}

And	finally,	we	should	create	the	 PhoenixChatSidebar 	component.	We're	going	to	include	some	hard-

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 164	of	407

https://www.learnphoenix.io

coded	data	in	the	state	of	this	component	that	we	will	eventually	swap	out.

The	only	thing	that	might	look	new	is	the	 map 	under	the	render	function	that	maps	over	the	dummy	data
in	 this.state.chat 	and	creates	an	array	of	components.	What	we're	doing	is	checking	which	 name 	is
present	and	assigning	a	particular	style	based	on	that	name	(either	right	or	left	aligned).	Other	than	that,
everything	is	fairly	straightforward	with	a	column	of	elements.

We're	also	adding	an	index	as	a	key.	If	you	get	to	a	point	where	you	have	a	lot	of	messages	and	this
causes	performance	issues,	you'll	need	to	assign	a	unique	id	to	each	message	and	assign	the	key	to	that
id.	But	in	this	case,	since	we	can	only	add	messages	and	can't	remove	them,	an	index	is	fine.

/src/PhoenixChat.jsx
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 165	of	407

https://www.learnphoenix.io

export	class	PhoenixChatSidebar	extends	React.Component	{
		constructor(props)	{
				super(props)
				this.closeChat	=	this.closeChat.bind(this)
				this.state	=	{
						messages:	[
								{from:	"Client",	body:	"Test"},
								{from:	"John",	body:	"Foo"},
								{from:	"Client",	body:	"Bar"}
]
				}
		}

		closeChat()	{
				this.props.toggleChat()
		}

		render()	{
				const	list	=	!this.state.messages	?	null	:	this.state.messages.map((bubble,	i)	=>	{
						const	right	=	bubble.from	===	"Client"
						return	(
								<div	style={{...style.messageWrapper,	justifyContent:	right	?	"flex-end"	:	"flex-start
										<div
												key={i}
												style={	right	?	style.chatRight	:	style.chatLeft	}>
												{	bubble.body	}
										</div>
								</div>
)
				})
				return	(
						...
)
		}
}

And	then	in	the	final	return,	under	our	list,	add	the	following	jsx:

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 166	of	407

https://www.learnphoenix.io

...
export	class	PhoenixChatSidebar	extends	React.Component	{
		...

		render()	{
				...

				return	(
						<div	style={style.client}>
								<div	style={style.header}>
										<div	style={style.logo}>
												<img
														style={{	height:	"40px",	paddingRight:	"5px"	}}
														alt="learnphoenix	logo"
														src="https://s3.amazonaws.com/learnphoenix-static-assets/favicons/favicon-96x96.png"
												PhoenixChat.io
										</div>
										<div
												style={style.close}
												onClick={this.closeChat}>
												Close
										</div>
								</div>
								<div	style={style.chatContainer}>
										{	list	}
								</div>
								<div	style={style.inputContainer}>
										<input
												type="text"
												style={style.inputBox}	/>
										<div>
												100%	free	by	PhoenixChat
										</div>
								</div>
						</div>
)
		}

		...
}

The	last	thing	we	need	is	styling	for	this	new	component.	Within	 style.js ,	add	the	following	(explained
below	the	code):

/src/style.js
commit: coming soon

export	const	style	=	{
		...

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 167	of	407

https://www.learnphoenix.io

		...
		messageWrapper:	{
				display:	"flex",
				flexFlow:	"row	nowrap"
		},
		chatRight:	{
				color:	"#666666",
				margin:	"0.5rem	0",
				padding:	"1rem",
				borderRadius:	"5px",
				background:	"rgb(230,	230,	234)"
		},
		chatLeft:	{
				color:	"white",
				margin:	"0.5rem	0",
				padding:	"1rem",
				borderRadius:	"5px",
				background:	"rgb(58,	155,	207)"
		},
		client:	{
				width:	"350px",
				position:	"fixed",
				zIndex:	"1000",
				right:	"0",
				top:	"0",
				bottom:	"0",
				background:	"rgb(247,	247,	248)",
				borderLeft:	"1px	solid	#ccc"
		},
		header:	{
				height:	"50px",
				background:	"white",
				borderBottom:	"1px	solid	#ccc",
				width:	"100%",
				boxShadow:	"0	2px	2px	-1px	rgba(0,0,0,0.1)",
				display:	"flex",
				justifyContent:	"space-around",
				alignItems:	"center"
		},
		logo:	{
				display:	"flex",
				flexFlow:	"row	nowrap",
				alignItems:	"center"
		},
		close:	{
				cursor:	"pointer"
		},
		chatContainer:	{
				padding:	"1rem",
				overflowY:	"auto",
				height:	"calc(100vh	-	130px)"
		},
		inputContainer:	{

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 168	of	407

https://www.learnphoenix.io

		inputContainer:	{
				position:	"absolute",
				bottom:	"0",
				left:	"0",
				width:	"100%",
				display:	"flex",
				flexFlow:	"column	nowrap",
				alignItems:	"center",
				justifyContent:	"space-around",
				height:	"80px"
		},
		inputBox:	{
				width:	"90%",
				height:	"40px",
				borderRadius:	"5px",
				fontSize:	"14px",
				border:	"1px	solid	#ccc",
				paddingLeft:	"10px",
				outline:	"none"
		}
}

Most	of	these	styles	serve	to	fix	the	position	of	the	chat	element	on	the	right	of	the	screen	with	everything
either	fixed	or	absolutely	positioned.

Auto-scroll

At	this	point,	you	have	an	interface	that	performs	almost	as	you	would	expect.	You	can	add	messages
and	they	show	up	on	a	list.	Unfortunately,	this	list	does	not	know	that	the	bottom	is	what	we	want	to	keep
track	of.	In	order	to	fix	this,	we	need	to	auto-scroll	to	the	bottom.

Although	this	seems	like	something	you	should	be	able	to	do	with	CSS,	you	have	to	use	JavaScript	to	add
this	functionality.	We're	going	to	create	a	new	function	and	introduce	another	React	feature	called	 refs
(docs).	We	are	going	to	use	 refs 	to	create	a	unique	identifier	for	each	of	our	messages	so	we	can	auto-
scroll	to	the	end	of	the	list.

Think	of	 refs 	as	a	way	of	creating	a	reference	to	a	particular	React	element.	This	is	generally	what	you
would	use	in	place	of	something	like	 document.getElementById() 	to	find	elements.

The	ref	that	we	are	adding	to	each	message	takes	in	the	index	(i)	from	the	map	over	our
this.state.messages 	list	and	assigns	that	to	the	name	of	the	reference.	That	way,	when	we	need	to	later
reference	the	last	item,	we	can	find	its	relative	position	in	our	current	messages	list	(the	oldest	message
will	have	an	index	of	 0 ,	the	newest	will	have	index	of	 this.state.length	-	1).

We're	also	going	to	add	a	 ref 	to	our	chat	container	(the	div	that	contains	all	of	our	messages)	so	we	can
select	it	and	change	the	scroll	position.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 169	of	407

https://facebook.github.io/react/docs/more-about-refs.html
https://www.learnphoenix.io

Also,	make	sure	you	bind	the	 map 	function	to	the	current	 this 	context	or	you	will	get	an	error	because
map 	has	its	own	context.	An	alternate	approach	to	using	 bind 	is	to	use	the	 self	=	this 	approach.

Note:	You	will	often	see	 refs 	used	as	strings,	but	this	is	now	deprecated	in	favor	of	functions.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 170	of	407

https://www.learnphoenix.io

...
export	class	PhoenixChatSidebar	extends	React.Component	{

...

		render()	{
				const	list	=	!this.state.messages	?	null	:	this.state.messages.map(({	body,	id,	from	},	i)	=>	{
						const	right	=	from	===	"Client"

						return	(
								<div
										ref={	ref	=>	{	this[`chatMessage:${i}`]	=	ref	}}
										key={i}
										style={{...style.messageWrapper,	justifyContent:	right	?	"flex-end"	:	"flex-start"}}>
										<div
												style={right	?	style.chatRight	:	style.chatLeft}>
												{	body	}
										</div>
								</div>
)
				})
				return	(
						<div	style={style.client}>
								<div	style={style.header}>
										<div	style={style.logo}>
												<img
														style={{	height:	"40px",	paddingRight:	"5px"	}}
														alt="learnphoenix	logo"
														src="https://s3.amazonaws.com/learnphoenix-static-assets/favicons/favicon-96x96.png"
												PhoenixChat.io
										</div>
										<div
												style={style.close}
												onClick={this.closeChat}>
												Close
										</div>
								</div>
								<div
										ref={ref	=>	this.chatContainer	=	ref}
										style={style.chatContainer}>
										{	list	}
								</div>
						...
)
				...
		}
}

So	now	we	have	two	refs	set	up.	The	first	will	create	a	new	ref	for	each	message	and	the	second	will

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 171	of	407

https://www.learnphoenix.io

keep	a	reference	to	our	message	list.

From	here,	we	can	reference	those	nodes	and	set	the	scroll	position.	To	do	that,	we	need	to	hook	in	to	our
lifecycle	method	after	render	and	after	the	DOM	is	updated	because	we	need	the	actual	DOM	values,
which	we	can	do	with	 componentDidUpdate .

We	will	start	by	selecting	the	last	message	by	finding	the	 ref 	to	message	with	the	index	of
this.state.messages.length	-	1 ,	then	we	set	the	chat	container's	 scrollTop 	to	the	last	element	in	the
list's	 offsetTop ,	which	sets	the	scroll	position	of	our	list	container	to	the	bottom	of	our	last	message.
Theoretically,	this	will	push	our	scroll	position	past	the	bottom	of	the	container,	but	it	will	actually	just
stop	at	the	bottom	of	the	list	container.

...
export	class	PhoenixChatSidebar	extends	React.Component	{
		...
		componentDidUpdate()	{
				if	(this.props.messages.length	>	0)	{
						const	lastMessage	=	this[`chatMessage:${this.props.messages.length	-	1}`]
						this.chatContainer.scrollTop	=	lastMessage.offsetTop
				}
		}
		...
}

Please	note:	since	our	 input 	is	not	currently	connected,	this	will	not	do	anything.	But	when	we	connect
this	component	to	our	channel	in	a	couple	lessons	and	send	messages,	we	will	have	the	auto-scrolling
chat	component	that	we	expect.

And	since	you're	likely	tracking	all	of	this	with	git,	you	should	create	a	 .gitignore .

$	touch	.gitignore

Include	your	 dist 	directory	and	your	 node_modules ,	because	both	of	these	will	be	generated
dynamically.

dist
node_modules

peerDependencies

For	the	sake	of	good	housekeeping,	let's	add	React	as	a	peer	dependency,	so	when	the	package	is

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 172	of	407

https://www.learnphoenix.io

installed	it	will	note	that	it	requires	React	in	order	to	work.

		"dependencies":	{
				...
		},
		"peerDependencies":	{
				"react":	"^15.0.0"
		}

And	finally,	if	you'd	like	to	publish	this	package	to	npm,	it's	as	simple	as	following	these	instructions.

If	you	choose	to	go	this	route,	be	aware	of	a	few	things	that	might	trip	you	up.	Npm	will	automatically
generate	a	 .npmignore 	file	if	you	do	not	include	one,	and	by	default,	this	copies	your	 .gitignore .	So,	if
you	include	 dist 	in	your	 .gitignore ,	your	 dist 	will	be	ignored	by	npm	and	your	package	won't	work.
The	solution	to	this	is	to	create	an	 .npmignore 	file	with	just	the	things	that	npm	should	ignore:

$	touch	.npmignore

This	will	be	basically	the	same	as	our	 .gitignore 	except	we	want	to	make	sure	that	our	 dist 	is	not
ignored.

node_modules

And	that's	a	wrap.	We	won't	touch	this	again	until	we	connect	it	to	our	Phoenix	channel.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 173	of	407

https://docs.npmjs.com/getting-started/publishing-npm-packages
https://www.learnphoenix.io

Set	up	Phoenix	Channels

Setting	up	a	room	channel
Extracting	authorization

Now	that	we	have	a	user	interface	in	place	to	send	and	receive	messages,	we	should	start	putting
together	our	backend	to	actually	handle	these	messages.	This	is	where	Phoenix	really	shines.

If	you're	familiar	with	a	 socket ,	you'll	pick	up	 channels 	fairly	quickly.	If	you're	not	familiar	with	the
concept	of	websockets,	it's	best	to	think	of	the	internet	as	split	between	two	types	of	connections:	1)
request-response,	and	2)	sockets.

Request-response	is	how	we're	handling	our	JSON	web	token.	Each	time	you	send	a	request,	the
connection	(conn)	is	essentially	a	new	 struct 	that	goes	through	your	pipeline	and	then	disappears.	A
real-world	analogy	would	be	sending	and	receiving	letters	in	the	mail;	once	you	write	the	letter	and	drop	it
off	(request),	you	have	to	wait	until	you	get	a	response.

Using	sockets/channels	is	more	like	starting	an	ongoing	conversation	with	someone	standing	next	to
you.	The	line	of	communication	is	always	open	and	feedback	is	immediate.

What's	more,	a	 channel 	can	be	stateful,	meaning	when	we	connect	to	a	 channel 	we	don't	have	to	worry
about	storing	data	and	keeping	track	of	our	conversations.	When	you	start	a	connection,	the	socket	stays
alive	and	is	transformed	until	the	connection	is	broken.

If	this	sounds	complicated	or	magical,	it	should	make	more	sense	when	we	start	to	implement	it.

Setting	up	a	room	channel

Based	on	the	way	our	app	works,	we're	going	to	create	a	new	 room 	for	each	of	our	anonymous
customers	and	list	them	in	the	 Sidebar .	When	we	click	on	one	of	the	active	chats,	we	want	access	to	the
chat	history	between	the	company	representative	and	the	anonymous	customer.

We're	going	to	use	the	built-in	generator	to	create	our	 room 	channel.	Remember,	you	can	run	 mix	--help
to	see	all	the	built-in	functions	you	can	run	with	 mix .

$	mix	phoenix.gen.channel	Room

Then	(as	it	says	in	the	console	output),	we	want	to	add	that	 channel 	to	our	 user_socket.ex 	file.	As	it

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 174	of	407

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://www.learnphoenix.io

turns	out,	this	is	already	a	default	option,	so	you	can	just	un-comment	the	code	that	already	exists.

We're	also	going	to	use	the	 assign 	function	to	store	data	about	the	user	in	the	socket	so	we	can	more
easily	identify	the	user	(the	reason	for	this	will	become	more	clearer	when	we	connect	to	the	frontend).
You	can	think	of	 assign 	as	a	way	to	pass	values	to	other	parts	of	the	app	on	the	socket	struct/object.

/web/channels/user_socket.ex
commit: coming soon

defmodule	PhoenixChat.UserSocket	do
		use	Phoenix.Socket

		##	Channels
		channel	"room:*",	PhoenixChat.RoomChannel
		...

		def	connect(params,	socket)	do
				socket	=	socket
						|>	assign(:user_id,	params["id"])
						|>	assign(:username,	params["username"])
						|>	assign(:email,	params["email"])
						|>	assign(:uuid,	params["uuid"])
				{:ok,	socket}
		end

		...

Then	we	need	to	handle	incoming	messages,	so	within	 room_channel.ex ,	add	the	following	(with
explanation	below	the	code).

/web/channels/room_channel.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 175	of	407

http://www.phoenixframework.org/docs/channels#section-socket-assigns
https://www.learnphoenix.io

defmodule	PhoenixChat.RoomChannel	do
		use	PhoenixChat.Web,	:channel
		require	Logger

		def	join("room:"	<>	_uid,	payload,	socket)	do
				if	authorized?(payload)	do
						{:ok,	socket}
				else
						{:error,	%{reason:	"unauthorized"}}
				end
		end

		def	handle_in("message",	payload,	socket)	do
				Logger.debug	"#{inspect	payload}"
				broadcast	socket,	"message",	payload
				{:noreply,	socket}
		end

		...

First,	we're	adding	a	 join 	function	that	tells	Phoenix	what	to	do	when	a	frontend	attempts	to	join	the
socket.	In	this	case,	we	are	using	pattern	matching	to	determine	what	to	join.	So	if	an	incoming	 join
request	starts	with	the	pattern	 room: 	with	anything	following	(other	than	 room:lobby 	from	the
boilerplate	code),	the	 join 	that	we	defined	will	get	called.

If	we	get	a	pattern	that	matches,	we	check	to	see	if	the	user	is	authorized.	The	current	 authorized?
function	simply	returns	true,	but	this	is	where	we	can	add	authorization	later	on.	If	the	user	is	authorized,
it	returns	the	socket	allowing	us	to	connect	to	it.

Note:	in	Elixir,	question	marks	(?)	are	valid	characters	in	function	names.

The	next	function	we're	adding	is	 handle_in ,	which	is	one	of	the	built-in	functions	that	Phoenix	looks	for
when	the	socket	receives	an	incoming	request.	In	our	case,	we	want	to	listen	for	a	request	that	matches
the	pattern	 message 	(which	is	an	arbitrary	title;	you	could	name	it	whatever	you	want)	then	 broadcast
that	message	to	everything	on	the	frontend	that	is	currently	listening	to	this	socket.	Or,	directly	from	the
docs:

After	a	client	has	successfully	joined	a	channel,	incoming	events	from	the	client	are	routed
through	the	channel's	 handle_in/3 	callbacks.	Within	these	callbacks,	you	can	perform	any
action.	Typically	you'll	either	forward	a	message	to	all	listeners	with	 broadcast!/3 ,	or	push	a
message	directly	down	the	socket	with	 push/3 .	Incoming	callbacks	must	return	the	 socket
to	maintain	ephemeral	state.

We're	also	going	to	temporarily	include	a	 Logger.debug 	to	log	our	output.	Note	that	we're	using	 inspect ,
which	allows	us	to	log	data	that	is	more	complex	than	a	string	(tuples,	etc).	For	more	on	built-in
protocols,	check	the	docs.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 176	of	407

https://github.com/phoenixframework/phoenix/blob/master/lib/phoenix/channel.ex
http://elixir-lang.org/getting-started/protocols.html#built-in-protocols
https://www.learnphoenix.io

And	believe	it	or	not,	that's	all	we	need	for	a	functioning	channel.	Phoenix	makes	it	really	easy	to	set	up
channels .	If	this	has	you	confused,	it	will	make	more	sense	when	we	implement	the	frontend	code	to
connect	to	the	socket.

Extracting	authorization

We're	going	to	create	a	 ChannelHelpers 	module	and	separate	out	the	authorization	logic	because	we're
going	to	need	to	use	the	same	logic	in	multiple	channels.	We	will	likely	implement	additional	utility
functions	in	the	future,	so	in	order	to	keep	our	code	DRY	and	consistent	we're	going	to	keep	all	these
functions	in	one	place.

We're	also	going	to	introduce	some	inline	documentation	using	 @moduledoc 	and	 @doc .	Both	accept
markdown	and	are	used	to	automatically	generate	documentation.	If	you've	ever	wondered	how	 Elixir,
Phoenix,	Ecto,	and	every	other	hex	package	has	such	awesome	documentation,	it's	because	people	use
the	inline	documentation	to	describe	their	functions.

The	two	terms	are	pretty	self-explanatory:	 @moduledoc 	is	for	describing	the	module,	while	 @doc 	is	for
describing	a	function.	You	should	definitely	look	over	some	existing	packages	to	see	how	functions	are
documented.

$	touch	web/channels/channel_helpers.ex

/web/channels/channel_helpers.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 177	of	407

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://daringfireball.net/projects/markdown/
http://elixir-lang.org/docs/stable/elixir/Kernel.html
https://hexdocs.pm/phoenix/Phoenix.html
https://hexdocs.pm/ecto/Ecto.html
https://hexdocs.pm/voodoo_mfg/api-reference.html
https://hexdocs.pm/stripity_stripe/extra-api-reference.html
https://www.learnphoenix.io

defmodule	PhoenixChat.ChannelHelpers	do
		@moduledoc	"""
		Convenience	functions	imported	in	all	Channels
		"""

		@doc	"""
		 ​​Convenience	function	for	authorization
		"""
		def	authorize(payload,	fun,	custom_authorize	\\	nil)	do
				check_authorization	=	custom_authorize	||	&authorized?/1
				if	check_authorization.(payload)	do
						fun.()
				else
						{:error,	%{reason:	"unauthorized"}}
				end
		end

		@doc	"""
		 ​​Function	that	determines	authorization	logic.	If	`true`,	all	users	will	be	authorized.
		"""
		def	authorized?(_payload)	do
				true
		end
end

The	 authorize/2 	function	takes	in	the	payload	and	an	anonymous	function.	If	the	user	passes	the
authorized?/1 	function,	run	the	function.	If	it's	not	clear	what	this	function	does,	it	will	become	clear
when	we	implement	it	in	our	 RoomChannel .	If	it	fails	the	 authorized? 	tests,	then	we	return	an	 :error
with	 unauthorized .

We've	also	set	up	 authorize/3 ,	which	takes	in	three	arguments.	If	we	so	choose,	we	can	pass	in	a
custom_authorize 	override	that	will	override	the	authorization	we	set	up	in	 authorized? .	This	is	useful	if
you	have	a	request	that	has	an	unusual	authorization	method.

Recall	that	anonymous	functions	are	called	with	an	additional	 . ,	such	as	 function.() 	rather	than
simply	 function() .	We	are	noting	this	again	because	it	regularly	causes	confusion	for	people	new	to
Elixir.	For	a	more	detailed	explanation	as	to	why	Elixir	has	different	syntax	for	named	functions	and
anonymous	functions,	check	out	this	StackOverflow	answer	by	Elixir	creator	Jose	Valim.

Then,	since	we're	going	to	want	to	access	these	helpers	in	all	of	our	channels,	we're	going	to	import	them
into	every	channel.	Within	 web/web.ex ,	you	can	add	modules	to	every	function	of	a	particular	type	(such
as	 channel ,	 model ,	 controller ,	etc).	This	should	be	done	sparingly	because	every	function	you	add
here	is	imported	into	each	struct	and	can	significantly	slow	down	your	app	if	you're	not	careful.

/web/web.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 178	of	407

http://stackoverflow.com/questions/18011784/why-are-there-two-kinds-of-functions-in-elixir
https://www.learnphoenix.io

		...

		def	channel	do
				quote	do
						use	Phoenix.Channel

						alias	PhoenixChat.Repo
						import	Ecto
						import	Ecto.Query,	only:	[from:	1,	from:	2]
						import	PhoenixChat.Gettext
						import	PhoenixChat.ChannelHelpers
				end
		end

		...

Then	we	should	update	our	 RoomChannel 	to	use	these	helper	functions,	so	we'll	remove	the
authorized?/1 	function	and	replace	the	authorization	conditional	within	our	 join/3 	function.

/web/channels/room_channel.ex
commit: coming soon

defmodule	PhoenixChat.RoomChannel	do
		use	PhoenixChat.Web,	:channel
		require	Logger

		def	join("room:"	<>	_uid,	payload,	socket)	do
				authorize(payload,	fn	->
						{:ok,	socket}
				end)
		end

		def	handle_in("message",	payload,	socket)	do
				Logger.debug	"#{inspect	payload}"
				broadcast	socket,	"message",	payload
				{:noreply,	socket}
		end
end

We've	changed	the	join	function	to	take	in	both	a	 payload 	and	an	anonymous	function	that	returns	the
same	thing	our	previous	 authorized?/1 	function	returned,	which	is	 {:ok,	socket} .

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 179	of	407

https://www.learnphoenix.io

Connect	React	to	Channels

Channels	with	local	state
Anonymous	user	channels

As	it	turns	out,	it's	also	not	especially	difficult	to	connect	React	to	a	Phoenix	channel.	We're	going	to
connect	to	the	 channel ,	then	pass	our	data	in	through	Redux	and	render	our	messages	to	the	page.

We're	going	to	start	with	our	 phoenix-chat 	npm	component	and	handle	state	locally.	Then	we'll	switch
to	our	 phoenix-chat-frontend 	and	handle	our	state	with	Redux	to	show	how	the	approaches	differ.

Adding	Phoenix.js

Phoenix	has	recently	been	added	to	npm,	which	makes	things	a	lot	easier.	Previously,	this	required
copying	a	file	and	keeping	it	in	a	 /vendor 	directory.	We	don't	have	to	worry	about	that	anymore.

$	npm	install	--save	phoenix

Configuring	your	channel

We	want	access	to	our	socket	from	the	entire	 PhoenixChat 	component	so	we	can	push	messages	when
a	user	has	the	 PhoenixChatSidebar 	closed,	so	we'll	connect	to	the	socket	on	 componentDidMount .	We'll
also	want	to	create	a	 configureChannels 	function	to	pass	in	all	the	configuration	options	we	need.	Keep
in	mind	that	sockets	are	lightweight	and	connecting	and	disconnecting	is	not	an	expensive	operation.

You'll	notice	we're	hard-coding	 localhost:4000 	into	our	component.	When	we	actually	deploy	this,	we're
going	to	change	this	out	for	our	actual	server.

First	we	need	to	get	rid	of	our	hard-coded	messages	from	our	 PhoenixChatSidebar .

/src/PhoenixChat.jsx
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 180	of	407

https://www.learnphoenix.io

import	{	Socket	}	from	"phoenix"

...

export	class	PhoenixChatSidebar	extends	React.Component	{
		constructor(props)	{
				super(props)
				this.closeChat	=	this.closeChat.bind(this)
		}

		...
}

Then	we	need	to	configure	our	channel,	which	we'll	do	in	a	 configureChannels 	function	(explanation
below	the	code).

...

export	class	PhoenixChat	extends	React.Component	{
		constructor(props)	{
				super(props)
				this.state	=	{
						isOpen:	false,
						input:	"",
						messages:	[]
				}
				this.toggleChat	=	this.toggleChat.bind(this)
				this.configureChannels	=	this.configureChannels.bind(this)
		}

		componentDidMount()	{
				this.socket	=	new	Socket("ws://localhost:4000/socket")
				this.socket.connect()
				this.configureChannels("foo")
		}

		configureChannels(room)	{
				this.channel	=	this.socket.channel(`room:${room}`)
				this.channel.join()
						.receive("ok",	({	messages	})	=>	{
								console.log(`Succesfully	joined	the	${room}	chat	room.`)
								this.setState({
										messages:	messages	||	[]
								})
						})
						.receive("error",	()	=>	{
								console.log(`Unable	to	join	the	${room}	chat	room.`)
						})
				this.channel.on("message",	payload	=>	{

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 181	of	407

https://www.learnphoenix.io

				this.channel.on("message",	payload	=>	{
						this.setState({
								messages:	this.state.messages.concat([payload])
						})
				})
		}

		toggleChat()	{
				this.setState({	isOpen:	!this.state.isOpen	})
		}

		render()	{
				return	(
						<div>
								{	this.state.isOpen
										?	<PhoenixChatSidebar
														input={this.state.input}
														messages={this.state.messages}
														toggleChat={this.toggleChat}	/>
										:	<PhoenixChatButton	toggleChat={this.toggleChat}	/>	}
						</div>
)
		}
}

When	the	component	mounts,	we're	going	to	initialize	the	socket	and	assign	it	to	 this.socket ,	then	call
configureChannels 	and	pass	in	a	string	 foo 	to	connect	us	to	 room:foo .	Obviously,	this	is	jsut	a
temporary	value;	soon,	we	will	pass	a	unique	ID.

Within	 configureChannels ,	we	take	the	 room 	that	we	got	from	 componentDidMount 	and	we	initiated	the
channel	with	 socket.channel .	Then	we	joined	the	channel	with	 channel.join .	If	we	receive	an	 ok
response,	we	log	success	and	update	our	state	to	include	any	previous	messages,	otherwise	log	the
failure.

The	second	part	is	a	listener	for	whenever	our	channel	receives	a	 message ,	which	is	an	arbitrary	name
that	we	are	using	to	label	this	kind	of	action.	When	a	 message 	is	received	(as	you	will	see	later	in	a
handleMessageSubmit 	function),	we	want	to	add	the	object	to	 this.state.messages .	The	last	thing	we
need	to	do	is	to	add	the	current	 channel 	to	 this.channel 	so	we	can	manipulate	it	later.

We	also	changed	our	render	function	to	handle	an	empty	 messages 	array;	if	you	try	to	 map 	over	an	empty
array,	you	get	an	error.

Now	when	you	check	your	browser	console,	you	should	see	the	following.

Succesfully	joined	the	foo	chat	room.

Our	channel	is	now	configured.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 182	of	407

https://www.learnphoenix.io

Anonymous	users

Now	that	we	have	the	ability	to	connect	to	the	channel,	we're	going	to	need	to	set	this	up	to	handle
anonymous	users.	We're	going	to	use	the	 uuid 	package	to	create	a	universally	unique	identifier	for	each
of	our	anonymous	users.

$	npm	install	--save	uuid

Then	we	just	need	to	change	our	 componentDidMount 	function	to	assign	a	universally	unique	id	(uuid)	or
find	one	that	already	exists.	We're	going	to	store	this	 uuid 	in	 localStorage .	If	one	already	exists,	then
we're	going	to	connect	to	the	room	with	that	id.	Otherwise,	we're	going	to	generate	a	new	id,	set	that	to
localStorage 	and	connect	to	a	new	room.

/src/PhoenixChat.jsx
commit: coming soon

import	uuid	from	'uuid'

		...
export	class	PhoenixChat	extends	React.Component	{

		...

		componentDidMount()	{
				if	(!localStorage.phoenix_chat_uuid)	{
						localStorage.phoenix_chat_uuid	=	uuid.v4()
				}

				this.uuid	=	localStorage.phoenix_chat_uuid
				const	params	=	{	uuid:	this.uuid	}
				this.socket	=	new	Socket("ws://localhost:4000/socket",	{	params	})
				this.socket.connect()

				this.configureChannels(this.uuid)
		}

		...
}

And	that's	all	we	need	to	do	to	handle	anonymous	users.	Refresh	and	check	your	browser	console	and
you'll	see	that	you're	now	connected	to	a	different	 room .

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 183	of	407

https://www.npmjs.com/package/uuid
https://www.learnphoenix.io

Submitting	messages

Now	we	need	to	change	our	 messages.map 	to	handle	our	current	anonymous	user	and	handle	messages
sent	to	our	 input .

You	might	notice	we've	added	a	 from 	field,	which	we	do	not	currently	have	in	our	messages.	We're	going
to	add	this	and	other	fields	in	the	lesson	on	message	persistence.	For	now,	let's	just	use	them	as
placeholders.	So	keep	in	mind,	this	app	will	not	work	until	we	update	our	model.

We're	also	changing	the	values	from	 this.state 	to	 this.props ,	since	we're	going	to	pass	in	all	the	data
from	the	parent	(PhoenixChat)	component,	which	is	connected	to	the	socket.

/src/PhoenixChat.jsx
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 184	of	407

https://www.learnphoenix.io

...

export	class	PhoenixChatSidebar	extends	React.Component	{

		...

		render()	{
				const	list	=	!this.props.messages	?	null	:	this.props.messages.map(({	body,	id,	from	},	i
						const	right	=	from	===	localStorage.phoenix_chat_uuid

						return	(
								<div
										ref={ref	=>	this[`chatMessage:${i}`]	=	ref}
										key={i}
										style={{	...style.messageWrapper,	justifyContent:	right	?	"flex-end"	:	"flex-start"	}}>
										<div
												style={right	?	style.chatRight	:	style.chatLeft}>
												{	body	}
										</div>
								</div>
)
				})

				return	(
						<div	style={style.client}>
								...
								<div	style={style.inputContainer}>
										<input
												onKeyDown={this.props.handleMessageSubmit}
												onChange={this.props.handleChange}
												value={this.props.input}
												type="text"
												style={style.inputBox}	/>
										...
								</div>
						</div>
)
		}
}

In	order	to	handle	our	inputs,	we're	going	to	need	two	additional	functions:	 handleMessageSubmit 	and
handleChange .

handleMessageSubmit 	will	listen	for	 onKeyDown 	events	(if	you	don't	know	all	the	React	events	you	have	at
your	disposal,	you	should	peruse	the	docs)	and	when	the	key	is	the	"return"	key	(which	has	 keyCode
number	13),	it	will	send	our	input	to	our	channel	and	clear	the	input.	We're	also	checking	to	make	sure	the
input	value	isn't	empty.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 185	of	407

https://facebook.github.io/react/docs/events.html
https://www.learnphoenix.io

handleChange 	listens	to	changes	in	our	input	and	changes	the	value	of	that	input	accordingly.	This	is
useful	if	we	decide	to	implement	any	sort	of	validation	or	text	formatting	(such	as	markdown)	later	on.

/src/PhoenixChat.jsx
commit: coming soon

		...

export	class	PhoenixChat	extends	React.Component	{
		constructor(props)	{
				super(props)
				this.handleMessageSubmit	=	this.handleMessageSubmit.bind(this)
				this.handleChange	=	this.handleChange.bind(this)
				...
		}
		...

		handleMessageSubmit(e)	{
				if	(e.keyCode	===	13	&&	this.state.input	!==	"")	{
						this.channel.push('message',	{
								room:	localStorage.phoenix_chat_uuid,
								body:	this.state.input,
								timestamp:	new	Date().getTime()
						})
						this.setState({	input:	""	})
				}
		}

		handleChange(e)	{
				this.setState({	input:	e.target.value	})
		}

		...

		render()	{
				return	(
						<div>
								{	this.state.isOpen
										?	<PhoenixChatSidebar
														handleChange={this.handleChange}
														handleMessageSubmit={this.handleMessageSubmit}
														input={this.state.input}
														messages={this.state.messages}
														toggleChat={this.toggleChat}	/>
										:	<PhoenixChatButton	toggleChat={this.toggleChat}	/>	}
						</div>
)
		}
}

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 186	of	407

https://www.learnphoenix.io

Let's	also	add	a	 componentWillUnmount 	function	to	our	 PhoenixChat 	component	to	disconnect	from	our
socket	when	we	close	the	window.

/src/PhoenixChat.jsx
commit: coming soon

		...
		componentWillUnmount()	{
				this.channel.leave()
		}
		...

And	now	you	have	(half)	a	functional	anonymous	chat	client	set	up.	You	can	send	messages	and	see
them	log	in	your	Phoenix	backend.

The	next	thing	we	need	to	do	is	give	our	admin	the	ability	to	join	this	channel	so	she	can	respond.	This	will
be	done	in	 phoenix-chat-frontend .	In	order	to	do	this,	we	will	have	to	create	a	new	channel	just	for	our
administrator.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 187	of	407

https://www.learnphoenix.io

Use	Presence	to	List	Active	Users

Creating	an	AdminChannel
Using	Presence

Now	that	we	have	the	ability	to	send	messages	to	our	backend,	we	need	to	give	our	administrator	the
ability	to	respond	to	these	messages.	We're	going	to	accomplish	this	by	listing	all	of	our	active	chats	in
the	sidebar	on	the	left	within	our	 phoenix-chat-frontend 	app.

This	sidebar	will	connect	to	a	new	channel	called	 admin ,	which	will	have	the	topic	 active_users ,	which
we	will	use	to	keep	track	of	the	presence	of	all	active	sockets.

Basics	of	Phoenix	Presence

Presence	is	an	awesome	feature	in	Phoenix.	It	gives	you	the	ability	to	easily	discover	which	users	are
currently	connected	to	a	particular	socket.	For	example,	if	you	wanted	to	list	all	users	that	are	currently
active	in	a	chatroom,	you	could	use	 Presence 	to	easily	list	them	all	rather	than	manipulating	a	list	of
users	when	people	join	or	leave	the	chatroom.	In	other	frameworks,	this	is	a	difficult	problem	to	solve,	but
in	Phoenix,	we	get	it	for	free.

Make	sure	you	are	running	at	least	Phoenix	1.2.0	 {:phoenix,	"~>	1.2.0"} 	within	your	 mix.exs 	file.	If
you	are	not,	you	will	get	a	compilation	error.

Then	create	a	 Presence 	module	in	 lib/phoenix_chat/presence.ex .

$	touch	lib/phoenix_chat/presence.ex

/lib/phoenix_chat/presence.ex
commit: coming soon

defmodule	PhoenixChat.Presence	do
		use	Phoenix.Presence,	otp_app:	:phoenix_chat,
																								pubsub_server:	PhoenixChat.PubSub
end

And	finally	add	 Presence 	to	your	supervision	tree	within	 lib/phoenix_chat.ex :

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 188	of	407

https://dockyard.com/blog/2016/03/25/what-makes-phoenix-presence-special-sneak-peek
https://www.learnphoenix.io

/lib/phoenix_chat.ex
commit: coming soon

		...

		def	start(_type,	_args)	do
				import	Supervisor.Spec

				children	=	[
						#	Start	the	endpoint	when	the	application	starts
						supervisor(PhoenixChat.Endpoint,	[]),
						#	Start	the	Ecto	repository
						supervisor(PhoenixChat.Repo,	[]),
						supervisor(PhoenixChat.Presence,	[])
]

				...
		end

Presence	is	now	set	up	and	ready	for	action.

Creating	the	AdminChannel

The	first	thing	we	need	is	the	 AdminChannel ,	which	we	will	use	to	give	the	administrator	access	to	the	list
of	active	users.	An	explanation	of	each	function	is	below	the	code	block.

$	touch	web/channels/admin_channel.ex

/web/channels/admin_channel.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 189	of	407

https://www.learnphoenix.io

defmodule	PhoenixChat.AdminChannel	do
		@moduledoc	"""
		 ​​The	channel	used	to	give	the	administrator	access	to	all	users.
		"""

		use	PhoenixChat.Web,	:channel
		require	Logger

		alias	PhoenixChat.{Presence}

		@doc	"""
		The	`admin:active_users`	topic	is	how	we	identify	all	users	currently	using	the	app.
		"""
		def	join("admin:active_users",	payload,	socket)	do
				authorize(payload,	fn	->
						send(self,	:after_join)
						{:ok,	socket}
				end)
		end

		@doc	"""
		 ​​This	handles	the	`:after_join`	event	and	tracks	the	presence	of	the	socket	that	has	subscribed	to	the	`admin:active_users`	topic.
		"""
		def	handle_info(:after_join,	socket)	do
				push	socket,	"presence_state",	Presence.list(socket)
				Logger.debug	"Presence	for	socket:	#{inspect	socket}"
				id	=	socket.assigns.user_id	||	socket.assigns.uuid
				{:ok,	_}	=	Presence.track(socket,	id,	%{
						online_at:	inspect(System.system_time(:seconds))
				})
				{:noreply,	socket}
		end
end

Our	 join/3 	function	should	look	familiar,	as	it's	mostly	the	same	as	our	 join/3 	function	in	our	 room
channel.	The	difference	here	is	that	we've	included	a	new	function:	 send(self,	:after_join) .

This	 send/2 	function	(docs)	sends	a	message	to	a	process,	in	our	case	back	to	the	 AdminChannel
(self).	We	want	this	to	happen	when	a	user	joins	for	the	first	time.	It	calls	the	 send/2 	function	with	an
arbitrary	atom	used	for	pattern	matching.	Since	we	want	to	run	an	action	after	user	joins	for	the	first	time,
we'll	call	our	message	 :after_join .

Then	we	use	the	 handle_info/2 	function	(docs)	to	pattern	match	against	messages	sent	by	 send/2 .	If
the	message	matches	the	pattern	 :after_join ,	we	run	the	 handle_info 	function	above.	This	function	is
a	little	bit	complicated,	so	we'll	go	over	it	line-by-line.

The	first	line	is	 push	socket,	"presence_state",	Presence.list(socket) ,	which	triggers	a
presence_state 	event	in	the	client.	 presence_state 	is	an	arbitrary	name	that	we	are	giving	this	event

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 190	of	407

http://elixir-lang.org/docs/master/elixir/Kernel.html#send/2
https://hexdocs.pm/phoenix/Phoenix.Channel.html#c:handle_info/2
https://www.learnphoenix.io

and	we	will	use	it	later	when	we	connect	this	to	our	 phoenix-chat-frontend 	app.

The	next	line	simply	logs	the	socket	for	debugging	purposes.

The	third	line	sets	 id 	to	either	the	 user_id ,	if	the	user	is	an	admin	(and	therefore	has	a	 user_id 	in	the
database),	or	sets	it	to	the	 uuid 	of	the	anonymous	user	(which	we	are	not	storing	in	the	database).

Then	we	use	pattern	matching	to	make	sure	that	 Presence.track 	is	working	properly.	If	the	response	is
:ok ,	we	tell	 Presence 	to	 track 	(docs)	the	socket,	using	the	 id 	as	the	identifier	and	a	map	that
contains	the	 online_at 	metadata	letting	 Presence 	know	when	the	user	joined	the	socket.

Otherwise,	we	send	 :noreply 	and	return	the	socket	unchanged.

Let's	also	add	this	channel	to	our	 UserSocket .

/web/channels/user_socket.ex
commit: coming soon

		...

		##	Channels
		channel	"room:*",	PhoenixChat.RoomChannel
		channel	"admin:*",	PhoenixChat.AdminChannel

		...

And	that's	all	we	need	to	do	to	set	up	 Presence .	The	next	step	is	to	handle	incoming	messages	and
persist	them	to	the	database.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 191	of	407

https://hexdocs.pm/phoenix/Phoenix.Presence.html#c:track/3
https://www.learnphoenix.io

Persist	Messages	to	the	Database

Creating	a	Message	model
Querying	database
Persist	messages	to	database
Unix	timestamp	to	DateTime

To	keep	our	app	simple	with	the	functionality	most	people	expect,	we're	going	to	persist	all	messages	to
our	Postgres	database.	In	order	to	do	this,	we	need	to	create	a	 Message 	model	so	our	database	knows
what	kind	of	data	it's	receiving.

Later	on,	we	may	decide	that	we	don't	need	to	store	these	messages	in	a	database	or	we	may	need	to
cache	our	messages	in	memory	for	better	performance.	If	we	later	decide	to	go	that	route,	we	can	use
ETS.	No	need	for	premature	optimization.

Creating	the	Message	model

We're	going	to	use	the	built-in	 mix 	generator	to	create	the	boilerplate	for	a	new	migration.

$	mix	phoenix.gen.model	Message	messages	body	from	room	\
		timestamp:datetime	user_id:references:users

This	will	create	three	new	files,	the	names	of	which	should	have	logged	in	your	terminal.

The	first	thing	we	should	check	out	is	our	migration	file	to	update	our	database	with	the	new	data	type.
This	file	should	already	have	all	the	relevant	fields	we	are	interested	in	and	we	don't	have	to	change
anything.

The	last	thing	we're	going	to	do	before	we	persist	our	messages	to	the	database	is	add	a	function	that
gives	us	the	ability	to	limit	the	number	of	messages	we	receive	from	the	database	(with	a	default	of	10).

Ecto 	allows	us	to	define	our	queries	as	functions	using	 from/2 ,	which	is	a	really	nice	feature,	so	we're
going	to	create	a	new	function	called	 latest_room_messages 	that	finds	all	messages	from	a	particular
room,	then	orders	them	by	the	most	recent,	and	limits	the	number	of	messages.

/web/models/message.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 192	of	407

http://elixir-lang.org/getting-started/mix-otp/ets.html
https://hexdocs.pm/ecto/Ecto.Query.html#from/2
https://www.learnphoenix.io

defmodule	PhoenixChat.Message	do
		use	PhoenixChat.Web,	:model

		schema	"messages"	do
				field	:body,	:string
				field	:timestamp,	Ecto.DateTime
				field	:room,	:string
				field	:from,	:string
				belongs_to	:user,	PhoenixChat.User

				timestamps
		end

		@required_fields	~w(body	timestamp	room)
		@optional_fields	~w(user_id	from)

		@doc	"""
		Creates	a	changeset	based	on	the	`model`	and	`params`.
		If	no	params	are	provided,	an	invalid	changeset	is	returned
		with	no	validation	performed.
		"""
		def	changeset(model,	params	\\	:empty)	do
				model
				|>	cast(params,	@required_fields,	@optional_fields)
		end

		@doc	"""
		An	`Ecto.Query`	that	returns	the	last	10	message	records	for	a	given	room.
		"""
		def	latest_room_messages(room,	number	\\	10)	do
				from	m	in	__MODULE__,
									where:	m.room	==		^room,
									order_by:	[desc:	:timestamp],
									limit:	^number
		end
end

At	this	point,	you	should	run	your	migration.

$	mix	ecto.migrate

Updating	our	RoomChannel

Now	we	need	to	update	our	 RoomChannel 	to	start	using	our	new	model.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 193	of	407

https://www.learnphoenix.io

The	first	thing	to	change	is	our	 join/3 	function.	Rather	than	simply	checking	the	authorization	status
and	returning	the	socket,	we're	going	to	reply	with	a	payload	of	message	records.	This	way,	when	a	client
joins	the	channel,	she	automatically	receives	the	message	history.

We	start	this	function	with	the	 room_id 	and	pass	it	into	the	 Message.latest_room_messages/2 	function
we	created	earlier.	This	creates	an	Ecto	query	based	on	the	 room_id ,	which	we	can	them	pass	to
Repo.all ,	which	finds	all	of	our	data	that	matches	the	query.

Then	we	use	 Enum.map 	to	format	our	messages	in	the	way	our	client	expects	to	receive	them	(explained
in	greater	detail	below	the	code	block).	Then	we	reverse	the	order	to	show	the	newest	results	first.

Finally,	we	return	the	messages	that	we	just	created	along	with	our	socket.	 join/3 	expects	one	of	three
things	as	its	return	value:	 {:ok,	Phoenix.Socket.t} ,	 {:ok,	map,	Phoenix.Socket.t} ,	or	 {:error,
map} 	We	were	previously	sending	the	first	value,	but	now	that	we	have	a	map	to	send	along,	we're
sending	the	second	value.

We	also	created	a	private	function	called	 message_payload ,	which	takes	the	message	and	formats	it
before	returning	it.

/web/channels/room_channel.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 194	of	407

https://hexdocs.pm/phoenix/Phoenix.Channel.html#c:join/3
https://www.learnphoenix.io

defmodule	PhoenixChat.RoomChannel	do
		use	PhoenixChat.Web,	:channel
		require	Logger

		alias	PhoenixChat.{Message,	Repo}

		def	join("room:"	<>	room_id,	payload,	socket)	do
				authorize(payload,	fn	->
						messages	=	room_id
								|>	Message.latest_room_messages
								|>	Repo.all
								|>	Enum.map(&message_payload/1)
								|>	Enum.reverse
						{:ok,	%{messages:	messages},	socket}
				end)
		end

		defp	message_payload(message)	do
				from	=	message.user_id	||	message.from
				%{body:	message.body,
						timestamp:	message.timestamp,
						room:	message.room,
						from:	from,
						id:	message.id}
		end

		...
end

Note	the	syntax	used	to	call	 message_payload .	Using	an	ampersand	(&)	along	with	the	arity	(number	of
arguments)	is	a	shorthand	way	of	writing	anonymous	functions.	The	two	functions	below	are	equivalent.

|>	Enum.map(&message_payload/1)

|>	Enum.map(fn	x	->	message_payload(x)	end)

You	will	see	this	syntax	a	lot	in	Elixir.	For	more,	see	the	docs.

The	last	thing	we	should	do	before	actually	writing	these	to	our	database	is	check	if	the	 id 	passed	to
UserSocket 	is	an	administrator	id	or	an	anonymous	user	id.

We	first	pull	the	 id 	out	of	the	params	passed	to	 connect/2 .	Then,	if	that	value	exists	and	we	can	find
that	user	in	the	database,	then	we	assign	that	to	the	value	 user .

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 195	of	407

http://elixir-lang.org/crash-course.html#partials-and-function-captures-in-elixir
https://www.learnphoenix.io

Then	we	assign	values	to	 socket 	depending	on	whether	or	not	 user 	passed	the	two	criteria	above
(exists	and	is	in	the	database).	If	the	user	does	exist,	we	assign	the	 user_id ,	 username ,	and	 email 	to
the	 socket .	If	 user 	does	not	have	a	value,	we	assign	the	 user_id 	to	 nil 	and	give	it	the	 uuid 	for	the
anonymous	user.

/web/channels/user_socket.ex
commit: coming soon

		alias	PhoenixChat.{Repo,	User}

		...

		def	connect(params,	socket)	do
				user_id	=	params["id"]
				user	=	user_id	&&	Repo.get(User,	user_id)

				socket	=	if	user	do
						socket
								|>	assign(:user_id,	user_id)
								|>	assign(:username,	user.username)
								|>	assign(:email,	user.email)
						else
								socket
										|>	assign(:user_id,	nil)
										|>	assign(:uuid,	params["uuid"])
						end

				{:ok,	socket}
		end

Now	we	can	persist	our	messages	to	the	database.	The	most	logical	place	to	do	this	is	within	our
handle_in 	function	in	the	 RoomChannel ,	since	this	is	where	we	handle	incoming	messages.	Rather	than
simply	 broadcast 	the	message	as	we	did	previously,	we're	going	to	add	the	message	to	the	database,
then	broadcast	it.

Updating	handle_in

Once	we	receive	an	incoming	connection,	we	add	two	parameters	to	our	 payload 	from	 socket.assigns
using	 Map.put ,	which	adds	the	named	key-value	pair	to	a	map:	 user_id 	and	 from .

Then	we	create	a	 changeset 	with	the	 %Message{} 	model	and	the	payload	we	just	updated	in	preparation
for	our	database	update.

Then	we	use	a	 case 	statement	to	check	if	 Repo.insert 	accepts	our	 changeset .	If	it	does,	it	will	return
{:ok,	message} 	and	we	should	format	our	message	with	 message_payload 	and	broadcast	as	we	we	did

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 196	of	407

https://www.learnphoenix.io

before.	In	the	event	of	an	error,	it	returns	an	error.

The	message	payload	sent	to	all	client	subscribers	to	the	 "message" 	event	and	includes	a	 from 	field.
This	 from 	is	used	to	identify	who	sent	the	message	and	is	either	a	 user_id 	or	a	 uuid .	If	a	 uuid ,	then
user	is	anonymous;	if	a	 user_id ,	the	user	is	an	admin.

/web/channels/room_channel.ex
commit: coming soon

def	handle_in("message",	payload,	socket)	do
		payload	=	payload
				|>	Map.put("user_id",	socket.assigns.user_id)
				|>	Map.put("from",	socket.assigns[:uuid])
		changeset	=	Message.changeset(%Message{},	payload)

		case	Repo.insert(changeset)	do
				{:ok,	message}	->
						payload	=	message_payload(message)
						broadcast!	socket,	"message",	payload
						{:reply,	:ok,	socket}
				{:error,	changeset}	->
						{:reply,	{:error,	%{errors:	changeset}},	socket}
		end
end

Unix	timestamp	to	DateTime

Since	we're	receiving	all	of	our	timestamps	from	JavaScript,	the	time	is	going	to	be	in	milliseconds	since
January	1,	1970,	which	is	a	different	format	than	Ecto.DateTime	expects.	Because	of	this	disparity,	we're
going	to	create	a	small	module	to	handle	this	for	us.

$	touch	lib/phoenix_chat/date_time.ex

/lib/phoenix_chat/date_time.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 197	of	407

https://www.learnphoenix.io

defmodule	PhoenixChat.DateTime	do
		@behaviour	Ecto.Type

		def	type(),	do:	:datetime

		def	cast(milliseconds)	when	is_integer(milliseconds)	do
				with	{:ok,	datetime}	<-	DateTime.from_unix(milliseconds,	:milliseconds),
									{:ok,	ecto_datetime}	<-	Ecto.DateTime.cast(datetime),
									do:	{:ok,	ecto_datetime}
		end

		def	cast(value)	do
				Ecto.DateTime.cast(value)
		end

		def	load(value)	do
				Ecto.DateTime.load(value)
		end

		def	dump(value)	do
				Ecto.DateTime.dump(value)
		end
end

Then	we	need	to	change	our	 Message 	model	to	use	our	 PhoenixChat.DateTime 	module	in	 message.ex .

/web/models/message.ex
commit: coming soon

...
		schema	"messages"	do
				field	:body,	:string
				field	:timestamp,	PhoenixChat.DateTime
				field	:room,	:string
				field	:from,	:string
				belongs_to	:user,	PhoenixChat.User

				timestamps
		end
...

And	now	we	have	message	persistence	to	our	Postgres	database.	You'll	also	notice	that	when	write
messages	in	your	 phoenix-chat 	component,	the	messages	will	appear	on	the	correct	side.	That's
because	we're	now	passing	in	the	 from 	field,	which	our	component	is	using	to	determine	on	which	side
the	messages	displays.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 198	of	407

https://www.learnphoenix.io

Create	Anonymous	User	Model

Create	anonymous	users	with	fake	data
Create	and	update	models

At	this	point	in	our	app,	we	have	a	functioning	chat	component	and	a	backend	that	can	handle
messages.	The	next	step	is	to	add	our	anonymous	users	to	a	list	and	add	them	to	our	admin	dashboard
so	our	admin	can	start	interacting	with	them.

But	before	we	do	that,	we	should	give	our	anonymous	users	some	fake	information.	Since	it's	hard	to
remember	users	based	on	uuids,	we're	going	to	give	our	users	fake	names	and	avatars	for	easier
reference	(if	it's	not	clear	to	you	why	were	are	doing	this,	you'll	see	in	a	few	lessons).

Add	Faker

We're	going	to	generate	fake	user	data	using	the	ubiquitous	Faker	package,	which	has	an	Elixir	version.
It's	worth	glancing	over	the	docs	to	see	how	much	fake	data	we	have	access	to.	Let's	add	that	now.

/mix.exs
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 199	of	407

https://github.com/igas/faker
https://www.learnphoenix.io

...
		def	application	do
				[mod:	{PhoenixChat,	[]},
						applications:	[
								:comeonin,
								:cowboy,
								:faker,
								:gettext,
								...
]]
		end
...
		defp	deps	do
				[
						{:comeonin,	"~>	2.3"},
						{:corsica,	"~>	0.4"},
						{:cowboy,	"~>	1.0"},
						{:faker,	"~>	0.7"},
						{:gettext,	"~>	0.11"},
						...
]
		end
...

Then	be	sure	to	run	 mix	deps.get 	and	restart	your	server.

$	mix	deps.get

The	next	step	is	to	generate	two	migrations:	one	to	create	an	 AnonymousUsers 	model	and	the	other	to
associate	that	anonymous	user	with	our	existing	 Messages 	model.

$	mix	ecto.gen.migration	create_anonymous_user
$	mix	ecto.gen.migration	message_belongs_to_anonymous_user

We'll	start	with	the	anonymous	user	migration.	We	want	to	use	the	 uuid 	as	the	primary	key,	which	is	a
way	of	telling	Ecto	that	the	 uuid 	is	the	unique	identifier	for	each	anonymous	user.	Ecto	will,	by	default,
use	 :id 	and	a	 :integer 	as	the	primary	key.	Each	user	will	also	have	a	name	and	an	avatar	(both	of
which	will	be	fake).

/priv/repo/migrations/2...9_create_anonymous_user.exs
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 200	of	407

https://hexdocs.pm/ecto/Ecto.Schema.html
https://www.learnphoenix.io

defmodule	PhoenixChat.Repo.Migrations.CreateAnonymousUsers	do
		use	Ecto.Migration

		def	change	do
				create	table(:anonymous_users,	primary_key:	false)	do
						add	:id,	:uuid,	primary_key:	true
						add	:name,	:string
						add	:avatar,	:string

						timestamps
				end
		end
end

This	should	look	familiar	to	you	since	it's	basically	the	same	as	the	other	migrations	we	created.	The	next
migration	is	a	little	bit	more	interesting	and	introduces	a	new	concept	that	we	haven't	touched	on	before.

We	need	to	 alter 	the	existing	 :messages 	table	to	add	a	reference	to	the	new	 :anonymous_users 	we	just
created	and	remove	the	temporary	 :from 	field	we	added	previously	since	we	are	now	storing	references
from	a	separate	table.

To	do	this,	we	need	to	create	both	 up 	and	 down 	blocks.	The	code	in	the	up	block	runs	a	migration	as	you
would	expect	when	you	run	 mix	ecto.migrate .	The	down	block	runs	what	is	called	a	"down"	migration,
which	you	can	think	of	as	an	"undo".	In	the	event	you	screw	up	a	migration,	you	can	"rollback"	your
migrations	and	re-run	them	(hopefully)	with	the	right	data	the	next	time.

In	our	 up 	migration,	we're	adding	the	 :anonymous_user_id 	to	the	 :messages 	table	and	declaring	that	it
references	the	 :anonymous_user 	table	we	just	created.	We're	also	saying	that	when	the	referring
anonymous	user	is	deleted	(on_delete),	change	all	messages	references	to	that	user	(which	no	longer
exists)	to	 nil .

In	our	 down 	migration,	we're	saying,	"if	we	have	to	undo	this	migration,	remove	the	 :anonymous_user_id
from	the	messages	table	and	add	 :from 	back	to	the	table".

/priv/repo/migrations/2...9_message_belongs_to_anonymous_user.exs
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 201	of	407

https://hexdocs.pm/ecto/Ecto.Migrator.html#up/4
https://hexdocs.pm/ecto/Ecto.Migrator.html#down/4
https://www.learnphoenix.io

defmodule	PhoenixChat.Repo.Migrations.MessageBelongsToAnonymousUser	do
		use	Ecto.Migration

		def	up	do
				alter	table(:messages)	do
						add	:anonymous_user_id,	references(:anonymous_users,	on_delete:	:nilify_all,	type:	:uuid
						remove	:from
				end
		end

		def	down	do
				alter	table(:messages)	do
						remove	:anonymous_user_id
						add	:from,	:string
				end
		end
end

Now	that	we	have	our	migrations,	we	need	to	set	up	our	 AnonymousUser 	model	and	update	our	 Message
model	to	handle	the	new	association.

Create	and	update	models

Let's	start	by	creating	our	 AnonymousUser 	model.

$	touch	web/models/anonymous_user.ex

Much	of	this	should	look	familiar.	We're	creating	 has_many 	(docs)	reference	from	our	anonymous	user	to
her	messages,	saying	that	each	anonymous	user	can	have	many	messages	associated	with	her.

The	only	tricky	part	is	that	we're	telling	our	model	explicitly	not	to	auto-generate	a	primary	key	since	we're
providing	one	with	the	uuid.	The	uuid	is	binary	(a	text	string),	so	we	need	to	specify	 @foreign_key_type
to	 :binary_id 	because	it	defaults	to	 :integer .	In	sum,	we're	telling	 @primary_key 	that	the	 :id 	should
not	 autogenerate 	and	that	it's	a	 :binary_id .

In	our	 changeset/2 ,	we're	referencing	two	functions	that	don't	exist	yet.	We	will	create	those	below.

/web/models/anonymous_user.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 202	of	407

https://hexdocs.pm/ecto/Ecto.Schema.html#has_many/3
https://www.learnphoenix.io

defmodule	PhoenixChat.AnonymousUser	do
		use	PhoenixChat.Web,	:model

		alias	PhoenixChat.Message

		@primary_key	{:id,	:binary_id,	autogenerate:	false}
		@foreign_key_type	:binary_id

		schema	"anonymous_users"	do
				field	:name
				field	:avatar
				has_many	:messages,	Message

				timestamps
		end

		def	changeset(model,	params	\\	:empty)	do
				model
				|>	cast(params,	~w(id),	~w())
				|>	put_avatar
				|>	put_name
		end
end

Now	we	need	to	create	two	functions	to	add	a	name	and	an	avatar	to	our	new	anonymous	user:
put_name/1 	and	 put_avatar/1 .

In	 put_name/1 ,	we	start	by	generating	a	fake	name	for	our	user.	We	do	this	by	using	Faker	to	generate	a
random	color	and	a	buzzword_suffix,	which	gives	us	fake	names	like:

Orange	Alliance
Blue	Framework
Purple	Website

We	don't	care	if	they're	unique	since	these	are	just	for	visual	reference.	From	here,	we	use	 put_change/2
to	add	the	 :name 	to	our	 changeset/2 .

Then	we	use	 put_avatar/1 	to	do	the	same	thing	but	for	a	25	by	25	pixel	image	using	Faker's	 image_url.

/web/models/anonymous_user.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 203	of	407

https://github.com/igas/faker/blob/master/lib/faker/color/en.ex
https://github.com/igas/faker/blob/master/lib/faker/company/en.ex
https://hexdocs.pm/faker/Faker.Avatar.html#image_url/2
https://www.learnphoenix.io

defmodule	PhoenixChat.AnonymousUser	do

		...

		defp	put_name(changeset)	do
				adjective	=	Faker.Color.name	|>	String.capitalize
				noun	=	Faker.Company.buzzword_suffix	|>	String.capitalize
				name	=	adjective	<>	"	"	<>	noun
				changeset
				|>	put_change(:name,	name)
		end

		defp	put_avatar(changeset)	do
				changeset
				|>	put_change(:avatar,	Faker.Avatar.image_url(25,	25))
		end
end

We're	also	going	to	add	an	additional	function	that	will	come	into	play	later.	Rather	than	keep	a	separate
table	called	something	like	 :lobby ,	we	can	figure	out	who	our	recently	active	users	are	by	finding	the
most	recent	messages	and	returning	the	users	associated	with	those	messages,	with	a	default	value	of
the	20	most	recent	users	(detailed	explanation	below	the	code).

/web/models/anonymous_user.ex
commit: coming soon

defmodule	PhoenixChat.AnonymousUser	do

		...

		@doc	"""
		This	query	returns	users	with	the	most	recent	messages	up	to	a	given	limit.
		"""
		def	recently_active_users(limit	\\	20)	do
				from	u	in	__MODULE__,
						left_join:	m	in	Message,	on:	m.anonymous_user_id	==	u.id,
						distinct:	u.id,
						order_by:	[desc:	u.inserted_at,	desc:	m.inserted_at],
						limit:	^limit
		end
end

If	you've	worked	a	lot	with	SQL,	this	will	look	familiar	to	you.	If	this	looks	complicated,	we'll	go	through	it
line-by-line.

In	the	first	line,	we	start	with	 from	u	in	__MODULE__ ,	which	is	our	way	of	telling	Ecto	that	we	want	to

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 204	of	407

https://www.learnphoenix.io

search	through	anything	that	matches	our	 AnonymousUser 	struct.	In	other	words,	it	will	look	through	all	of
our	anonymous	users	that	we	have	stored	in	the	database.

The	next	line	uses	a	 left_join ,	which	is	a	SQL	term	that	compares	two	tables	and	returns	the	first	table
along	with	anything	that	matches	from	the	second	table.	For	an	excellent	example	of	a	left	join,	check	out
the	docs	from	W3	Schools.	In	our	case,	we	want	to	take	our	anonymous	user's	id	and	find	all	the
messages	associated	with	that	user	so	we	can	determine	which	anonymous	users	have	most	recently
sent	a	message.

Then	we	use	 distinct 	to	make	sure	that	all	of	the	anonymous	users	are	unique	based	on	their	ids.	It's
worth	noting	that	that	not	all	databases	support	 distinct .	We're	using	Postgres,	which	does	support	it.

Then	we	pass	in	 order_by 	along	with	two	elements	in	a	list,	which	tell	our	anonymous	users	that	we
want	to	order	them	by	most	recent	message,	then	by	most	recent	addition	to	the	database	in	descending
order	based	on	timestamp	(inserted_at).	This	way,	we	prioritize	users	that	have	active	conversations
but	still	show	users	even	if	they	haven't	sent	a	message.

Finally,	we	 limit 	the	results	to	whatever	was	passed	in,	or	default	to	20	users.	The	caret	(^)	is	required
when	passing	a	value	into	an	Ecto	query.	Without	the	caret,	Ecto	will	think	the	variable	is	part	of	the	query
syntax	and	not	a	value	that	you	passed	in.

Another	thing	to	note	is	that	Ecto	does	not	care	in	which	order	you	pass	these	arguments	because	it	will
prepare	a	SQL	statement	for	you	with	the	proper	ordering.	So,	for	example,	you	can	have	you	 limit
statement	before	your	 order_by 	and	it	won't	cause	your	results	to	be	limited	to	20	before	they're
ordered.

The	last	thing	we	need	to	do	is	update	our	 Message 	model	to	handle	the	new	association	with
anonymous	users.	The	only	difference	here	from	previous	associations	is	that	we	once	again	need	to	set
the	primary	key	using	 :type 	to	a	 :binary_id 	since	our	uuid	is	a	string.

/web/models/message.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 205	of	407

http://www.w3schools.com/sql/sql_join_left.asp
https://www.learnphoenix.io

defmodule	PhoenixChat.Message	do
		use	PhoenixChat.Web,	:model

		alias	PhoenixChat.{DateTime,	User,	AnonymousUser}

		schema	"messages"	do
				field	:body,	:string
				field	:timestamp,	DateTime
				field	:room,	:string

				belongs_to	:user,	User
				belongs_to	:anonymous_user,	AnonymousUser,	type:	:binary_id

				timestamps
		end

		@required_fields	~w(body	timestamp	room)
		@optional_fields	~w(anonymous_user_id	user_id)

		...
end

Before	you	move	on	to	the	next	lesson,	be	sure	to	run	your	migration.

$	mix	ecto.migrate

Now	we	have	a	way	to	add	anonymous	users	to	our	database,	associate	them	with	incoming	messages,
and	return	a	list	of	our	most	recently	active	users.	Keep	in	mind	that	the	app	is	currently	broken	since	we
haven't	updated	our	controllers.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 206	of	407

https://www.learnphoenix.io

Persist	Anonymous	Users

Add	anonymous	users	to	admin	channel
Validate	params

At	this	point,	we	have	an	 AnonymousUser 	model	and	a	 changeset/2 	to	add	them	to	the	database,	but	we
aren't	triggering	this	addition	anywhere.	In	this	section,	we	trigger	a	database	addition	when	an
anonymous	user	joins	our	 admin:active_users 	topic	created	previously.

We're	also	going	to	remove	our	admin	presence	from	our	 active_users 	to	make	our	frontend	code
simpler	(so	we	don't	need	to	filter	out	admins	any	longer)	and	so	we	aren't	passing	along	any	extra	data.
We're	still	keeping	track	of	the	admin	presence	on	the	backend	and	we	will	use	that	later	on.

We	also	add	some	simple	validations	on	the	params	we	pass	on	our	socket	connection.	For	example,	we
want	to	raise	an	error	if	both	the	id	and	uuid	params	are	empty.	This	helps	to	simplify	our	code	and	lets
the	frontend	know	if	something	is	missing.

Add	anonymous	users	to	admin	channel

We'll	start	by	updating	our	 join/3 	function	to	pass	along	the	socket	with	the	id	of	the	user	who	joined
the	channel	(either	admin	or	anonymous	user).

/web/channels/admin_channel.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 207	of	407

https://www.learnphoenix.io

defmodule	PhoenixChat.AdminChannel	do
		@moduledoc	"""
		The	channel	used	to	give	the	administrator	access	to	all	users.
		"""

		use	PhoenixChat.Web,	:channel
		require	Logger

		alias	PhoenixChat.{Presence,	Repo,	AnonymousUser}

		@doc	"""
		The	`admin:active_users`	topic	is	how	we	identify	all	users	currently	using	the	app.
		"""
		def	join("admin:active_users",	payload,	socket)	do
				authorize(payload,	fn	->
						send(self,	:after_join)
						id	=	socket.assigns[:uuid]	||	socket.assigns[:user_id]
						{:ok,	%{id:	id},	socket}
				end)
		end

		...
end

Then	we	use	pattern	matching	to	match	users	that	have	a	 :user_id 	(which	are	our	admins)	and	return
the	socket	without	adding	any	data.	This	is	effectively	filtering	out	our	admins	on	the	backend	so	we	don't
need	to	run	the	filter	on	the	frontend	and	it	ensures	we	aren't	sending	extra,	unnecessary	data	to	our
frontend.	Recall	that	an	underscore	denotes	a	variable	that	will	not	be	used	in	the	body	of	the	function
(_user_id).	If	you	do	not	include	this	underscore,	you	will	get	a	warning	that	there	is	an	unused	variable.

Then	we	create	a	new	 handle_info/2 	function	that	matches	a	 :uuid 	for	an	anonymous	user.	As	soon
as	this	anonymous	user	joins,	we	check	to	make	sure	that	the	user	is	saved	to	the	database	using
ensure_user_saved ,	which	we	define	below.	Then,	just	as	before,	we	track	the	presence	state	of	this	user
and	push	it	to	our	socket,	with	the	only	difference	that	we	are	now	sending	a	 uuid 	rather	than	a	generic
id 	since	we	are	now	only	sending	anonymous	users.

/web/channels/admin_channel.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 208	of	407

https://www.learnphoenix.io

defmodule	PhoenixChat.AdminChannel	do
		...

		@doc	"""
		This	handles	the	`:after_join`	event	and	tracks	the	presence	of	the	socket	that
		has	subscribed	to	the	`admin:active_users`	topic.
		"""
		def	handle_info(:after_join,	%{assigns:	%{user_id:	_user_id}}	=	socket)	do
				push	socket,	"presence_state",	Presence.list(socket)
				{:noreply,	socket}
		end

		def	handle_info(:after_join,	%{assigns:	%{uuid:	uuid}}	=	socket)	do
				ensure_user_saved!(uuid)

				push	socket,	"presence_state",	Presence.list(socket)
				Logger.debug	"Presence	for	socket:	#{inspect	socket}"
				{:ok,	_}	=	Presence.track(socket,	uuid,	%{
						online_at:	inspect(System.system_time(:seconds))
				})
				{:noreply,	socket}
		end
end

In	our	 ensure_user_saved/1 	function,	we	need	to	check	if	the	user	already	exists.	If	the	user	does	exist,
then	we	do	nothing.	If	the	user	does	not	exist,	then	we	create	a	new	user	with	the	 uuid 	passed	in	as	a
parameter.	Recall	that	to	add	something	to	the	database,	you	first	need	to	create	a	changeset,	then	pass
that	changeset	to	 Repo 	to	make	the	change.

/web/channels/admin_channel.ex
commit: coming soon

defmodule	PhoenixChat.AdminChannel	do
		...

		defp	ensure_user_saved!(uuid)	do
				user_exists	=	Repo.get(AnonymousUser,	uuid)
				unless	user_exists	do
						changeset	=	AnonymousUser.changeset(%AnonymousUser{},	%{id:	uuid})
						Repo.insert!(changeset)
				end
		end
end

So	now,	when	an	anonymous	user	joins	a	channel	for	the	first	time	we	add	them	to	the	database.	You
should	be	careful	where	you	add	validations	like	this	because	they	can	quickly	get	out	of	control.	For

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 209	of	407

https://www.learnphoenix.io

example,	imagine	if	we	added	this	validation	on	every	message	that	was	received	rather	than	on	join.
This	would	accomplish	the	same	thing	but	would	require	dozens/hundreds	of	additional	database	reads
per	user.

Validate	params

It's	generally	good	practice	to	validate	your	parameters	when	you	receive	data	from	a	user.	In	our
user_socket ,	go	ahead	and	add	a	 validate_params/1 	function	(defined	later)	and	remove	the
:user_id 	from	our	socket	since	we	are	no	longer	passing	along	admin	presence	data.

/web/channels/user_socket.ex
commit: coming soon

defmodule	PhoenixChat.UserSocket	do
		...

		def	connect(params,	socket)	do
				user_id	=	params["id"]
				user	=	user_id	&&	Repo.get(User,	user_id)
				validate_params!(params)

				socket	=	if	user	do
								socket
								|>	assign(:user_id,	user_id)
								|>	assign(:username,	user.username)
								|>	assign(:email,	user.email)
						else
								socket
								|>	assign(:uuid,	params["uuid"])
						end

				{:ok,	socket}
		end

		...
end

Now	we	need	to	define	our	 validate_params/1 	function.	Ideally,	we	want	to	raise	an	error	as	early	as
possible	so	we	can	track	it	down	easier.	In	this	case,	we're	pattern	matching	our	 id 	and	 uuid 	and
checking	to	make	sure	that	they	aren't	empty.	If	they	are,	we	 raise 	an	error	that	explicitly	tells	us	what
the	problem	is.

If	the	parameters	don't	match	anything,	then	we	don't	do	anything	(do:	nil 	is	a	"no	operation"	or
"noop").

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 210	of	407

https://www.learnphoenix.io

/web/channels/user_socket.ex
commit: coming soon

defmodule	PhoeniChat.UserSocket	do

		...

		@empty	["",	nil]
		defp	validate_params!(%{"id"	=>	id,	"uuid"	=>	uuid})
		when	id	in	@empty	or	uuid	in	@empty	do
				raise	"id	or	uuid	must	not	be	empty"
		end

		defp	validate_params!(_),	do:	nil
end

At	this	point,	our	app	is	storing	anonymous	users	when	they	join	for	the	first	time	and	we	are	sending	only
the	anonymous	user's	data	to	our	frontend.	The	next	step	is	to	update	our	 room_channel 	to	make	sure
we're	sending	along	the	new	 name 	and	 avatar 	to	our	frontend.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 211	of	407

https://www.learnphoenix.io

Broadcast	Active	and	Inactive	Users

Poison.Encoder	and	\@derive
Broadcast	lobby_list

Now	that	we	can	receive	messages,	add	anonymous	users	to	the	database,	and	keep	track	of	recent
users	based	on	the	date	of	the	last	message	they	sent,	we	need	to	broadcast	to	our	admins	every	time	a
new	user	joins.	Our	frontend	will	then	be	able	to	listen	to	this	event	and	handle	updates	accordingly.

This	event	will	get	triggered	every	time	a	user	joins	the	 admin:active_users 	topic	so	it	will	be	up	to	the
frontend	to	check	whether	a	user	is	already	on	the	list.

We're	also	going	to	do	a	little	bit	of	refactoring	to	use	the	 @derive 	module	attribute,	which	is	a
convenient	way	to	customize/instruct	how	Protocols	treat	our	struct	(explained	in	detail	later).	This	is	not
strictly	necessary,	but	makes	for	cleaner	code.

Reactor	Message	and	RoomChannel

The	first	thing	we're	going	to	do	is	add	 @derive 	to	our	 Message 	model.	 @derive 	(docs)	is	a	module
attribute	that	allows	you	to	customize	how	the	struct	is	treated	when	it	interacts	with	a	Protocol	(in	our
case,	our	JSON	API).	We're	going	to	instruct	 Poison.Encode 	to	only	encode	certain	fields	and	ignore	the
rest.

This	will	save	us	from	writing	a	bunch	of	code	for	specifying	which	fields	to	include	in	our	JSON	version
of	our	structs	(which	is	what	we're	currently	doing	in	our	 message_payload/1 	function).

/web/models/message.ex
commit: coming soon

defmodule	PhoenixChat.Message	do
		use	PhoenixChat.Web,	:model

		alias	PhoenixChat.{DateTime,	User,	AnonymousUser}

		@derive	{Poison.Encoder,	only:	~w(id	body	timestamp	room	user_id	anonymous_user_id)a}

		...
end

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 212	of	407

https://github.com/devinus/poison#encoding-only-some-attributes
https://www.learnphoenix.io

So	now,	we	send	message	data	using	our	API,	we're	only	going	to	send	 id ,	 body ,	 timestamp ,	 room ,
user_id ,	and	 anonymous_user_id .

We	should	also	update	our	 AnonymousUser 	to	use	 @derive 	as	well	to	send	 id ,	 name ,	and	 avatar .

/web/models/anonymous_user.ex
commit: coming soon

defmodule	PhoenixChat.AnonymousUser	do
		use	PhoenixChat.Web,	:model

		alias	PhoenixChat.Message

		@primary_key	{:id,	:binary_id,	autogenerate:	false}
		@foreign_key_type	:binary_id
		@derive	{Poison.Encoder,	only:	~w(id	name	avatar)a}

		...

end

Now	that	we've	defined	what	data	we're	sending	from	within	our	model,	we	no	longer	need	a
message_payload/1 	function	to	define	our	message	payload.	Let's	go	ahead	and	delete	that	from	our
RoomChannel .

/web/channels/room_channel.ex
commit: coming soon

defmodule	PhoenixChat.RoomChannel	do
		use	PhoenixChat.Web,	:channel
		require	Logger

		alias	PhoenixChat.{Message,	Repo}

		def	join("room:"	<>	room_id,	payload,	socket)	do
				authorize(payload,	fn	->
						messages	=	room_id
								|>	Message.latest_room_messages
								|>	Repo.all
								|>	Enum.reverse
						{:ok,	%{messages:	messages},	socket}
				end)
		end

		...
end

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 213	of	407

https://www.learnphoenix.io

Then	let's	pass	 anonymous_user_id 	as	the	 uuid 	instead	of	the	 from 	field	and	remove	the	extra	code
that	called	our	no-longer-existing	 message_payload/1 	function.

/web/models/room_channel.ex
commit: coming soon

defmodule	PhoenixChat.RoomChannel	do
		...

		def	handle_in("message",	payload,	socket)	do
				payload	=	payload
						|>	Map.put("user_id",	socket.assigns[:user_id])
						|>	Map.put("anonymous_user_id",	socket.assigns[:uuid])
				changeset	=	Message.changeset(%Message{},	payload)

				case	Repo.insert(changeset)	do
						{:ok,	message}	->
								broadcast!	socket,	"message",	message
								{:reply,	:ok,	socket}
						{:error,	changeset}	->
								{:reply,	{:error,	%{errors:	changeset}},	socket}
				end
		end
end

And	now	if	you	refresh	your	frontend,	you	should	have	a	functioning	app	again.

Broadcast	lobby_list

This	where	we	use	the	 recently_active_users/0 	function	we	defined	earlier	to	get	the	20	most	recently
active	anonymous	users.	Recall	that	this	works	by	looking	through	our	 Messages ,	finds	the	most	recent
message	from	each	anonymous	user,	and	returns	the	20	users	that	have	sent	or	received	messages
most	recently.

After	we	make	that	query,	we	pass	the	list	of	20	users	along	with	our	socket.

/web/channels/admin_channel.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 214	of	407

https://www.learnphoenix.io

defmodule	PhoenixChat.AdminChannel	do
		...

		@doc	"""
		The	`admin:active_users`	topic	is	how	we	identify	all	users	currently	using	the	app.
		"""
		def	join("admin:active_users",	payload,	socket)	do
				authorize(payload,	fn	->
						send(self,	:after_join)
						id	=	socket.assigns[:uuid]	||	socket.assigns[:user_id]
						lobby_list	=	AnonymousUser.recently_active_users	|>	Repo.all
						{:ok,	%{id:	id,	lobby_list:	lobby_list},	socket}
				end)
		end

	...

end

Next,	we	need	to	broadcast	these	changes	to	our	frontend.	The	best	time	to	do	this	is	after	a	new	user
joins	the	channel,	so	we	can	hook	into	our	 :after_join 	pattern	match	in	 handle_info 	to	add	the
broadcast.

We	should	also	update	our	 ensure_user_saved/1 	to	return	the	user	after	the	query	so	we	can	pass	that
user	along	to	our	 broadcast .

/web/channels/admin_channel.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 215	of	407

https://www.learnphoenix.io

defmodule	PhoenixChat.AdminChannel	do
		...

		def	handle_info(:after_join,	%{assigns:	%{uuid:	uuid}}	=	socket)	do
				user	=	ensure_user_saved!(uuid)

				broadcast!	socket,	"lobby_list",	user

				push	socket,	"presence_state",	Presence.list(socket)
				Logger.debug	"Presence	for	socket:	#{inspect	socket}"
				{:ok,	_}	=	Presence.track(socket,	uuid,	%{
						online_at:	inspect(System.system_time(:seconds))
				})
				{:noreply,	socket}
		end

		defp	ensure_user_saved!(uuid)	do
				user_exists	=	Repo.get(AnonymousUser,	uuid)
				if	user_exists	do
						user_exists
				else
						changeset	=	AnonymousUser.changeset(%AnonymousUser{},	%{id:	uuid})
						Repo.insert!(changeset)
				end
		end
end

But	at	the	moment,	we're	going	to	broadcast	these	events	to	everyone	who	is	subscribed	to	the	channel,
but	we	actually	only	want	to	send	this	information	to	our	admins.	We're	going	to	do	this	using
intercept/1 	(docs),	which	allows	us	to	hook	into	outgoing	responses	and	manipulates	them.	In	this
case,	we	want	to	hook	into	any	broadcast	to	 lobby_list 	and	only	broadcast	it	to	administrators	(not
anonymous	users).

When	the	intercept	happens,	it	passes	to	the	 handle_out 	function,	in	which	we	check	if	the	user	is	an
admin	(has	a	 user_id).	If	so,	we	proceed.	Otherwise,	we	return	a	 {:noreply,	socket} .

/web/channels/admin_channel.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 216	of	407

https://hexdocs.pm/phoenix/Phoenix.Channel.html#intercept/1
https://www.learnphoenix.io

defmodule	PhoenixChat.AdminChannel	do
		...

		intercept	~w(lobby_list)

		...

		@doc	"""
		Sends	the	lobby_list	only	to	admins
		"""
		def	handle_out("lobby_list",	payload,	socket)	do
				assigns	=	socket.assigns
				if	assigns[:user_id]	do
						push	socket,	"lobby_list",	payload
				end
				{:noreply,	socket}
		end

		...
end

And	that's	all	we	have	to	change	in	our	 admin_channel .	We're	now	broadcasting	the	latest	20	active	users
on	join	and	sending	an	updated	list	any	time	a	new	user	joins.	Now	we	should	head	over	to	the	frontend
to	implement	these	changes.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 217	of	407

https://www.learnphoenix.io

Connect	the	Frontend	to	AdminChannel

Connect	frontend
Display	active	users

Now	that	our	backend	is	keeping	track	of	active	users,	we	need	to	connect	our	frontend	to	list	them.	From
there,	our	admin	can	select	a	conversation	and	respond	to	incoming	chats	from	anonymous	users.

First	we'll	update	our	 phoenix-chat 	component	to	add	the	 AdminChannel 	to	the	 configureChannels
function.	That	way,	when	a	user	opens	the	chat	window,	they	are	subscribed	to	the	 active_users 	topic,
which	adds	them	to	the	list	of	active	users	stored	in	ETS	and	keeps	track	of	their	status	with	Presence.

Then	we	need	to	update	our	 phoenix-chat-frontend 	to	list	all	users,	make	them	selectable,	retrieve
messages,	and	give	our	admin	the	ability	to	respond.

Updating	phoenix-chat

Our	update	to	the	 phoenix-chat 	component	is	pretty	simple.	Within	the	 configureChannels 	function,	all
we	have	to	do	is	add	a	new	channel	called	 adminChannel 	and	join	it.	Then	on	 componentWillUnmount ,
we'll	leave	the	channel.

/src/PhoenixChat.jsx
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 218	of	407

https://www.learnphoenix.io

		...
export	class	PhoenixChat	extends	React.Component	{

		componentWillUnmount()	{
				this.channel.leave()
				this.adminChannel.leave()
		}

		configureChannels()	{
				this.channel	=	this.socket.channel(`room:${room}`)
				...

				this.adminChannel	=	this.socket.channel(`admin:active_users`)
				this.adminChannel.join()
						.receive("ok",	()	=>	{
								console.log(`Succesfully	joined	the	active_users	topic.`)
						})
		}

		...
}
...

And	since	we	got	rid	of	the	 from 	field,	we	need	to	update	the	 from 	constant	to	determine	on	which	side
our	messages	should	appear.

/src/PhoenixChat.jsx
commit: coming soon

...

export	class	PhoenixChatSidebar	extends	React.Component	{
		...

		render()	{
				const	list	=	!this.props.messages
						?	null
						:	this.props.messages.map(({	body,	id,	anonymous_user_id	},	i)	=>	{
						const	right	=	anonymous_user_id	===	localStorage.phoenix_chat_uuid

						...
				})
		}

}
...

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 219	of	407

https://www.learnphoenix.io

And	that's	all	we	have	to	change	on	our	 phoenix-chat 	component	to	connect	to	the	admin	channel.

Adding	AdminChannel	to	Chat

Now	we	need	to	add	 Presence 	to	our	 Chat 	component,	which	can	then	pass	it	down	to	the	 Sidebar
component,	which	renders	the	list	of	active	users.	We	are	going	to	handle	all	of	this	in	local	state	for	the
time	being,	but	we	may	eventually	move	this	into	Redux	if	it	makes	sense.

Whent	the	component	mounts,	we	want	to	initialize	the	socket	and	set	up	the	 adminChannel ,	which	we
do	within	the	 configureAdminChannel 	function.

Within	 configureAdminChannel ,	we	set	the	topic	to	 active_users 	and	listen	for	a	 presence_state 	or
presence_diff 	action,	which	lets	us	know	a	user	joins	or	leaves	the	socket.	Whenever	a	change	occurs,
we	update	the	 this.state.presences 	object,	which	triggers	a	re-render.

Then	we	pass	 this.state.presences 	as	props	to	our	 Sidebar 	component.	Finally	we	connect	our	 Chat
component	to	Redux	and	map	the	state	of	the	user	to	the	Redux	 state .	It's	a	lot	of	code,	but	you've	seen
most	of	it	before.

Note:	we're	eventually	going	to	move	all	of	this	logic	to	Redux.	Generally	speaking,	when	you	find
yourself	working	with	components	that	contain	their	own	logic,	you	probably	want	to	consider	moving
that	logic	to	Redux.

$	npm	install	--save	phoenix

/app/components/Chat/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 220	of	407

https://www.learnphoenix.io

import	React	from	"react"
import	cssModules	from	"react-css-modules"
import	{	Socket,	Presence	}	from	"phoenix"
import	{	connect	}	from	"react-redux"
import	style	from	"./style.css"

import	{	default	as	Sidebar	}	from	"../Sidebar"

export	class	Chat	extends	React.Component	{
		constructor(props)	{
				super(props)
				this.state	=	{
						presences:	{}
				}
		}

		componentDidMount()	{
				const	params	=	this.props.user
				this.socket	=	new	Socket("ws://localhost:4000/socket",	{	params	})
				this.socket.connect()
				this.configureAdminChannel()
		}

		...

}

const	mapStateToProps	=	state	=>	({
		user:	state.user
})

export	default	connect(mapStateToProps)(cssModules(Chat,	style))

Now	configure	the	admin	channel.

/app/components/Chat/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 221	of	407

https://www.learnphoenix.io

...

export	class	Chat	extends	React.Component	{
		...

		configureAdminChannel()	{
				this.adminChannel	=	this.socket.channel("admin:active_users")
				this.adminChannel.on("presence_state",	state	=>	{
						const	presences	=	Presence.syncState(this.state.presences,	state)
						console.log('Presences	after	sync:	',	presences)
						this.setState({	presences	})
				})
				this.adminChannel.on("presence_diff",	state	=>	{
						const	presences	=	Presence.syncDiff(this.state.presences,	state)
						console.log('Presences	after	diff:	',	presences)
						this.setState({	presences	})
				})
				this.adminChannel.join()
						.receive("ok",	({	id	})	=>	{
								console.log(`${id}	succesfully	joined	the	active_users	topic.`)
						})
		}

		...
}
...

And	finally	render	the	 Chat 	component.

/app/components/Chat/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 222	of	407

https://www.learnphoenix.io

...

export	class	Chat	extends	React.Component	{
...

		render()	{
				return	(
						<div>
								<Sidebar
										presences={this.state.presences}	/>
								<div	className={style.chatWrapper}>
										chat	me
								</div>
								{	this.props.children	}
						</div>
)
		}
}
...

The	next	thing	we	need	to	do	is	list	our	presences	and	users	in	our	 Sidebar .	We're	going	to	create	two
functions	within	this	component:	 listBy 	and	 renderList .	The	first	function	orders	our	data	and	the
second	returns	the	jsx	that	we	will	render.	We're	going	to	use	a	lot	from	the	new	ES205	syntax,	so	a	more
detailed	explanation	of	each	is	provided	below	the	codeblock.

Keep	in	mind	that	functions	should	sometimes	live	outside	of	the	component.	This	is	because	React	will
always	redraw	anything	that	is	in	a	nested	function	because	each	time	 Sidebar 	renders,	it	creates	a
completely	new	constant	called	 listBy .	This	optimization	doesn't	usually	make	a	difference,	but	it's
worth	keeping	in	mind	when	you	have	components	that	are	rendered	a	lot.

/app/components/Sidebar/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 223	of	407

https://www.learnphoenix.io

import	React	from	"react"
import	cssModules	from	"react-css-modules"
import	{	Presence	}	from	"phoenix"
import	style	from	"./style.css"

const	listBy	=	(id,	{	metas:	[first,	...rest]	})	=>	{
		first.count	=	rest.length	+	1
		first.id	=	id
		return	first
}

const	renderList	=	props	=>	{
		return	Presence.list(props.presences,	listBy)
				.map(({	id	})	=>	{
						return	(
								<div	key={id}>
										{	id	}
								</div>
)
				})
}

export	const	Sidebar	=	props	=>	{
		return	(
				<div	className={style.sidebar}>
						{	renderList(props)	}
				</div>
)
}

export	default	cssModules(Sidebar,	style)

The	 renderList 	function	is	the	return	value	from	 Phoenix.list .	Note	that	 Phoenix.list 	here	is
different	on	the	frontend	than	the	backend.	As	in,	it's	not	this	list,	it's	this	one.	There	currently	isn't	much
in	the	way	of	docs,	but	that's	the	price	you	pay	for	working	with	cutting-edge	frameworks.

From	the	docs:

By	default,	all	presence	metadata	is	returned,	but	a	 listBy 	function	can	be	supplied	to	allow
the	client	to	select	which	metadata	to	use	for	a	given	presence.

So	within	our	 listBy 	function,	we	take	in	 props.presence .	Each	 presence 	object	has	the	keys	 id 	and
metas .	 metas 	contains	a	list	of	all	the	devices	with	which	the	user	has	been	present.	We	are	going	to
use	our	 listBy 	function	to	prioritize	the	first	device/tab	registered	for	each	user.	This	is	not	especially
important	for	us	since	each	anonymous	user	will	generate	a	new	 uuid 	from	each	device,	but	we	will	do	it
in	case	we	need	to	track	the	presence	of	our	admin.

We	use	object	destructuring	assignment	and	a	spread	operator	to	pull	out	the	 first 	value	from	our	list

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 224	of	407

https://hexdocs.pm/phoenix/1.2.0-rc.1/Phoenix.Presence.html#list/2
https://github.com/phoenixframework/phoenix/blob/master/priv/static/phoenix.js#L130-L182
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://www.learnphoenix.io

of	 metas .	From	there	we	are	going	to	add	the	 count 	field,	which	lets	us	know	how	many	devices	are
connected	and	the	 id 	of	the	user's	presence.

Now,	back	to	our	 renderList .	After	passing	through	 Phoenix.list 	and	going	through	the	 listBy
function,	we	have	a	list	of	presences	that	have	been	filtered	down	to	one	instance.	We	then	 map 	over	the
list	and	return	jsx	objects	for	each	presence.

Next	we're	going	to	make	these	users	click-able	so	an	admin	can	connect	to	a	channel	to	receive	and
respond	to	message	from	anonymous	users.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 225	of	407

https://www.learnphoenix.io

Join	Room	and	Receive	Messages

Connect	to	chatroom
Receive	messages

Now	that	we	have	a	list	of	all	active	presences	(we	will	eventually	expand	this	to	include	all	users,	not	just
currently	active	presences),	we	need	to	give	our	admin	the	ability	to	select	one	and	respond.	The	UI	for
this	will	be	clicking	on	a	 uuid 	on	the	left	that	represents	a	user.

This	will	subscribe	the	admin	to	the	topic	and	allow	her	to	respond	to	the	user.	It	will	also	grab	the	most
recent	10	messages	from	the	chatroom	and	use	that	to	populate	our	 Chat 	component	with	 messages .

Create	ChatRoom	component

Our	 Chat 	component	is	already	starting	to	get	complicated,	so	we're	going	to	create	a	new	component
called	 ChatRoom 	to	handle	the	actual	rendering	of	messages	and	we'll	leave	the	socket	logic	in	 Chat 	for
now.

$	mkdir	app/components/ChatRoom
$	touch	app/components/ChatRoom/{index.js,style.css,README.md,spec.js}

Our	 ChatRoom 	component	is	going	to	receive	a	list	of	messages	as	 props ,	which	it	will	then	render	to	the
page.	Our	 renderMessages 	function	maps	over	each	of	these	messages	and	returns	a	jsx	component	for
each.

/app/components/ChatRoom/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 226	of	407

https://www.learnphoenix.io

import	React	from	"react"
import	cssModules	from	"react-css-modules"
import	style	from	"./style.css"

export	class	ChatRoom	extends	React.Component	{
		componentDidUpdate()	{
				if	(this.props.messages.length	>	0)	{
						const	lastMessage	=	this[`chatMessage:${this.props.messages.length	-	1}`]
						this.chatContainer.scrollTop	=	lastMessage.offsetTop
				}
		}

		render()	{
				return	(
						<div
								ref={ref	=>	{	this.chatContainer	=	ref	}}
								className={style.chatWrapper}>
								{	this.renderMessages(this.props)	}
						</div>
)
		}
}

export	default	cssModules(ChatRoom,	style)

Then	we	should	add	a	function	to	map	over	each	of	our	messages	and	render	them.

/app/components/ChatRoom/index.js
commit: coming soon

...
export	class	ChatRoom	extends	React.Component	{
		...
		renderMessages()	{
				return	this.props.messages.map(({	body,	id	},	i)	=>	{
						return	(
								<div
										ref={ref	=>	{	this[`chatMessage:${i}`]	=	ref	}}
										key={id}>
										{	body	}
								</div>
)
				})
		}
		...
}
...

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 227	of	407

https://www.learnphoenix.io

Then	we	should	add	a	wrapper	to	keep	this	component	visible	next	to	the	 Sidebar .	Go	ahead	and
remove	the	 .chatWrapper 	from	 ../Chat/style.css 	as	well.

/app/components/ChatRoom/style.css
commit: coming soon

.chatWrapper	{
		margin-left:	300px;
}

The	next	step	is	to	connect	our	 Chat 	component	to	our	room	channel	and	render	our	new	 ChatRoom
component.

Connecting	to	channel

Now	we	need	to	connect	to	our	room	channel,	create	a	 changeRoom 	function	that	we	can	pass	to	our
Sidebar 	that	will	allow	us	to	change	rooms,	and	render	our	 ChatRoom 	component	with	the	list	of
messages	we	get	from	our	socket.

/app/components/Chat/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 228	of	407

https://www.learnphoenix.io

...

import	{	default	as	ChatRoom	}	from	"../ChatRoom"

export	class	Chat	extends	React.Component	{
		constructor(props)	{
				super(props)
				this.state	=	{
						presences:	{},
						messages:	[],
						currentRoom:	""
				}
				this.changeChatroom	=	this.changeChatroom.bind(this)
		}

		...

		changeChatroom(room)	{
				this.channel	=	this.socket.channel(`room:${room}`)
				this.setState({
						messages:	[]
				})
				this.configureRoomChannel(room)
		}
		...
}

Now	we	need	to	configure	our	room	channel	to	take	in	this	new	value.

/app/components/Chat/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 229	of	407

https://www.learnphoenix.io

...
export	class	Chat	extends	React.Component	{
		...

		configureRoomChannel(room)	{
				this.channel.join()
						.receive("ok",	({	messages	})	=>	{
								console.log(`Succesfully	joined	the	${room}	chat	room.`,	messages)
								this.setState({
										messages,
										currentRoom:	room
								})
						})
						.receive("error",	()	=>	{	console.log(`Unable	to	join	the	${room}	chat	room.`)	})

				this.channel.on("message",	payload	=>	{
						this.setState({
								messages:	this.state.messages.concat([payload])
						})
				})
		}

		...
}
...

And	finally	we	need	to	pass	our	click	handler	to	our	 Sidebar 	and	pass	our	messages	to	our	 ChatRoom
component.

/app/components/Chat/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 230	of	407

https://www.learnphoenix.io

...
export	class	Chat	extends	React.Component	{
		...
		render()	{
				return	(
						<div>
								<Sidebar
										presences={this.state.presences}
										onRoomClick={this.changeChatroom}	/>
								<ChatRoom	messages={this.state.messages}	/>
								{	this.props.children	}
						</div>
)
		}
		...
}
...

The	last	change	we	need	to	make	is	to	add	an	 onClick 	to	each	of	our	presence	components	in	the
Sidebar 	list.

/app/components/Sidebar/index.js
commit: coming soon

...
const	renderList	=	props	=>	{
		return	Presence.list(props.presences,	listBy)
				.map(({	id	})	=>	{
						return	(
								<div
										onClick={()	=>	{	props.onRoomClick(id)	}}
										key={id}>
										{	id	}
								</div>
)
				})
}
...

At	this	point,	our	admin	can	receive	messages.	You	should	see	an	anonymous	user's	id	appear	in	the
Sidebar 	and	you	should	be	able	to	click	on	that	and	see	incoming	messages.	You	can	send	messages
to	this	admin	from	your	 phoenix-chat 	component.

The	next	step	is	to	allow	our	admin	to	respond.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 231	of	407

https://www.learnphoenix.io

Change	Room	and	Respond	to	Messages

Respond	to	messages

Now	that	we	have	the	ability	to	receive	messages	from	our	anonymous	users,	we	need	to	be	able	to
respond	to	them.

Responding	to	messages

In	order	to	respond	to	messages,	we're	going	to	need	an	input	and	a	way	to	submit	that	message.	We're
going	to	use	a	controlled	input	to	handle	our	message	data.	We	will	cover	controlled	inputs	in	greater
detail	in	a	future	lesson,	but	for	now	you	can	think	of	them	as	a	way	to	store	values	in	state	rather	than	in
the	DOM	element	itself.

The	first	function	we're	adding	is	 handleMessageSubmit ,	which	we	will	attach	to	an	event	(e)	on
onKeyDown 	on	our	input.	If	the	key	that	was	pressed	happens	to	have	the	 keyCode 	of	13,	then	it's	the
return 	key.	If	the	 return 	key	is	pressed,	we	are	currently	in	a	room,	and	there	is	currently	a	value	in	the
input,	we	push	a	 message 	to	the	room	channel	with	the	current	room,	the	current	value	of	the	input,	and	a
timestamp.	Then	we	reset	the	input's	value.

The	second	function	is	 handleChange ,	which	listens	for	a	change	to	the	input	field	and	updates
this.state.input 	with	the	new	value.

The	last	function	we're	adding	creates	the	input	element.

/app/components/Chat/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 232	of	407

https://facebook.github.io/react/docs/forms.html#controlled-components
https://www.learnphoenix.io

...

export	class	Chat	extends	React.Component	{
		constructor(props)	{
				super(props)
				this.state	=	{
						presences:	{},
						messages:	[],
						input:	"",
						currentRoom:	""
				}
				this.changeChatroom	=	this.changeChatroom.bind(this)
				this.handleMessageSubmit	=	this.handleMessageSubmit.bind(this)
				this.handleChange	=	this.handleChange.bind(this)
		}

		...

		handleChange(e)	{
				this.setState({	input:	e.target.value	})
		}

		handleMessageSubmit(e)	{
				if	(e.keyCode	===	13	&&	this.state.currentRoom	&&	this.state.input)	{
						this.channel.push("message",	{
								room:	this.state.currentRoom,
								body:	this.state.input,
								timestamp:	(new	Date()).getTime()
						})
						this.setState({	input:	""	})
				}
		}
		...

}

Then	we	need	to	pass	along	the	handler	functions	to	our	 ChatRoom 	component	so	we	can	connect	them
to	the	 onKeyDown 	and	 onChange 	events	of	our	input.

/app/components/Chat/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 233	of	407

https://www.learnphoenix.io

...

export	class	Chat	extends	React.Component	{
		...

		render()	{
				return	(
						<div>
								<Sidebar
										presences={this.state.presences}
										onRoomClick={this.changeChatroom}	/>
								<ChatRoom
										input={this.state.input}
										currentRoom={this.state.currentRoom}
										handleChange={this.handleChange}
										handleMessageSubmit={this.handleMessageSubmit}
										messages={this.state.messages}	/>
								{	this.props.children	}
						</div>
)
		}
}

...

The	next	step	is	to	add	a	basic	label	to	each	of	our	messages	so	we	can	tell	difference	between
messages	sent	from	our	anonymous	users	and	our	admin.

/app/components/ChatRoom/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 234	of	407

https://www.learnphoenix.io

import	React	from	"react"
import	cssModules	from	"react-css-modules"
import	style	from	"./style.css"

export	class	ChatRoom	extends	React.Component	{
		...

		renderMessages()	{
				return	this.props.messages.map(({
						body,
						id,
						user_id,
						anonymous_user_id
				},	i)	=>	{
						const	from	=	user_id	?	'Me'	:	anonymous_user_id.substring(0,10)
						const	msg	=	`${from}:	${body}`
						return	(
								<div
										ref={ref	=>	{	this[`chatMessage:${i}`]	=	ref	}}
										key={id}>
										{	msg	}
								</div>
)
				})
		}
		...

}
...

Now	we	should	add	an	input	box	so	our	admin	can	respond	to	messages	sent	by	the	anonymous	users.
We're	going	to	take	the	event	handlers	we	passed	in	from	our	 Chat 	component	and	attach	them	to
events	in	the	input	box.	Recall	that	when	an	 onKeyDown 	event	is	triggered	with	the	return	key,	the
message	is	submitted.

/app/components/ChatRoom/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 235	of	407

https://www.learnphoenix.io

...

export	class	ChatRoom	extends	React.Component	{
		...

		renderInput()	{
				if	(!this.props.currentRoom)	return	null
				return	(
						<div	className={style.inputWrapper}>
								<input
										value={this.props.input}
										onKeyDown={this.props.handleMessageSubmit}
										onChange={this.props.handleChange}
										className={style.input}	/>
						</div>
)
		}

		render()	{
				return	(
						<div	className={style.container}>
								<div
										ref={ref	=>	{	this.chatContainer	=	ref	}}
										className={style.chatWrapper}>
										{	this.renderMessages(this.props)	}
								</div>
								{	this.renderInput(this.props)	}
						</div>
)
		}
}

...

Let's	also	add	some	basic	styling	to	make	our	input	easier	to	use.

/app/components/ChatRoom/style.css
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 236	of	407

https://www.learnphoenix.io

.container	{
		position:	relative;
		height:	100vh;
		margin-left:	300px;
}

.chatWrapper	{
		position:	relative;
		height:	calc(100vh	-	60px);
		padding-left:	20px;
		padding-top:	10px;
		padding-bottom:	10px;
		overflow-y:	scroll;
}

.input	{
		position:	absolute;
		bottom:	20px;
		left:	20px;
		width:	calc(100%	-	40px);
		line-height:	40px;
		font-size:	20px;
		outline:	none;
		border:	1px	solid	#ccc;
		border-radius:	3px;
		padding-left:	10px;
		color:	#333;
}

Now	when	you	enter	information	into	the	input	and	press	 return ,	you	can	send	messages	back	to	the
anonymous	user.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 237	of	407

https://www.learnphoenix.io

List	Active	and	Inactive	Users

Listing	inactive	users
Merging	with	active	users	from	Presence
Distinguish	admin	messages

Currently,	our	lobby	only	lists	active	users	that	we	are	tracking	with	presence.	You	may	recall	that	we	are
also	storing	all	of	our	users	(not	just	the	active	users)	in	Postgres.	What	we	would	like	to	do	is	track
presence	and	the	 lobbyList 	separately	and	use	presence	to	highlight	users	in	the	list	that	are	currently
active	and	move	them	to	the	top	of	the	list.

Fortunately,	this	is	not	difficult.

List	inactive	users

All	we	have	to	do	is	update	our	 configureAdminChannel 	to	handle	 lobby_list 	changes	and	update	a
state 	variable	called	 lobbyList 	when	things	change.

We're	also	going	to	leave	our	channels	when	the	component	unmounts	so	we	don't	accidentally	keep	the
connection	alive	for	longer	than	necessary.

/app/components/Chat/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 238	of	407

https://www.learnphoenix.io

...

export	class	Chat	extends	React.Component	{
		constructor(props)	{
				super(props)
				this.state	=	{
						presences:	{},
						messages:	[],
						input:	"",
						currentRoom:	"",
						lobbyList:	[]
				}
				...
		}

		componentWillUnmount()	{
				if	(this.channel)	this.channel.leave()
				if	(this.adminChannel)	this.adminChannel.leave()
		}

		configureAdminChannel()	{
				this.adminChannel	=	this.socket.channel("admin:active_users")

				...

				this.adminChannel.on("lobby_list",	(user)	=>	{
						if	(!this.state.lobbyList.includes(user))	{
								this.setState({	lobbyList:	this.state.lobbyList.concat([user])	})
						}
				})
				this.adminChannel.join()
						.receive("ok",	({	id,	lobby_list	})	=>	{
								console.log(`${id}	succesfully	joined	the	active_users	topic.`)
								this.setState({	lobbyList:	lobby_list	})
						})
		}

		...

}

Then	we	need	to	pass	our	 lobbyList 	that	we	get	from	our	backend	and	store	in	local	 state 	to	our
Sidebar 	component.	We	will	eventually	refactor	this	and	move	this	data	into	Redux,	but	are	handling	it
locally	now	to	make	it	easier	to	see	where	the	data	is	coming	from.

/app/components/Chat/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 239	of	407

https://www.learnphoenix.io

...

export	class	Chat	extends	React.Component	{
		...

		render()	{
				return	(
						<div>
								<Sidebar
										currentRoom={this.state.currentRoom}
										presences={this.state.presences}
										lobbyList={this.state.lobbyList}
										onRoomClick={this.changeChatroom}	/>
								<ChatRoom
										input={this.state.input}
										handleChange={this.handleChange}
										handleMessageSubmit={this.handleMessageSubmit}
										currentRoom={this.state.currentRoom}
										messages={this.state.messages}	/>
								{	this.props.children	}
						</div>
)
		}
}

So	at	this	point,	we're	getting	a	list	of	all	anonymous	users	in	the	lobby	and	passing	it	along	to	our
Sidebar .	The	next	step	is	to	take	those	users	and	render	them	in	a	list.

Merge	with	Presence

We're	going	to	add	a	bunch	of	new	functions	that	will	allow	us	to	order	our	users	in	a	meaningful	way,
then	find	users	who	are	active	and	give	them	some	special	indicator.

The	first	function	we're	changing	is	our	 listBy 	function.	Since	we	don't	care	about	the	number	of
devices,	we're	just	going	to	pass	in	an	anonymous	function	that	returns	the	 id .

Next	we're	creating	an	 orderByActivity 	function,	which	we're	going	to	use	to	order	our	list	of	users.	The
way	this	works	is	it	takes	in	two	values.	If	both	users	have	the	same	activity,	it	doesn't	change	the
position.	If	the	users	are	not	the	same	(one	is	active,	one	is	not),	then	if	the	current	user	is	active
(a.active	===	true),	we	push	it	up	one	on	the	list.	Otherwise,	the	user	is	not	active	and	we	push	it	down
one	on	the	list.

/app/components/Sidebar/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 240	of	407

https://www.learnphoenix.io

...

const	orderByActivity	=	(a,	b)	=>	{
		if	(a.active	===	b.active)	return	0
		if	(b.active	===	true)	return	1
		return	-1
}

...

Now	we	need	to	update	our	 renderList 	function	to	render	our	users.	The	 activeList 	const	is	a	list	of
all	our	active	users.	We're	eventually	going	to	use	this	list	of	users	to	compare	against	our	list	of	all	users.
When	there's	a	match,	that	means	that	the	user	is	active	and	we	will	format	that	user	differently.	If	no
match,	then	the	user	belongs	in	the	list	but	is	not	currently	present	on	the	socket.

The	 lobbyList 	function	is	where	we	merge	the	two	lists	together	to	determine	which	users	are	active
and	which	are	not.	We	start	by	mapping	over	each	user	in	 props.lobbyList 	(which	contains	all	users
that	have	joined	the	lobby),	then	we	check	to	see	if	 activeList 	(which	contains	all	our	present	users)
contains	the	current	user	with	Array.includes.	If	the	user	ids	match,	then	the	user	is	deemed	"active",	so
we	set	 active 	to	 true 	(Array.includes 	returns	 true 	or	 false).

The	last	function	is	 renderList ,	which	now	uses	Array.sort	and	our	 orderByActivity 	function	to	put
the	most	recently	active	users	at	the	top	of	the	list.	Then	we	 map 	over	each	and	assign	an	inset	 box-
shadow 	to	all	active	users.	Finally,	we	return	the	jsx	object	to	render	in	the	list.

Also,	now	that	we	have	access	to	the	name	and	avatar	of	each	user,	we	can	use	that	instead	of	the
random	series	of	number	in	the	uuid	to	identify	them.

/app/components/Sidebar/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 241	of	407

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://www.learnphoenix.io

...
const	renderList	=	(props)	=>	{
		const	activeList	=	Presence.list(props.presences,	(id,	_metas)	=>	id)

		const	lobbyList	=	props.lobbyList.map(({	id,	name,	avatar	})	=>	{
				const	active	=	activeList.includes(id)
				return	{
						name,
						avatar,
						id,
						active
				}
		})

		return	lobbyList
				.sort(orderByActivity)
				.map(({	id,	active,	name,	avatar	})	=>	{
						const	newStyle	=	{}
						if	(active)	newStyle.boxShadow	=	"inset	0px	0px	6px	4px	rgba(58,	155,	207,	0.6)"
						if	(props.currentRoom	===	id)	newStyle.background	=	"#ddd"

						return	(
								<div
										style={newStyle}
										className={style.user}
										key={id}
										onClick={()	=>	{	props.onRoomClick(id)	}}>
										<div>
												
										</div>
										<div>
												{	name	}
										</div>
								</div>
)
				})
}
...

Let's	also	add	some	styling	to	make	our	users	easier	to	distinguish.

/app/components/Sidebar/style.css
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 242	of	407

https://www.learnphoenix.io

...

.user	{
		display:	flex;
		align-items:	center;
		padding:	0.5rem;
		border-bottom:	1px	solid	rgba(0,0,0,0.1);
		border-bottom-width:	80%;
		min-height:	50px;
		cursor:	pointer;
		background:	white;
		transition:	background	0.1s	ease;
		box-shadow:	0px	4px	4px	-2px	rgba(0,0,0,0.2);
}
.user:hover	{
		background:	#ddd;
}

We	now	have	a	functional	list	of	users,	prioritized	by	activity	level.	The	admin	can	also	click	on	any	of
them	and	respond.

Empty	room	indicator

We	should	also	give	some	indicator	for	when	a	no	room	is	selected.	Otherwise,	people	might	just	assume
that	the	app	is	broken.	We'll	do	this	in	a	new	 renderEmpty 	function.

/app/components/ChatRoom/index.js
commit: coming soon

...

		renderEmpty()	{
				if	(this.props.currentRoom)	return	null
				return	(
						<div	className={style.empty}>
								No	chat	selected
						</div>
)
		}

		...

And	some	styling	for	our	placeholder.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 243	of	407

https://www.learnphoenix.io

/app/components/ChatRoom/style.css
commit: coming soon

...

.empty	{
		display:	flex;
		align-items:	center;
		justify-content:	center;
		height:	80%;
		color:	#ccc;
		font-size:	2em;
}

At	this	point,	we	can	now	see	active	and	inactive	users	and	respond	to	them	properly.	We're	also	sorting
the	users	by	giving	priority	to	those	who	are	currently	present.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 244	of	407

https://www.learnphoenix.io

Styling	the	Chat	Component

Refactor	with	flexbox
Make	it	look	fancy

In	this	lesson,	we	just	change	our	styling	to	use	more	of	flexbox.	This	will	set	us	up	for	our	next	lesson
where	we	display	the	recent	activity	of	our	users.

Update	styles

Before	we	get	much	further,	we	should	update	the	style	of	our	 Chat 	component	and	our	 Sidebar 	so	we
can	display	things	in	a	way	that	looks	normal	to	a	user.	For	starters,	we're	going	to	change	around	our
Chat 	component	so	that	our	elements	are	no	longer	absolutely	positioned	to	demonstrate	different	ways
of	aligning	items	and	we're	going	to	take	this	opportunity	to	show	a	few	more	features	of	flexbox.

After	updating	our	styles,	we're	going	to	want	a	chatroom	that	looks	something	like	the	image	below.

Although	you	generally	don't	want	to	mess	with	your	 App 	component,	we're	going	to	add	some
background	styling	to	it	since	we	want	our	entire	app	to	live	within	this	background	to	give	us	that	fancy,
subtle	background	color.

/app/components/App/index.js

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 245	of	407

https://www.learnphoenix.io

commit: coming soon

import	React	from	"react"
import	cssModules	from	"react-css-modules"
import	{	connect	}	from	"react-redux"
import	style	from	"./style.css"
import	Actions	from	"../../redux/actions"

export	class	App	extends	React.Component	{
		componentDidMount()	{
				this.props.dispatch(Actions.userAuth())
		}

		render()	{
				return	(
						<div	className={style.background}>
								<div	className={style.backgroundHeader}	/>
								<div	className={style.backgroundFooter}	/>
								{this.props.children}
						</div>
)
		}
}

export	default	connect()(cssModules(App,	style))

So	now	we	have	three	additional	elements	around	our	 Chat 	component.	The	first	one	we'll	just	set	to
fixed 	and	cover	the	entire	app.	Then	we	have	a	header,	which	we	will	color	our	theme	red	and	a	footer
which	we	will	color	an	off-white.

/app/components/App/style.css
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 246	of	407

https://www.learnphoenix.io

.background	{
		position:	fixed;
		top:	0;
		left:	0;
		height:	100vh;
		width:	100vw;
}

.backgroundHeader	{
		position:	absolute;
		top:	0;
		left:	0;
		right:	0;
		height:	200px;
		background-color:	rgb(239,	95,	78);
}

.backgroundFooter	{
		position:	absolute;
		top:	200px;
		left:	0;
		right:	0;
		height:	calc(100vh	-	200px);
		background-color:	rgb(245,	245,	250);
}

This	will	make	our	app	look	somewhat	broken	since	our	chat	component	does	not	have	a	background
color.

Refactor	Sidebar	component

We're	going	to	add	a	header	to	this	component,	which	will	eventually	be	used	to	filter/search	through
messages	and	we're	going	to	change	the	positioning	from	 absolute 	to	flexbox.	On	the	React-side,	all
we're	doing	is	adding	a	header.	On	the	CSS-side,	changing	the	layout	to	a	flex	column.

/app/components/Sidebar/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 247	of	407

https://www.learnphoenix.io

...

export	const	Sidebar	=	props	=>	{
		return	(
				<div	className={style.sidebar}>
						<div	className={style.header}>
								Search	(coming	soon)
						</div>
						{	renderList(props)	}
				</div>
)
}
...

And	now	let's	change	the	sidebar	to	a	flex	column	with	a	width	of	30%.	We're	also	going	to	use	a	pattern
from	the	awesome	site	Subtle	Patterns	to	give	our	sidebar	a	little	flare.

/app/components/Sidebar/style.css
commit: coming soon

...

.sidebar	{
		display:	flex;
		flex-flow:	column	nowrap;
		background:	url("https://s3.amazonaws.com/learnphoenix-static-assets/images/swirl_pattern.png"
		overflow-y:	scroll;
		border-right:	1px	solid	rgb(213,	213,	213);
		width:	30%;
		position:	relative;
}

.header	{
		display:	flex;
		justify-content:	center;
		align-items:	center;
		height:	60px;
		background:	rgb(238,	238,	239);
		border-bottom:	1px	solid	rgb(213,	213,	213);
}

And	now	our	app	looks	even	more	broken!	Next	we	need	to	wrap	our	 ChatRoom 	component	and	change
the	positioning	of	the	items	to	use	flexbox	as	well.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 248	of	407

https://subtlepatterns.com
https://www.learnphoenix.io

Refactor	ChatRoom	component

Since	the	elements	in	our	 ChatRoom 	component	are	mostly	absolutely	positioned,	this	is	going	to	be	a
significant	change.	The	first	thing	we	need	to	do	is	wrap	our	 input 	so	we	can	position	it	properly,	then
we're	going	to	wrap	our	chat	component	and	set	up	flex	rows	and	columns.

This	app	is	basically	just	one	row	with	two	columns	(one	30%	width,	and	one	70%	width).	The	first
column	is	our	 Sidebar ,	which	we	already	handled,	and	the	second	contains	the	header,	our	messages,
and	the	input	box.

First,	let's	wrap	our	whole	 Chat 	component	with	some	padding	to	show	a	little	bit	of	the	background,	and
then	wrap	our	other	components	in	a	row.

/app/components/Chat/index.js
commit: coming soon

...

export	class	Chat	extends	React.Component	{
		...

		render()	{
				return	(
						<div	className={style.container}>
								<div	className={style.row}>
								<Sidebar
										presences={this.state.presences}
										lobbyList={this.state.lobbyList}
										onRoomClick={this.changeChatroom}	/>
								<ChatRoom
										input={this.state.input}
										handleChange={this.handleChange}
										handleMessageSubmit={this.handleMessageSubmit}
										currentRoom={this.state.currentRoom}
										messages={this.state.messages}	/>
								</div>
								{	this.props.children	}
						</div>
)
		}
}

...

Now	we're	going	to	introduce	our	styles.	These	are	pretty	simple	and	bring	to	what	is	almost	a	functional

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 249	of	407

https://www.learnphoenix.io

app.	The	first	wraps	our	chat	component	and	pads	it	with	 2rem 	so	we	show	a	little	bit	of	the	background
behind	our	chat	interface.	It	also	centers	it.

The	 .row 	is	basically	our	entire	app,	so	we're	going	to	give	it	a	white	background	and	a	border.	The
.column 	contains	our	header,	our	messages,	and	our	input	box.

/app/components/Chat/style.css
commit: coming soon

.container	{
		display:	flex;
		justify-content:	center;
		align-items:	center;
		position:	relative;
		height:	100vh;
		width:	100vw;
		z-index:	100;
		padding:	2rem;
}

.row	{
		display:	flex;
		flex-flow:	row	nowrap;
		height:	100%;
		width:	100%;
		border:	1px	solid	rgb(213,	213,	213);
		background:	white;
}

The	next	step	is	to	style	our	 ChatRoom 	component.	We're	also	going	to	add	a	header	which	we	can	fill	in
with	content	in	a	later	lesson.

/app/components/ChatRoom/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 250	of	407

https://www.learnphoenix.io

...
export	class	ChatRoom	extends	React.Component	{
		...

		renderHeader()	{
				return	(
						<div	className={style.header}>
								Header	(coming	soon)
						</div>
)
		}

		...

		render()	{
				return	(
						<div	className={style.container}>
								{	this.renderHeader()	}
								...

						</div>
)
		}
}
...

Then	we	should	style	the	components	in	our	chatroom.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 251	of	407

https://www.learnphoenix.io

.container	{
		position:	relative;
		display:	flex;
		flex-flow:	column	nowrap;
		position:	relative;
		width:	70%;
}

.header	{
		display:	flex;
		flex-flow:	row	nowrap;
		width:	100%;
		background:	rgb(238,	238,	239);
		border-bottom:	1px	solid	rgb(213,	213,	213);
		height:	60px;
		display:	flex;
		flex-flow:	row	nowrap;
		justify-content:	space-between;
		align-items:	center;
		padding-left:	10px;
}

.inputWrapper	{
		padding:	0	20px	20px	20px;
}

.input	{
		width:	100%;
		line-height:	40px;
		font-size:	16px;
		outline:	none;
		border:	1px	solid	#ccc;
		border-radius:	3px;
		padding-left:	10px;
		color:	#333;
}

At	this	point,	the	app	is	starting	to	come	together	quite	nicely!	But	if	you	start	typing	messages,	you'll	see
that	the	messages	flow	over	behind	our	input	box	and	our	scrolling	is	all	messed	up.	So	let's	add	some
more	styles	to	fix	that.

This	is	also	where	we	introduce	 flex-grow .	You'll	often	see	 flex:	1 	used,	which	is	shorthand	for	the
following:

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 252	of	407

https://www.learnphoenix.io

.style	{
		flex-grow:	1;
		flex-shrink:	1;
		flex-basis:	auto;
}

Spend	a	couple	minutes	looking	through	this	and	this	from	CSS-Tricks	for	a	great	intro	to	how	the	 flex
property	is	used.	Since	our	header	and	input	are	fixed	height,	we	want	to	be	able	to	tell	our
messageWrapper 	to	fill	all	the	remaining	vertical	space	within	our	 row .	Thank	to	flexbox,	all	we	have	to	do
is	set	 flex-grow:	1 .

/app/components/ChatRoom/style.css
commit: coming soon

...

.chatWrapper	{
		padding-top:	5px;
		flex-grow:	1;
		position:	relative;
		overflow-y:	scroll;
}

So	now	that	our	app	is	styled	and	works	properly,	let's	add	some	more	detail	to	our	 Sidebar .

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 253	of	407

https://css-tricks.com/boxes-fill-height-dont-squish/
https://css-tricks.com/almanac/properties/f/flex/
https://css-tricks.com
https://www.learnphoenix.io

Transactional	Email	with	Mailgun	and	Bamboo

Set	up	Mailgun
Set	up	Bamboo
Send	welcome	email

The	Elixir	ecosystem	is	rich	with	libraries	offering	us	the	ability	to	send	emails	such	as	Swoosh	and
Bamboo.	For	our	application	we'll	be	using	Bamboo	by	Thoughtbot	which	has	support	for	composable
emails	and	many	different	email	providers.	Bamboo	also	has	really	good	documentation	that's	worth
looking	over.

Sending	emails	is	one	of	the	ways	we	see	Elixir	sets	itself	apart	from	other	languages	like	Ruby.	With
great	support	for	concurrency	we	won't	need	to	include	other	dependencies	to	enable	our	applications	to
send	emails	in	the	background.

Install	Bamboo

The	first	thing	we	need	to	do	is	add	our	newest	dependency,	 :bamboo 	to	our	 mix.exs 	file:

/mix.exs
commit: coming soon

...
		defp	deps	do
				[
						{:bamboo,	"~>	0.7"},
					...

]
		end
...

Next	we	need	to	add	 :bamboo 	to	our	application	function	in	 mix.exs :

/mix.exs
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 254	of	407

https://github.com/swoosh/swoosh
https://github.com/thoughtbot/bamboo
https://github.com/thoughtbot/bamboo
https://hexdocs.pm/bamboo/readme.html
https://www.learnphoenix.io

def	application	do
		[mod:	{PhoenixChat,	[]},
				applications:	[
						:bamboo,
						...

]]
end

Then	be	sure	to	get	your	dependencies.

$	mix	deps.get

Configuration

One	of	the	best	features	of	Bamboo	is	its	support	for	different	providers.	For	our	project	we'll	be	using
Mailgun	but	if	you	have	a	strong	preference	for	another	provider,	the	configuration	should	be	similar.

Let's	open	up	 config/dev.exs 	and	add	a	section	for	Bamboo	at	the	bottom.	This	configuration	will	be
used	only	in	development	mode	and	informs	Bamboo	as	to	which	adapter	or	provider	to	use:

/config/dev.exs
commit: coming soon

config	:phoenix_chat,	PhoenixChat.Mailer,
		adapter:	Bamboo.LocalAdapter

The	 Bamboo.LocalAdapter 	is	great	for	development.	Rather	than	sending	emails	over	the	network	and
through	our	providers,	the	emails	are	captured	locally	and	available	for	previewing.

The	other	configurations	need	to	be	updated	to	include	an	appropriate	Bamboo	config.	For	testing	we'll
want	to	use	the	special	 Bamboo.TestAdapter ,	which	handles	email	in	memory	and	does	not	send	emails,
and	in	production	we'll	use	the	 Bamboo.MailgunAdapter .

For	a	complete	list	of	adapters	see	the	Bamboo	docs:	Adapters.

Open	 config/test.exs 	and	add	the	following:

/config/test.exs
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 255	of	407

http://www.mailgun.com/
https://github.com/thoughtbot/bamboo#adapters
https://www.learnphoenix.io

config	:phoenix_chat,	PhoenixChat.Mailer,
		adapter:	Bamboo.TestAdapter

For	the	production	configuration	we'll	use	Mailgun	and	pull	the	API	key	and	Mailgun	domain	from	our
system	environment	variables,	which	we	will	define	later:

/config/prod.exs
commit: coming soon

config	:phoenix_chat,	PhoenixChat.Mailer,
		adapter:	Bamboo.MailgunAdapter,
		api_key:	System.get_env("MAILGUN_API_KEY"),
		domain:	System.get_env("MAILGUN_DOMAIN")

Defining	Emails

Now	that	we've	installed	Bamboo	and	configured	it,	we	need	to	create	our	Mailer	and	define	our	emails.

Create	a	new	file,	 lib/phoenix_chat/mailer.ex ,	so	we	can	define	our	Mailer	module:

$	touch	lib/phoenix_chat/mailer.ex

/lib/phoenix_chat/mailer.ex
commit: coming soon

defmodule	PhoenixChat.Mailer	do
		use	Bamboo.Mailer,	otp_app:	:phoenix_chat
end

The	 Mailer 	is	used	for	dispatching	the	emails	to	the	adapter	but	construction	of	the	Emails	is	done
elsewhere.	Let's	create	an	 Email 	module	 lib/phoenix_chat/email.ex 	to	construct	our	emails.

Phoenix	is	not	necessary	to	use	Bamboo,	but	we	can	use	the	special	adapter	to	make	email	formatting
easier	down	the	road.	It	also	comes	with	this	handy	tool	for	previewing	formatted	emails.	If	you	don't
need	formatted	emails,	you	can	simply	use	 import	Bamboo.Email 	rather	than	 Bamboo.Phoenix .

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 256	of	407

https://github.com/thoughtbot/bamboo#using-phoenix-views-and-layouts
https://github.com/thoughtbot/bamboo#previewing-sent-emails
https://www.learnphoenix.io

$	touch	lib/phoenix_chat/email.ex

/lib/phoenix_chat/email.ex
commit: coming soon

defmodule	PhoenixChat.Email	do
		use	Bamboo.Phoenix,	view:	PhoenixChat.EmailView

end

Next	we'll	need	to	create	our	first	email.	In	Bamboo,	emails	are	defined	as	functions	and	are	built	up
using	a	helpful	domain-specific	language	(DSL).	If	you're	not	familiar	with	DSLs,	you	can	think	of	them	as
tiny,	special-purpose	languages	or	libraries	that	are	really	good	at	doing	one	thing--in	this	case,	email.

To	get	started,	we'll	define	a	basic	welcome	email:

/lib/phoenix_chat/email.ex
commit: coming soon

defmodule	PhoenixChat.Email	do
		use	Bamboo.Phoenix,	view:	PhoenixChat.EmailView

		alias	PhoenixChat.{User}

		def	welcome_email(%User{email:	email})	do
				new_email
				|>	to(email)
				|>	from("no-reply@phoenixchat.io")
				|>	subject("Welcome")
				|>	text_body("Welcome	to	PhoenixChat!")
		end
end

Bamboo's	API	is	pretty	easy.	As	you	can	see	in	the	above	code	we	specify	the	email	to	send	to,	the	from
address,	subject,	and	then	the	text	body.

That's	it	for	creating	an	email,	now	we	need	to	send	it.

Sending	Emails

With	Bamboo	there	are	two	ways	to	send	emails	within	the	current	request	and	in	the	background.	To

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 257	of	407

https://en.wikipedia.org/wiki/Domain-specific_language
https://www.learnphoenix.io

send	an	email	within	the	current	request,	we	use	the	 deliver_now/1 	function	on	our	mailer.	This	function
will	dispatch	the	email	request	immediately	and	will	need	a	response	before	the	HTTP	request	can
continue.

alias	PhoenixChat.{Email,	Mailer}

user	|>	Email.welcome_email	|>	Mailer.deliver_now

To	send	our	emails	in	the	background	we	can	use	the	 deliver_later/1 	function	in	Bamboo:

user	|>	Email.welcome_email	|>	Mailer.deliver_later

The	advantage	of	sending	in	the	background	is	we	won't	block	the	current	request,	this	has	the	least
impact	on	the	user's	experience	and	it's	what	we	will	use	almost	exclusively.

With	our	emails	created	and	configured,	we	can	proceed	with	integrating	the	welcome	email	into	Phoenix.
Let's	start	by	opening	 web/controller/user_controller.ex 	and	creating	a	new	method,
send_welcome_email/ ,	to	handle	sending	the	email.

/web/controllers/user_controller.ex
commit: coming soon

alias	PhoenixChat.{Email,	Mailer,	User}

		...

		defp	send_welcome_email(user)	do
				user
				|>	Email.welcome_email
				|>	Mailer.deliver_later
		end
...

Once	we've	created	our	function	we	can	incorporate	it	into	 create/2 ,	which	is	the	function	that	gets
called	when	we	create	a	new	user.

/web/controllers/user_controller.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 258	of	407

https://www.learnphoenix.io

		...

		def	create(conn,	%{"user"	=>	user_params})	do
				changeset	=	User.registration_changeset(%User{},	user_params)

				case	Repo.insert(changeset)	do
						{:ok,	user}	->
								{:ok,	token,	_claims}	=	Guardian.encode_and_sign(user,	:token)

								send_welcome_email(user)

								...
				end
		end

That's	it!	Now	our	users	will	receive	a	simple	welcome	email	when	they	register	for	a	new	account.	If	you
sign	up,	you	should	see	something	along	the	lines	of	the	following	in	your	server	logs.

%Bamboo.Email{assigns:	%{},	bcc:	[],	cc:	[],
from:	{nil,	"no-reply@phoenixchat.io"},	headers:	%{},
html_body:	nil,	private:	%{},	subject:	"Welcome",
text_body:	"Welcome	to	PhoenixChat!",
to:	[nil:	"info@learnphoenix.io"]}

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 259	of	407

https://www.learnphoenix.io

Testing	with	Elixir	and	Phoenix:	Controllers

UserController	tests
Metaprogramming
AuthController	tests

We've	already	gone	over	the	basics	of	testing	in	a	previous	lesson	with	React,	so	in	this	lesson	we'll	jump
right	into	testing	your	Phoenix	app.	We're	going	to	start	by	testing	our	 UserController .

To	do	this	we're	going	to	simulate	requests	by	calling	 get/3 ,	 put/3 ,	 delete/3 ,	 post/3 ,	etc.	Those
functions	simulate	a	dispatch	to	an	endpoint	in	your	app	without	the	need	to	go	through	HTTP	using
Phoenix.ConnTest.

UserController	tests

The	first	thing	you'll	notice	is	the	 use	PhoenixChat.ConnCase .	This	module	comes	by	default	in
test/support/conn_case.ex 	and	it's	worth	looking	it	over	to	get	a	sense	of	what	it's	providing	to	you	on
every	test.

Now	in	order	to	save	us	some	keystrokes,	we're	going	to	create	two	variables	at	the	top	of	the	file.	One	is
for	valid	user	attributes	and	one	for	invalid.	Generally	speaking,	when	we	pass	valid	attributes,	we	expect
things	to	pass,	while	invalid	values	should	give	us	an	error.

/test/controllers/user_controller_test.exs
commit: coming soon

defmodule	PhoenixChat.UserControllerTest	do
		use	PhoenixChat.ConnCase

		alias	PhoenixChat.User
		@valid_attrs	%{email:	"me@test.com",	password:	"some	content",	username:	"some	content"}
		@invalid_attrs	%{}

		...

end

PhoenixChat.ConnCase 	provides	us	with	a	default	 setup 	block	that	passes	a	 conn 	struct,	just	like	we
would	have	in	our	actual	Controller.	From	there,	we	can	add	things	to	it,	such	as	headers.	As	it	happens,

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 260	of	407

https://hexdocs.pm/phoenix/Phoenix.ConnTest.html.
https://www.learnphoenix.io

this	is	already	set	up	for	us	from	our	generator,	but	it	should	look	like	the	code	below.

		setup	%{conn:	conn}	do
				{:ok,	conn:	put_req_header(conn,	"accept",	"application/json")}
		end

The	next	block	is	our	first	test.	Note	that	 %{conn:	conn} 	is	the	second	argument	to	 test/3 	(docs),	which
is	a	pattern-match	on	the	map	passed	by	the	 setup 	block	(the	first	argument	is	the	string	that	describes
the	test	and	the	third	argument	is	 do 	block).	A	more	detailed	explanation	below	the	code.

test	"lists	all	entries	on	index",	%{conn:	conn}	do
		conn	=	get	conn,	user_path(conn,	:index)
		assert	json_response(conn,	200)["data"]	==	[]
end

In	the	first	line	of	our	test,	we	simulate	the	 get 	request	(docs)	for	 users.index 	and	update	our	 conn
with	that	information.

Then	we	 assert 	that	the	json	response	(docs)	returned	by	 users.index 	was	successful	(status	code
200)	and	is	an	empty	list,	which	is	the	result	we	should	expect	since	the	database	has	no	user	records.

Metaprogramming

In	the	next	test,	we	create	a	user,	then	check	to	make	sure	that	the	user	was	added.	So	in	order	to	make
our	lives	easier,	we're	going	to	create	a	utility	function	to	create	a	user.	This	will	allow	us	to	call
create_user 	instead	of	a	full	 Repo.insert/1 	command	each	time.	And	since	we're	going	to	use	this
function	across	multiple	controllers,	we're	going	to	dig	a	little	deeper	into	Phoenix	to	make	this	function
reusable.

We're	going	to	add	 create_user/1 	and	 create_user/2 	to	our	 test/support/conn_case.ex 	file.	If	you
open	that	file	up,	you'll	see	a	block	called	 using .	This	 using 	block	is	what	gets	added	every	time	you
add	the	 use 	keyword	to	a	module.	So	in	the	example	of	our	 UserControllerTest 	above,	by	adding	 use
PhoenixChat.ConnCase ,	we	have	effectively	imported	everything	within	this	block.	This	is	what	is	known
as	metaprogramming	in	Elixir.	It's	abstraction	layer	upon	abstraction	layer.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 261	of	407

http://elixir-lang.org/docs/stable/ex_unit/ExUnit.Case.html#test/3
https://hexdocs.pm/phoenix/Phoenix.ConnTest.html#get/3
https://hexdocs.pm/phoenix/Phoenix.ConnTest.html#json_response/2
https://www.learnphoenix.io

		...
		using	do
				quote	do
						#	Import	conveniences	for	testing	with	connections
						use	Phoenix.ConnTest

						alias	PhoenixChat.Repo
						import	Ecto
						import	Ecto.Changeset
						import	Ecto.Query,	only:	[from:	1,	from:	2]

						import	PhoenixChat.Router.Helpers

						#	The	default	endpoint	for	testing
						@endpoint	PhoenixChat.Endpoint
				end
		end
		...

So	now	let's	add	the	 create_user 	functions	and	the	necessary	aliases	to	the	file,	and	import
PhoenixChat.ConnCase 	into	our	 using 	block.	You	might	be	thinking	that	we've	created	an	infinite	loop	by
importing	a	module	into	itself,	which	imports	itself	into	itself...	but	when	you	use	 import ,	it	ignores	the
using 	block,	so	by	importing	 PhoenixChat.ConnCase 	into	this	block,	we've	just	added	the	two
create_user 	functions	into	any	module	that	uses	 use	PhoenixChat.ConnCase .

/test/support/conn_case.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 262	of	407

https://www.learnphoenix.io

defmodule	PhoenixChat.ConnCase	do
		use	ExUnit.CaseTemplate

		alias	PhoenixChat.{Repo,	User}

		using	do
				quote	do

						...

						import	PhoenixChat.ConnCase

						#	The	default	endpoint	for	testing
						@endpoint	PhoenixChat.Endpoint
				end
		end

		...

		def	create_user!()	do
				Repo.insert!	%User{username:	"foo",	email:	"foo@bar.com"}
		end

		def	create_user!(attrs)	do
				map	=	Map.merge(%{username:	"foo",	email:	"foo@bar.com"},	attrs)
				struct	=	struct(User,	map)
				Repo.insert!	struct
		end
end

In	our	test,	we're	going	to	simulate	a	post	request	with	valid	parameters	to	create	a	new	user,	then	assert
that	we	get	the	appropriate	 201 	response	for	account	creation	and	that	we	can	find	the	user	in	the
database.	For	our	query	to	work,	we're	going	to	drop	(docs)	the	password	field	since	we	do	not	store	plain
text	passwords	in	our	database.

To	clarify,	we're	running	two	assertions	to	test	this	functionality.	First	we're	making	sure	that	our	post
request	worked,	then	we're	making	sure	that	the	database	was	properly	updated	with	the	value.

/test/controllers/user_controller_test.exs
commit: coming soon

test	"creates	and	renders	resource	when	data	is	valid",	%{conn:	conn}	do
		conn	=	post	conn,	user_path(conn,	:create),	user:	@valid_attrs
		assert	json_response(conn,	201)["data"]["id"]
		assert	Repo.get_by(User,	Map.drop(@valid_attrs,	[:password]))
end

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 263	of	407

http://elixir-lang.org/docs/stable/elixir/Map.html#drop/2
https://www.learnphoenix.io

The	second	line	runs	a	 post/2 	(docs)	request	with	the	 conn 	and	 user_path ,	which	is	an	automatically
generated	helper	for	calling	our	 user 	route	(docs).	We're	asking	that	route	to	render	 :create ,	which	you
can	see	in	your	 UserView .

If	you	want	to	see	all	your	helpers,	run	the	following	and	you	will	see	all	routes,	with	their	helpers	on	the
left.

$	mix	phoenix.routes

page_path		GET			/											PhoenixChat.PageController	:index
user_path		GET			/api/users		PhoenixChat.UserController	:index
...

Then	we	need	to	test	to	make	sure	that	invalid	attributes	fails	the	way	we	want.	This	should	already	be	in
place	from	our	generator.

/test/controllers/user_controller_test.exs
commit: coming soon

test	"does	not	create	resource	and	renders	errors	when	data	is	invalid",	%{conn:	conn}	do
		conn	=	post	conn,	user_path(conn,	:create),	user:	@invalid_attrs
		assert	json_response(conn,	422)["errors"]	!=	%{}
end

We're	also	asserting	that	we	get	the	proper	error	when	an	 id 	is	not	present.	Asserting	errors	is	simple.
We	use	 assert_error_sent/2 ,	along	with	the	error	code	we	expect	and	a	function	that	should	generate
the	error.	In	the	case	below,	since	there	is	no	 id 	of	 -1 ,	it	should	give	us	an	error.	Your	generator	should
have	created	this	for	you	as	well.

Now	we're	going	to	test	our	 :update 	function.	Everything	here	is	the	same	the	previous	test	in	which	we
tested	 :create .

/test/controllers/user_controller_test.exs
commit: coming soon

test	"updates	and	renders	chosen	resource	when	data	is	valid",	%{conn:	conn}	do
		user	=	create_user!
		conn	=	put	conn,	user_path(conn,	:update,	user),	user:	@valid_attrs
		assert	json_response(conn,	200)["data"]["id"]
		assert	Repo.get_by(User,	Map.drop(@valid_attrs,	[:password]))
end

Now	we	need	to	test	the	opposite	and	make	sure	it	doesn't	work	with	invalid	parameters.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 264	of	407

http://elixir-lang.org/docs/stable/elixir/Process.html#get/2
https://github.com/phoenixframework/phoenix/blob/master/lib/phoenix/router/helpers.ex
https://github.com/elixir-lang/plug/blob/master/lib/plug/conn/status.ex
https://www.learnphoenix.io

/test/controllers/user_controller_test.exs
commit: coming soon

test	"does	not	update	chosen	resource	and	renders	errors	when	data	is	invalid",	%{conn:	conn}	do
		user	=	create_user!
		conn	=	put	conn,	user_path(conn,	:update,	user),	user:	%{email:	"foo"}
		assert	json_response(conn,	422)["errors"]	!=	%{}
end

And	for	our	last	test,	we're	going	to	make	sure	that	we	can	delete	a	user	bu	calling	 :delete 	and	making
sure	that	we	get	a	negative	result	from	a	 Repo.get 	query	by	using	 refute .

/test/controllers/user_controller_test.exs
commit: coming soon

test	"deletes	chosen	resource",	%{conn:	conn}	do
		user	=	create_user!
		conn	=	delete	conn,	user_path(conn,	:delete,	user)
		assert	response(conn,	204)
		refute	Repo.get(User,	user.id)
end

AuthController	tests

We	have	a	lot	to	test	in	our	 AuthController .	We	aren't	going	to	test	the	internals	of	things	like	 Comeonin
or	 Guardian 	because	it's	safe	to	assume	those	will	work.

$	touch	test/controllers/auth_controller_test.exs

Just	like	we	did	with	our	previous	tests,	we	need	to	set	up	our	valid	attributes	and	a	 setup 	block.	This	is
almost	identical	to	our	other	controller.

/test/controllers/auth_controller_test.exs
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 265	of	407

https://www.learnphoenix.io

defmodule	PhoenixChat.AuthControllerTest	do
		use	PhoenixChat.ConnCase

		alias	PhoenixChat.User
		@valid_attrs	%{email:	"me@test.com",	password:	"password",	username:	"test"}
		@invalid_attrs	%{}

		setup	do
				{:ok,	conn:	put_req_header(build_conn,	"accept",	"application/json")}
		end

end

Now	it's	time	to	test	our	authentication	routes.	We're	going	to	nest	some	of	these	tests	within	a
describe 	block	so	we	can	group	similar	tests.

For	our	first	tests,	we	want	to	make	sure	that	a	successful	authentication	returns	a	JSON	web	token,
since	that's	the	whole	point	of	our	authorization	route.

In	the	first	line,	we	create	a	user	with	valid	attributes,	then	make	a	 post 	request	to
/auth/identity/callback 	with	the	valid	parameters	to	successfully	create	an	account.

Then	we	assert	that	the	response	is	 201 ,	which	means	it	was	created	successfully.

Then	we're	asserting	that	the	response	contained	the	parameters	we	want	(username	and	email),	and	at
the	same	time	we	are	assigning	the	web	token	to	the	value	 token 	so	we	can	use	it	later.

In	our	next	assertion,	we	take	that	token	we	received	in	our	last	assertion	and	use
Guardian.decode_and_verify/1 	to	decode	the	token,	which	should	work,	and	at	the	same	time	we	are
storing	the	response	in	 claims .

Then	we	take	that	 claims 	value	and	find	the	 user.id 	that	it's	associated	with.	Check
PhoenixChat.GuardianSerializer.for_token/1 	to	see	what's	stored	in	 sub .

Then	we	just	make	sure	that	if	we	give	bad	values	an	account	does	not	validate.

/test/controllers/auth_controller_test.exs
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 266	of	407

https://www.learnphoenix.io

...
		describe	"post	'/auth/identity/callback'"	do
				test	"successful	authentication	returns	JWT	token",	%{conn:	conn}	do
						user	=	User.registration_changeset(%User{},	@valid_attrs)	|>	Repo.insert!
						params	=	%{email:	user.email,	password:	"password"}
						conn	=	post	conn,	"/auth/identity/callback",	params

						response	=	json_response(conn,	201)["data"]
						assert	response

						assert	%{"username"	=>	"test",	"token"	=>	token,	"email"	=>	"me@test.com"}	=	response
						assert	{:ok,	claims}	=	Guardian.decode_and_verify(token)
						assert	claims["sub"]	==	"User:#{user.id}"
				end

				test	"unsuccessful	authentication",	%{conn:	conn}	do
						params	=	%{email:	"non@existent.com",	password:	"password"}
						conn	=	post	conn,	"/auth/identity/callback",	params

						assert	json_response(conn,	400)	==	"Internal	server	error"
				end
		end
...

Our	next	 describe 	block	will	handle	our	 /auth/me 	route.	This	route	takes	in	a	JWT	via	 authorization
header	and	checks	to	see	if	the	token	is	valid.

First	we	need	to	create	a	user	with	valid	parameters.	Then	we	create	a	token	by	passing	the	connection
through	 Guardian .

Now	that	we	have	a	valid	token,	we	can	simulate	passing	it	to	our	 /auth/me 	route	in	the	auth	header.	We
then	assert	that	the	response	we	should	receive	is	200,	which	means	it	worked.

We're	also	going	to	assert	that	the	response	body	returns	the	email,	id,	and	the	username	of	the	user
because	our	frontend	expects	those	values.	If	you	forgot	what	the	 ^ 	does,	it	references	a	value	above
rather	than	use	the	value	for	assignment.

In	the	second	test,	we	simply	pass	an	invalid	token	and	assert	that	the	response	is	401	unauthorized.

/test/controllers/auth_controller_test.exs
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 267	of	407

https://www.learnphoenix.io

...
		describe	"get	'/auth/me'"	do
				test	"authorized	user	gets	json	response",	%{conn:	conn}	do
						user	=	User.registration_changeset(%User{},	@valid_attrs)	|>	Repo.insert!
						token	=	conn
														|>	Guardian.Plug.api_sign_in(user)
														|>	Guardian.Plug.current_token

						conn	=	conn
													|>	put_req_header("authorization",	"Bearer	#{token}")
													|>	get("/auth/me")

						response	=	json_response(conn,	200)["data"]
						assert	response

						%{email:	email,	id:	id,	username:	username}	=	user
						assert	%{"email"	=>	^email,	"id"	=>	^id,	"username"	=>	^username}	=	response
				end

				test	"unauthorized	user",	%{conn:	conn}	do
						conn	=	conn
													|>	put_req_header("authorization",	"Bearer	fake_token")
													|>	get("/auth/me")

						assert	json_response(conn,	401)	==	"Internal	server	error"
				end
		end
...

And	for	the	sake	of	optimization,	we're	going	to	give	our	test	environment	really	bad	keys	so	they
generate	faster.	This	will	overwrite	our	normal	configuration	when	in	the	test	environment.

/config/test.exs
commit: coming soon

config	:comeonin,	:bcrypt_log_rounds,	4
config	:comeonin,	:pbkdf2_rounds,	1

Debugging

If	this	is	not	your	first	time	through	the	course,	you	might	run	into	an	error	when	you	run	 mix	test .

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 268	of	407

https://www.learnphoenix.io

**	(Postgrex.Error)	ERROR	(duplicate_table):	relation	"users"	already	exists
...

If	you	run	into	this	error,	run	 MIX_ENV=test	mix	ecto.reset 	to	reset	your	test	database.	Ecto	creates	a
separate	database	for	your	test	environment,	so	just	like	on	your	actual	app,	when	you	start	a	new	project
and	your	migrations	change,	you	need	to	drop	and	create	a	fresh	database.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 269	of	407

https://www.learnphoenix.io

Testing	with	Elixir	and	Phoenix:	Channels

RoomChannel	tests
Channel	helpers	tests
AdminChannel	tests
UserSocket	tests

Channel	tests,	like	Controller	tests,	simulate	the	broadcasting	and	pushing	of	events	to	the	client	without
making	an	actual	socket	connection.	By	simulating	the	connection,	your	tests	will	run	much	faster	and
with	less	configuration	so	you	can	focus	on	testing	the	logic	in	your	Channel	handlers.

We're	going	to	start	with	our	 RoomChannel .

RoomChannel	tests

Just	like	with	our	controller	tests,	we	get	a	lot	out	of	the	box	with	Phoenix.	For	Channels	it's	called
ChannelCase 	rather	than	 ConnCase .	It's	worth	taking	a	quick	look	at	 test/support/channel_case.ex 	to
get	a	sense	of	what	you	get	for	free	with	 ChannelCase .

The	 setup 	block	allows	us	to	setup	each	test	case	with	a	socket	that's	subscribed	to	something	that	we
want	to	test,	which	in	this	case	is	 room:lobby .	We're	also	going	assign	a	 uuid 	to	a	number	and
user_id 	to	nil	to	test	for	anonymous	users	who	are	not	admins.

To	connect	to	the	channel,	we	use	 subscribe_and_join/2 	(docs).

While	you're	at	it,	go	ahead	and	delete	the	existing	tests.

/test/controllers/room_channel_test.exs
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 270	of	407

https://hexdocs.pm/phoenix/Phoenix.ChannelTest.html#subscribe_and_join/4
https://www.learnphoenix.io

defmodule	PhoenixChat.RoomChannelTest	do
		use	PhoenixChat.ChannelCase

		alias	PhoenixChat.{RoomChannel,	Message}

		setup	do
				{:ok,	%{messages:	[]},	socket}	=
						socket("user_id",	%{uuid:	"1144",	user_id:	nil})
						|>	subscribe_and_join(RoomChannel,	"room:lobby")
				{:ok,	socket:	socket}
		end

		...
end

Now	that	we	have	our	channel	set	up	for	each	of	our	tests,	we	can	start	interacting	with	it.	In	our	first	test,
we're	going	to	join	a	room,	add	messages	to	the	database,	then	check	to	make	sure	the	messages	are
returned	as	the	payload.

The	first	few	lines	add	three	messages	to	the	database:	two	in	 room:1 	and	one	in	 room:2 .	The	next	line
calls	the	socket	with	 user_id 	and	 %{some:	:assign} 	which	is	there	to	communicate	that	it	expects	a
map	for	 socket.assigns ,	then	subscribes	to	the	 room:1 	channel.	We're	using	pattern	matching	in	the
{:ok,	%{messages:	messages},	_} 	expression	to	match	the	result	of	our	connection	(which	will	be	a	list
of	the	latest	10	messages)	to	the	term	 messages .

We	then	assert	that	we	received	two	messages,	since	two	of	the	messages	we	added	were	added	to	the
room	we	connected	to:	 room:1 .

/test/controllers/room_channel_test.exs
commit: coming soon

test	"joining	a	room	returns	messages	from	the	DB	as	payload"	do
		timestamp	=	Ecto.DateTime.utc()
		Repo.insert!(%Message{body:	"Foo",	timestamp:	timestamp,	room:	"1"})
		Repo.insert!(%Message{body:	"Bar",	timestamp:	timestamp,	room:	"1"})
		Repo.insert!(%Message{body:	"Bar",	timestamp:	timestamp,	room:	"2"})

		{:ok,	%{messages:	messages},	_}	=
				socket("user_id",	%{some:	:assign})
				|>	subscribe_and_join(RoomChannel,	"room:1")

		assert	length(messages)	==	2
end

The	last	thing	we	need	to	test	for	our	 RoomChannel 	is	that	we	can	push	messages	using	our	socket.	To

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 271	of	407

https://www.learnphoenix.io

do	this	we're	creating	a	valid	 payload ,	then	using	the	 push 	function	(docs)	to	send	a	 message 	event	to
the	socket	subscribed	to	 room:lobby 	with	the	payload	we	just	defined.	Recall	that	whenever	a	 message
event	is	sent	to	our	room	channel,	it	triggers	the	 def	handle_in("message",	payload,	socket)	do
function	defined	in	 web/channels/room_channel.ex .

Then	we	use	another	assertion	type	called	 assert_reply 	(docs),	which,	as	you	might	have	guessed,
asserts	that	we	received	a	reply	that	contains	a	reference	to	the	event	that	was	pushed,	an	 :ok 	atom,
and	the	payload.

Then	for	good	measure	we're	going	to	check	our	database	to	make	sure	that	the	message	we	sent	was	in
fact	added	to	the	database.

/test/controllers/room_channel_test.exs
commit: coming soon

test	"message	replies	with	status	ok	and	saves	message	to	DB",	%{socket:	socket}	do
		payload	=	%{
				body:	"hello",
				timestamp:	1470637865914,
				room:	"lobby",
				from:	"1144"
		}

		ref	=	push	socket,	"message",	payload
		assert_reply	ref,	:ok,	payload
		assert	Repo.get_by(Message,	payload)
end

ChannelHelpers	tests

We	created	a	few	helpers	to	make	authorization	easier,	so	we	need	to	test	them	too.

$	touch	test/channels/channel_helpers_test.exs

Since	this	is	normal	Elixir,	we	are	going	to	import	 ExUnit.Case ,	which	is	what	you	would	import	for	any
other	Elixir	module	you	want	to	test.	The	functions	in	our	 ChannelHelpers 	are	pure	functions	so	they're
really	easy	to	test.	This	is	because	pure	functions	have	no	side	effects	and	always	return	the	same	output
given	the	same	inputs.

/test/channels/channel_helpers_test.exs
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 272	of	407

https://hexdocs.pm/phoenix/Phoenix.ChannelTest.html#push/3
https://hexdocs.pm/phoenix/Phoenix.ChannelTest.html#assert_reply/4
https://www.learnphoenix.io

defmodule	PhoenixChat.ChannelHelpersTest	do
		use	ExUnit.Case

		import	PhoenixChat.ChannelHelpers

end

To	test	our	authorization	function,	need	to	test	both	a	passing	and	a	failing	test.	Recall	that	 authorize/2
takes	in	a	payload	and	a	function.	The	payload	is	used	to	determine	if	the	user	is	authorized	and	the
function	is	what	we	run	if	the	user	is	authorized.	In	this	case,	the	payload	is	"test"	since	we	currently	set
authorized?/1 	to	return	true	no	matter	what	it	receives,	and	we	are	passing	a	function	that	returns	"foo".
If	we	get	that	value,	then	the	 authorize/2 	method	worked	properly.

Next	we	test	a	failed	authorization.	We	do	this	by	passing	in	a	 custom_authorize 	function	that	returns
false.	Then	we	check	to	make	sure	that	we	received	the	error	we	expected:	"unauthorized".

The	last	test	is	just	a	placeholder	at	this	point	since	we	will	always	return	true	no	matter	what	value	we
send	to	 authorized?/1 .

/test/channels/channel_helpers_test.ex
commit: coming soon

test	"authorize/2	and	authorize/3"	do
		assert	authorize("test",	fn	->	"foo"	end)	==	"foo"

		failed_authorization	=	authorize("test",	fn	->	"foo"	end,	fn	_	->	false	end)
		assert	{:error,	%{reason:	"unauthorized"}}	==	failed_authorization
end

test	"authorized?/1"	do
		assert	authorized?(false)	==	true
end

AdminChannel	tests

Now	we're	going	to	write	tests	for	our	 AdminChannel ,	which	is	going	to	be	very	similar	to	our
RoomChannel 	tests.

$	touch	test/channels/admin_channel_test.exs

First	we	add	 ChannelCase 	since	we're	testing	a	channel,	then	we	add	our	 setup 	block.	We're	going	to

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 273	of	407

https://www.learnphoenix.io

use	 on_exit ,	which	runs	after	every	test,	to	call	 delete_all_objects/1 	in	our	list	from	 :ets 	so	we	start
every	test	with	a	fresh	ETS	table.

/test/channels/admin_channel_test.exs
commit: coming soon

defmodule	PhoenixChat.AdminChannelTest	do
		use	PhoenixChat.ChannelCase

		alias	PhoenixChat.{AdminChannel,	LobbyList}

		setup	do
				on_exit	fn	->
						:ets.delete_all_objects(LobbyList)
				end
		end

end

Our	first	test	makes	sure	we	can	join	the	 admin:active_users 	channel	as	an	admin.	This	is	the	channel
from	which	we	gain	access	to	the	list	of	all	currently	active	users	and	populate	the	sidebar	on	our
frontend.

First	we	add	some	fake	data	to	our	 LobbyList ,	then	we	simulate	joining	the	socket	with	a	 user_id 	of	 1 ,
since	in	our	application	we	assume	that	any	user	with	a	 user_id 	is	an	admin	(anonymous	users	have	a
uuid).	This	is	mostly	the	same	as	our	other	channel	test.

In	our	first	assertion,	we're	testing	that	the	 lobby_list 	that	we	get	back	from	our	socket	contains	two
items	by	checking	its	 length .

Then	we	use	 assert_push 	to	assert	that	we	can	push	a	new	event	to	 lobby_list .	In	this	case,	we're
adding	a	new	anonymous	user.

Next	we	 assert_push 	our	 presence_state ,	which	starts	out	with	an	empty	payload	since	no	presences
have	been	tracked	at	this	point	(we're	adding	it	now).

Finally,	we	 assert_push 	that	 presence_diff 	is	pushed	to	the	client	with	a	payload	that	signifies	that	a
presence	has	been	tracked.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 274	of	407

https://www.learnphoenix.io

test	"joining	admin:active_users	as	admin"	do
		LobbyList.insert("foo")
		LobbyList.insert("bar")

		{:ok,	%{lobby_list:	lobby_list},	_socket}	=
				socket("user_id",	%{user_id:	1})
				|>	subscribe_and_join(AdminChannel,	"admin:active_users")

		assert	length(lobby_list)	==	2
		assert_push	"lobby_list",	%{uuid:	1}
		assert_push	"presence_state",	%{}
		assert_push	"presence_diff",	%{joins:	%{"1"	=>	%{}}}
end

The	last	thing	we	want	to	test	is	to	make	sure	that	non-admins	aren't	receiving	the	list	of	all	active	users.

We	start	by	connecting	to	the	socket	as	an	anonymous	user	by	setting	 user_id 	to	 nil 	and	 uuid 	to
something	valid.

Then	we	 refute_push 	to	refute	that	the	 lobby_list 	event	is	triggered	with	a	payload.	This	is	our	way	of
testing	 handle_out/3 	for	 lobby_list ,	which	filters	non-admins	from	receiving	the	event.

/test/channels/admin_channel_test.exs
commit: coming soon

test	"non-admin	users	do	not	receive	the	'lobby_list'	event	on	join"	do
		{:ok,	%{lobby_list:	_},	_}	=
				socket("user_id",	%{user_id:	nil,	uuid:	5})
				|>	subscribe_and_join(AdminChannel,	"admin:active_users")

		refute_push	"lobby_list",	%{}
end

UserSocket	tests

The	last	thing	we	need	to	test	for	our	channels	is	our	 UserSocket .	All	we	need	to	do	to	test	this	is	insert	a
user	into	our	database	and	make	sure	that	the	user	is	being	assigned	to	our	socket.

$	touch	test/channels/user_socket.exs

The	first	line	adds	an	admin,	then	we	connect	to	our	UserSocket	and	pass	the	newly	created	admin's	 id

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 275	of	407

https://www.learnphoenix.io

along	to	it.	Then	we	 subscribe_and_join/3 	the	socket	and	then	assert	that	we	find	each	of	the
parameters	we	expect.

In	the	second	test,	we	do	basically	the	same	thing	but	as	an	anonymous	user.	If	the	user	is	anonymous,
she	won't	have	a	 user_id ,	so	we	 refute 	that	there	is	one,	and	then	assert	that	the	 uuid 	is	the	same	as
the	one	we	passed	in.

/test/channels/user_socket.exs
commit: coming soon

defmodule	PhoenixChat.UserSocketTest	do
		use	PhoenixChat.ChannelCase

		alias	PhoenixChat.{Repo,	User,	UserSocket}

		test	"connecting	to	user	socket	as	logged-in	user"	do
				admin	=	Repo.insert!(%User{email:	"admin@bar.com",	username:	"admin"})

				{:ok,	socket}	=	connect(UserSocket,	%{"id"	=>	admin.id})
				{:ok,	_,	socket}	=	subscribe_and_join(socket,	"room:1",	%{})

				assert	socket.assigns.user_id	==	admin.id
				assert	socket.assigns.email	==	admin.email
				assert	socket.assigns.username	==	admin.username
		end

		test	"connecting	to	user	socket	as	anonymous	user"	do
				{:ok,	socket}	=	connect(UserSocket,	%{"uuid"	=>	25})
				{:ok,	_,	socket}	=	subscribe_and_join(socket,	"room:25",	%{})

				refute	socket.assigns.user_id
				assert	socket.assigns.uuid	==	25
		end
end

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 276	of	407

https://www.learnphoenix.io

Testing	with	Elixir	and	Phoenix:	Models

Write	tests	for	User	model
Write	tests	for	Message	model

The	tests	we're	going	to	write	for	our	models	are	a	little	bit	more	specific	than	the	ones	we	wrote	for	our
controllers	and	channels.	This	is	because	we	may	call	Model	behaviors	in	our	Controllers	or	Channels	but
not	the	other	way	around.

So	we	need	to	test	our	input	data	validations	and	our	custom	queries.

Channel/Controller	tests	often	indirectly	test	the	behavior	of	our	model,	like	when	we	get	initial	messages
on	 channel.join 	and	expect	 latest_room_messages/2 	to	have	been	called	with	the	most	recent	10
messages.	But	we	also	want	to	make	sure	that	our	models	work	independently	of	our	controllers	and
channels.	Fortunately	these	tests	are	simpler	than	the	Controller/Channel	tests	since	we	can	call	the
functions	directly	(e.g.	 User.changeset/2)	rather	than	simulating	an	HTTP	request	like	we	had	to	do	with
our	Controller.

User	model

We	start	by	importing	 ModelCase ,	which	contains	useful	functions	for	 Model 	testing.	Check	them	out	at
test/support/model_case.ex .	Then,	just	as	we	did	in	our	other	tests,	we	create	a	set	of	valid	and	invalid
attributes	to	make	our	tests	easier	to	read.

/test/models/user_test.exs
commit: coming soon

defmodule	PhoenixChat.UserTest	do
		use	PhoenixChat.ModelCase

		alias	PhoenixChat.User

		@valid_attrs	%{email:	"foo@bar.com",	encrypted_password:	"some	content",	username:	"some	content"
		@invalid_attrs	%{}

		...
end

Since	we	don't	have	any	custom	queries	for	our	 User 	model	yet,	all	we're	going	to	test	is	our	validations

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 277	of	407

https://www.learnphoenix.io

on	input	data.	The	first	and	simplest	is	testing	our	 changeset 	with	valid	inputs.	To	do	this	we	use
changeset.valid? ,	which	is	a	field	in	the	 Ecto.Changeset 	struct	(docs).	If	you	log	a	valid	changeset,
you'll	get	something	like	the	result	below	(note	the	 valid?:	true 	field).

#Ecto.Changeset<action:	nil,	changes:	%{email:	"foo@bar.com",	username:	"some	content"},	errors

This	should	be	the	same	as	the	output	from	the	generator.

/test/models/user_test.exs
commit: coming soon

test	"changeset	with	valid	attributes"	do
		changeset	=	User.changeset(%User{},	@valid_attrs)
		assert	changeset.valid?
end

Then	we're	going	to	test	all	the	ways	in	which	we	can	make	an	invalid	 changeset .	Cure

If	you	look	at	our	 changeset 	in	 web/models/user.ex ,	you'll	see	that	we	have	a	few	constraints:	namely
cast ,	 validate_format ,	 validate_length ,	and	 unique_constraint .

def	changeset(model,	params	\\	:empty)	do
		model
		|>	cast(params,	~w(email	username),	[])
		|>	validate_format(:email,	~r/@/)
		|>	validate_length(:username,	min:	1,	max:	20)
		|>	update_change(:email,	&String.downcase/1)
		|>	unique_constraint(:email)
		|>	update_change(:username,	&String.downcase/1)
		|>	unique_constraint(:username)
end

In	each	of	the	following	tests,	we're	going	to	create	a	changeset	with	invalid	attributes	of	a	particular	type
and	check	the	error	message	to	make	sure	it's	the	error	we	expect.

changeset 	stores	errors	in	its	 :errors 	field,	which	is	populated	by	a	list	of	two-element	tuples	in	the
format	 {field_name,	error_msg} .	So	in	our	assertion,	we're	pulling	out	the	value	we	want	using	 in 	to
pull	the	value	out	of	the	 errors 	list.	We	encourage	you	to	put	in	the	occasional	 IO.puts 	to	make	sure
you	understand	which	values	are	coming	from	where.

/test/models/user_test.exs
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 278	of	407

https://hexdocs.pm/ecto/Ecto.Changeset.html
https://www.learnphoenix.io

test	"changeset	with	blank	email	and	username"	do
		%{errors:	errors}	=	User.changeset(%User{},	%{})
		assert	{:email,	{"can't	be	blank",	[]}}	in	errors
		assert	{:username,	{"can't	be	blank",	[]}}	in	errors
end

test	"changeset	with	invalid	email	format"	do
		%{errors:	errors}	=	User.changeset(%User{},	%{email:	"foo"})
		assert	{:email,	{"has	invalid	format",	[]}}	in	errors
end

test	"changeset	with	username	invalid	length"	do
		long_username	=	String.duplicate	"f",	21
		%{errors:	errors}	=	User.changeset(%User{},	%{username:	long_username})
		assert	{:username,	{"should	be	at	most	%{count}	character(s)",	[count:	20]}}	in	errors
end

test	"changeset	must	have	a	unique	email"	do
		changeset	=	User.changeset(%User{},	@valid_attrs)
		Repo.insert!(changeset)

		changeset	=	User.changeset(%User{},	@valid_attrs)
		{:error,	changeset}	=	Repo.insert(changeset)
		assert	{:email,	{"has	already	been	taken",	[]}}	in	changeset.errors
end

test	"changeset	must	have	a	unique	username"	do
		changeset	=	User.changeset(%User{},	@valid_attrs)
		Repo.insert!(changeset)

		attrs	=	Map.put(@valid_attrs,	:email,	"test@bar.com")
		changeset	=	User.changeset(%User{},	attrs)
		{:error,	changeset}	=	Repo.insert(changeset)
		assert	{:username,	{"has	already	been	taken",	[]}}	in	changeset.errors
end

Then	we	need	to	test	our	 registration_changeset 	in	the	same	way.	First	we	pass	valid	attributes	and
make	sure	it	works.	We're	also	testing	to	make	sure	that	an	 encrypted_password 	field	was	created	by
using	the	 get_change/3 	method	(docs).	We	don't	need	to	test	 put_encrypted_pw/1 	directly	because	it	is
safe	to	assume	that	 Comeonin 	and	 Bcrypt 	work	properly.

Once	we've	tested	a	passing	changeset,	we	send	a	password	that	is	too	short	and	ensure	that	our	error
corresponds	to	the	"password	is	too	short"	error.

/test/models/user_test.exs
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 279	of	407

https://hexdocs.pm/ecto/Ecto.Changeset.html#get_change/3
https://www.learnphoenix.io

test	"registration	changeset	with	valid	attributes"	do
		valid_attrs	=	Map.put(@valid_attrs,	:password,	"password")
		changeset	=	User.registration_changeset(%User{},	valid_attrs)
		assert	changeset.valid?
		assert	get_change(changeset,	:encrypted_password)
end

test	"registration	changeset	with	invalid	password	length"	do
		long_password	=	String.duplicate	"p",	101
		%{errors:	errors}	=	User.registration_changeset(%User{},	%{password:	long_password})
		assert	{:password,	{"should	be	at	most	%{count}	character(s)",	[count:	100]}}	in	errors
end

Message	model

Our	message	model	is	a	little	bit	more	complicated	since	we	need	to	test	our	custom	query	that	fetches
the	latest	10	posts.

First	we	set	up	the	valid	and	invalid	attributes.

/test/models/message_test.exs
commit: coming soon

defmodule	PhoenixChat.MessageTest	do
		use	PhoenixChat.ModelCase

		alias	PhoenixChat.Message

		@valid_attrs	%{body:	"some	content",	room:	"some	content",	timestamp:	"2010-04-17	14:00:00"
		@invalid_attrs	%{}

		...
end

Then	we	test	our	changeset	with	those	attributes,	just	as	we	did	with	the	 User 	model.

/test/models/message_test.exs
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 280	of	407

https://www.learnphoenix.io

test	"changeset	with	valid	attributes"	do
		changeset	=	Message.changeset(%Message{},	@valid_attrs)
		assert	changeset.valid?
end

test	"changeset	with	invalid	attributes"	do
		%{errors:	errors}	=	Message.changeset(%Message{},	@invalid_attrs)
		assert	{:body,	{"can't	be	blank",	[]}}	in	errors
		assert	{:timestamp,	{"can't	be	blank",	[]}}	in	errors
		assert	{:room,	{"can't	be	blank",	[]}}	in	errors
end

And	now	we	test	our	query.	We	can	test	queries	by	running	them	and	then	checking	the	records	returned
by	the	query	and	matching	them	with	the	results	that	we	expect.

In	some	circumstances,	we	may	choose	to	run	an	assertion	on	the	query	struct	returned	by	 Ecto .	We're
going	to	do	this	in	the	last	assertion	of	this	test	because	all	we're	testing	is	that	the	default	 limit 	is	set
to	10.	You	could	also	test	this	by	creating	11	messages,	running	the	query,	then	assert	that	we	only	got	10
back.

We	prepare	the	test	by	inserting	multiple	messages	to	the	database	with	different	timestamps,	since	we
need	to	know	which	are	the	most	recent	to	ensure	they	are	properly	ordered.

Then	we	create	our	query	by	calling	 latest_room_messages/2 	with	 1 	as	the	room	(note	that	we	added
three	messages	to	room	1)	and	 2 	as	the	override	for	the	default	value	of	 10 ,	so	we	will	only	get	the	two
most	recent	messages	back.	Now	that	we've	created	the	query	we	want,	we	use	 Repo.all/1 	to	get	the
result	of	the	query.

Now	we	run	our	first	assertion,	which	makes	sure	that	we	only	received	2	messages.	If	we	hadn't
specified	 2 	in	our	 latest_room_messages/2 ,	we	should	have	received	all	3	messages	we	added	to	the
database	because	the	default	limit	is	10	messages.

From	there	we	use	the	head-tail	pattern	matching	to	separate	out	the	first	message	from	the	list	(the
head)	from	the	rest	of	the	message	(the	tail)	and	assign	the	head	to	 msg1 	and	the	tail	to	 msg2 .

Then	in	our	assertion,	we	are	checking	to	make	sure	that	the	second	message	(msg2)	has	the	same
timestamp	value	as	the	second	message	we	added	to	our	database	(second).	We	do	this	with
Ecto.DateTime.compare/2.	Keep	in	mind	that	comparing	Ecto.DateTime	structs	with	things	like	 > 	or
other	comparison	operators	won't	work	as	expected	because	they're	treated	as	structs	rather	than
normal	values.

Our	next	assertion	checks	to	make	sure	that	the	values	we	received	are	ordered	properly.	We	expect	that
our	most	recent	(by	timestamp)	message	should	be	first,	so	we	use	 compare/2 	again	to	assert	that
msg1.timestamp 	is	greater	than	(:gt)	 msg2.timestamp .

The	last	assertion,	as	mentioned	earlier,	tests	to	make	sure	that	the	default	value	for	our	 limit 	is	10	if

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 281	of	407

http://elixir-lang.org/getting-started/pattern-matching.html#pattern-matching
https://hexdocs.pm/ecto/Ecto.DateTime.html#compare/2
https://www.learnphoenix.io

we	do	not	specify	anything.

/test/models/message_test.exs
commit: coming soon

test	"query	that	returns	latest	messages	of	a	given	room"	do
		first		=	Ecto.DateTime.from_erl({{2016,	5,	23},	{12,	30,	12}})
		second	=	Ecto.DateTime.from_erl({{2016,	5,	24},	{12,	30,	12}})
		third		=	Ecto.DateTime.from_erl({{2016,	5,	25},	{12,	30,	12}})
		Repo.insert!(%Message{room:	"1",	body:	"test",	timestamp:	first})
		Repo.insert!(%Message{room:	"1",	body:	"test",	timestamp:	second})
		Repo.insert!(%Message{room:	"1",	body:	"test",	timestamp:	third})
		Repo.insert!(%Message{room:	"2",	body:	"test",	timestamp:	Ecto.DateTime.utc()})

		messages	=	Message.latest_room_messages("1",	2)	|>	Repo.all
		assert	length(messages)	==	2

		[msg1	|	[msg2]]	=	messages
		assert	Ecto.DateTime.compare(msg2.timestamp,	second)	==	:eq
		assert	Ecto.DateTime.compare(msg1.timestamp,	msg2.timestamp)	==	:gt
		assert	{10,	:integer}	in	Message.latest_room_messages("1").limit.params
end

If	you	run	your	tests	and	you're	getting	an	error	along	the	lines	of	the	code	below,	you	are	most	likely
running	the	wrong	version	of	Ecto.	You	need	to	upgrade	to	Ecto	2.0.

3)	test	changeset	with	invalid	attributes	(PhoenixChat.MessageTest)
			test/models/message_test.exs:14
			Assertion	with	in	failed
			code:	{:body,	"can't	be	blank"}	in	errors
			lhs:		{:body,	"can't	be	blank"}
			rhs:		[body:	{"can't	be	blank",	[]},	timestamp:	{"can't	be	blank",	[]},
										room:	{"can't	be	blank",	[]}]
			stacktrace:
					test/models/message_test.exs:16:	(test)

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 282	of	407

https://www.learnphoenix.io

Creating	an	Organization	Model

Creating	the	model
Writing	tests

At	this	point	in	our	app,	all	users	who	sign	up	will	have	access	to	the	same	chatroom.	This	is	fine	if	you're
self-hosting,	but	we	want	to	build	this	to	handle	multiple	accounts,	which	we	will	call	 Organizations .
Then	at	some	point,	we	will	add	the	ability	to	include	multiple	administrators	within	each	organization.

For	example,	if	you	have	two	websites,	say	sightlinemaps.com	and	learnphoenix.io,	each	website	would
represent	an	organization.	We	want	to	send	chat	messages	from	visitors	to	sightlinemaps.com	only	to
the	admins	of	the	Sightline	Maps	organization,	and	not	to	LearnPhoenix.

The	structure	of	our	organizations	will	look	like	the	image	below,	with	the	following	characteristics:	1)
Every	user	(admin/owner)	may	only	be	associated	with	one	organization,	2)	Each	organization	may	only
have	one	owner,	3)	Every	organization	may	have	multiple	administrators	who	can	see	and	respond	to
messages.

Creating	an	Organization	model

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 283	of	407

http://sightlinemaps.com
http://learnphoenix.io
http://sightlinemaps.com
https://www.learnphoenix.io

We're	going	to	start	by	adding	an	 Organization 	model	with	only	three	fields:

public	key 	-	randomly	generated	unique	key	that	will	be	used	for	routing	messages	from	users	to
admins.	 website 	-	a	unique	website.	 owner 	-	an	association	with	a	 User .	This	is	the	creator/owner	of
the	organization.

The	public	key	will	be	automatically	generated	when	an	organization	is	created.	This	public	key	will	be
used	for	routing	messages	from	users	to	admins.	All	users	of	website	A	will	use	the	same	public	key	as
all	admins	of	website	A.	Every	user	and	admin	socket	connection	will	store	the	public	key	of	the	relevant
organization.

We	also	take	steps	to	ensure	our	data	is	valid	since	we	want	 website 	and	 public_key 	to	be	unique.
Also,	we	want	the	website	to	have	a	valid	URL	format.	So	to	validate	the	URL	format,	we	use	Regular
Expressions,	which	we	will	cover	only	briefly.	If	you	are	not	familiar	with	Regular	Expressions,	there	are
ample	resources	online	to	learn	how	they	work	and	what	they	are	used	for.	One	of	them	is	regexone.com.

So	now	let's	create	an	 Organization 	model	with	a	 website ,	a	 public_key ,	and	an	 owner_id .	We're
also	going	to	generate	the	controller	and	a	lot	of	other	boilerplate	that	comes	with	it	by	using	 mix
phoenix.gen.json .

$	mix	phoenix.gen.json	Organization	organizations	\
		public_key	website	owner_id:references:users

Then	we	need	to	change	a	few	things.	The	first	notable	change	is	that	we're	adding	a	 :nilify_all
option	to	the	 :on_delete 	for	our	user	(docs).	The	reason	we're	doing	this	is	because	every	organization
must	have	an	owner,	and	if	a	user	is	deleted,	we	have	to	decide	what	to	do	with	the	organization.	For	now,
we're	just	going	to	set	the	value	of	the	owner	to	 nil 	and	we	can	later	decide	what	we	want	to	do	with	un-
owned	organizations.	If	we	didn't	do	this,	we	would	only	know	if	an	organization	is	un-owned	by	filtering
out	all	organization	that	do	not	have	a	user	that	is	currently	registered.

Then	we	change	around	our	index	since	we	want	our	organizations	to	be	unique	based	on	their
public_key 	and	their	 website .	We're	also	adding	an	index	on	 owner_id 	because	we	might	have	to
search	based	on	that	parameter	at	some	point.

/priv/repo/migrations/...create_organization.exs
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 284	of	407

https://regexone.com/
https://hexdocs.pm/ecto/Ecto.Migration.html#references/2
https://www.learnphoenix.io

defmodule	PhoenixChat.Repo.Migrations.CreateOrganization	do
		use	Ecto.Migration

		def	change	do
				create	table(:organizations)	do
						add	:public_key,	:string,	null:	false
						add	:website,	:string,	null:	false
						add	:owner_id,	references(:users,	on_delete:	:nilify_all)

						timestamps()
				end

				create	index(:organizations,	[:owner_id])
				create	unique_index(:organizations,	[:public_key])
				create	unique_index(:organizations,	[:website])
		end
end

And	now	we	have	to	build	out	our	 Organization 	model.	For	the	sake	of	clarity,	we're	going	to	go	through
each	function	individually.	The	first	is	our	 changeset ,	in	which	we	define	what	is	a	valid	 Organization
model	with	a	variety	of	constraints.	These	constraints	and	functions	are	defined	below	the	 changeset
and	are	explained	in	greater	detail	below.	The	format	of	the	changeset	should	look	familiar.

/web/models/organization.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 285	of	407

https://www.learnphoenix.io

defmodule	PhoenixChat.Organization	do
		use	PhoenixChat.Web,	:model

		schema	"organizations"	do
				field	:public_key,	:string
				field	:website,	:string
				belongs_to	:owner,	PhoenixChat.Owner

				timestamps()
		end

		@doc	"""
		Builds	a	changeset	based	on	the	`struct`	and	`params`.
		"""
		def	changeset(struct,	params	\\	%{})	do
				struct
				|>	cast(params,	[:website])
				|>	validate_required([:website])
				|>	update_change(:website,	&set_uri_scheme/1)
				|>	validate_change(:website,	&validate_website/2)
				|>	unique_constraint(:website)
				|>	put_public_key()
				|>	unique_constraint(:public_key)
		end

		...
end

Within	our	 changeset 	pipeline,	we	have	a	 put_public_key/1 	function.	This	is	the	function	that	generates
the	 :public_key 	for	the	organization.	We're	going	to	allow	for	the	future	possibility	that	someone	might
need	to	change	their	information	without	changing	the	 public_key ,	so	we're	going	to	use	this	function
only	if	the	organization	is	new,	which	we	determine	based	on	whether	the	incoming	data	has	an	 id 	field
(if	it's	been	added	to	the	database	already,	it	will	have	an	 id ,	otherwise	it	won't).

Assuming	the	organization	is	new	and	the	 changeset 	is	valid,	we	pass	it	along	to	 put_change/3 	(docs),
which	changes	a	key	(in	this	case	 :public_key)	with	a	value.	On	our	case,	that	value	is	the	output	of
another	function	we	need	to	create	called	 random_key/0 .	If	the	organization	already	exists,	then	we	pass
it	along	to	the	rest	of	the	changeset	without	changing	the	 public_key 	field.

Within	the	 random_key 	function,	we're	generating	a	random	key	using	the	 crypto 	module	in	Erlang,
which	gives	us	random	bytes	which	encode	to	Base64	text,	then	we	trim	that	to	a	certain	number	of
characters.	We're	setting	a	default	length	of	10	characters.	If	you're	interested	in	learning	more	about	has
collision	probabilities	to	determine	how	long	you	should	make	your	API	key,	check	our	blog	post	on	the
subject.

/web/models/organization.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 286	of	407

https://hexdocs.pm/ecto/Ecto.Changeset.html#put_change/3
https://blog.learnphoenix.io/how-long-should-i-make-my-api-key-833ebf2dc26f#.a4s7j1s67
https://www.learnphoenix.io

defmodule	PhoenixChat.Organization	do
		use	PhoenixChat.Web,	:model

		...

		defp	put_public_key(%{data:	data}	=	changeset)	do
				if	changeset.valid?	&&	!data.id	do
						changeset
						|>	put_change(:public_key,	random_key())
				else
						changeset
				end
		end

		defp	random_key(length	\\	10)	do
				:crypto.strong_rand_bytes(length)	|>	Base.encode64	|>	binary_part(0,	length)
		end

		...

end

The	next	couple	functions	deal	with	the	website	input.	If	the	user	provides	an	input	for	a	website	without
a	URI	prefix,	such	as	 http:// ,	 https:// ,	or	 ftp:// ,	we	are	going	to	prepend	it	with	a	default	URI
scheme	of	 https:// ,	so	that	a	website	of	 foo.com 	becomes	 https://foo.com .

Within	this	function,	we're	using	Elixir's	Regex	module	to	match	on	any	string	that	starts	with	(^)	any	set
of	numbers	or	letters	(w+)	followed	by	 :// .	If	it	matches,	that	means	the	website	provided	already	has	a
URI	scheme.	If	it	doesn't	match,	then	we're	prepending	 https:// 	to	it.	And	regardless	of	whether	it
matches	or	not,	we're	turning	the	whole	string	into	lowercase	before	returning.	If	you	want	to	test	out	if
your	particular	regex	is	valid	with	Elixir,	check	out	Elixre	(you	might	even	want	to	bookmark	it).

/web/models/organization.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 287	of	407

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://elixir-lang.org/docs/stable/elixir/Regex.html
http://www.elixre.uk/
https://www.learnphoenix.io

defmodule	PhoenixChat.Organization	do
		use	PhoenixChat.Web,	:model

		...

		defp	set_uri_scheme(nil),	do:	nil
		defp	set_uri_scheme(website)	do
				if	Regex.match?(~r/^\w+:\/\//,	website)	do
						website
				else
						"https://"	<>	website
				end	|>	String.downcase()
		end
end

In	the	 validate_website 	function,	we're	validating	that	the	website	address	we	received	is	valid.	This	a
complicated	thing	to	match	and	we	aren't	going	to	even	attempt	to	handle	the	edge	cases,	but	this
validation	should	handle	the	overwhelming	majority	of	websites	(if	you	want	to	get	a	sense	of	how	many
random	things	are	actually	valid	URLs,	check	out	formvalidation.io).	This	function	starts	by	using	the	Elixir
URI	module	to	split	the	website	into	 scheme 	(e.g.	 https://)	and	 host 	(e.g.	 learnphoenix.io).

We	want	to	return	an	error	if	the	URI	scheme	is	not	 http 	or	 https ,	or	if	it	does	not	pass	our
valid_host_format/1 	function,	which	has	its	own	regular	expression.	The	first	grouping	of	the	regular
expression	looks	for	some	series	of	numbers	and	letters	that	end	in	a	 . 	(^([a-zA-z]+\.)).	The	asterisk
(*)	tells	us	that

Within	the	 valid_host_format/1 	function,	we're	running	a	new	regular	expression	that	checks	to	make
sure	that	the	url	starts	with	some	series	of	numbers	and/or	letters,	followed	by	a	 . ,	followed	by	anything
(*),	and	must	end	with	a	series	of	letters.

/web/models/organization.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 288	of	407

http://formvalidation.io/validators/uri/
http://elixir-lang.org/docs/stable/elixir/URI.html
https://www.learnphoenix.io

defmodule	PhoenixChat.Organization	do
		use	PhoenixChat.Web,	:model

		...

		defp	validate_website(:website,	website)	do
				%URI{scheme:	scheme,	host:	host}	=	URI.parse(website)

				if	is_nil(scheme)	||
							is_nil(host)	||
							not	scheme	in	~w(http	https)	||
							!valid_host_format?(host)	do
						[website:	"invalid	url	format"]
				else
						[]
				end
		end

		defp	valid_host_format?(host)	do
				Regex.match?	~r/^([a-zA-z]+\.)*[a-zA-Z]+$/,	host
		end
end

Organization	model	tests

To	ensure	the	stability	of	our	app,	we're	going	to	write	some	tests	for	our	Organization	model.	Much	of
the	code	below	will	have	already	been	written	by	the	generator	and	all	of	the	content	of	these	tests	has
already	been	covered	in	the	previous	chapters	on	testing.	(If	there	is	anything	in	this	codeblock	that	you
do	not	believe	was	covered	previously,	please	email	info@learnphoenix.io	and	we	will	add	clarification)

/test/models/organization_test.exs
commit: coming soon

defmodule	PhoenixChat.OrganizationTest	do
		use	PhoenixChat.ModelCase

		alias	PhoenixChat.Organization

		@valid_attrs	%{website:	"foo.com"}
		@invalid_attrs	%{}

		test	"changeset	with	valid	attributes"	do
				changeset	=	Organization.changeset(%Organization{},	@valid_attrs)

				assert	changeset.valid?
		end

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 289	of	407

https://www.learnphoenix.io

		end

		test	"changeset	must	have	unique	website"	do
				changeset	=	Organization.changeset(%Organization{},	@valid_attrs)
				Repo.insert!	changeset

				changeset	=	Organization.changeset(%Organization{},	@valid_attrs)
				{:error,	changeset}	=	Repo.insert(changeset)

				assert	{:website,	{"has	already	been	taken",	[]}}	in	changeset.errors
		end

		test	"changeset	must	have	a	unique	public	key	generated	on	create"	do
				changeset	=	Organization.changeset(%Organization{},	%{website:	"http://foo.com"})
				org1	=	Repo.insert!	changeset

				changeset	=	Organization.changeset(%Organization{},	%{website:	"http://bar.com"})
				org2	=	Repo.insert!	changeset

				assert	org1.public_key	!=	org2.public_key
		end

		test	"changeset's	website	must	be	a	valid	url"	do
				some_invalid_urls	=	["test	this",	"???",	"...",	".www.foo.bar.",	"foo.",	"ftp://foo.com"]

				for	invalid_url	<-	some_invalid_urls	do
						changeset	=	Organization.changeset(%Organization{},	%{website:	invalid_url})

						assert	{:website,	{"invalid	url	format",	[]}}	in	changeset.errors
				end

				some_valid_urls	=	~w(foo.com	www.foo.com	http://foo.com	https://foo.com?test=foo	foo.com?test=bar)

				for	valid_url	<-	some_valid_urls	do
						changeset	=	Organization.changeset(%Organization{},	%{website:	valid_url})

						assert	changeset.valid?
				end
		end
end

Also,	just	for	the	sake	of	making	sure	our	app	compiles	at	this	point,	let's	add	the	endpoint	that	the
generator	suggested	to	 router.ex .

/web/router.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 290	of	407

https://www.learnphoenix.io

...
		scope	"/api",	PhoenixChat	do
				pipe_through	:api

				resources	"/users",	UserController,	except:	[:new,	:edit]
				resources	"/organizations",	OrganizationController,	except:	[:new,	:edit]
		end
...

Next	we	need	to	associate	our	users	with	an	organization	and	set	up	endpoints	to	change	our
organizations.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 291	of	407

https://www.learnphoenix.io

Associate	Organizations	and	Users

Alter	:users	table
Update	models
Update	model	tests

Now	that	we	have	organizations	set	up,	we	need	to	associate	our	 User 	model	with	an	organization.	A
user	may	create	an	organization	and	a	user	will	be	associated	with	an	organization.	The	owner	of	the
organization	will	have	special	priveleges	that	we	will	add	later	on	(such	as	inviting	others,	deleting	the
organization,	etc).

Alter	:users	table

The	first	and	most	straightforward	thing	to	do	is	to	generate	a	new	migration	and	alter	the	existing
:users 	table	to	include	a	new	field	for	 :organization_id 	so	we	know	to	which	organization	this	user
belongs.

$	mix	ecto.gen.migration	add_organization_reference_in_user

Then	we	alter	the	 :users 	table	and	add	an	 :organization_id 	which	references	our	 :organizations
table.	We're	also	setting	an	option	to	 nilify_all 	so	when	a	user	is	deleted,	all	of	the	user's	owned
organizations	will	have	their	 owner_id 	set	to	 nil .	We	do	this	since	we	want	users	whose	organizations
have	been	deleted	to	have	a	 nil 	value	rather	than	continue	to	reference	a	non-existent	user.

/priv/repo/migrations/...reference_in_user.exs
commit: coming soon

defmodule	PhoenixChat.Repo.Migrations.AddOrganizationReferenceInUser	do
		use	Ecto.Migration

		def	change	do
				alter	table(:users)	do
						add	:organization_id,	references(:organizations,	on_delete:	:nilify_all)
				end
		end
end

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 292	of	407

https://www.learnphoenix.io

Now	we	need	to	update	our	models	to	reflect	this	change.

Update	User	and	Organization	models

The	first	change	we'll	make	is	to	the	 User 	model,	in	which	we	will	add	an	association	between	our	 User
model	and	our	 Organization 	model.	In	this	case,	we're	adding	a	 has_one 	association	between	the
Organization 	and	the	 User ,	signifying	that	each	user	may	only	own	one	organization.	Then	we're
adding	a	 belongs_to 	association	to	link	our	users	to	a	particular	organization.

For	a	more	detailed	explanation	of	the	 belongs_to/3 	function,	here's	one	from	the	Ecto	docs.

You	should	use	belongs_to	in	the	table	that	contains	the	foreign	key.	Imagine	a	company	<->
manager	relationship.	If	the	company	contains	the	manager_id	in	the	underlying	database
table,	we	say	the	company	belongs	to	manager.

We're	also	going	to	associate	our	organizations	with	our	users.

/web/models/user.ex
commit: coming soon

defmodule	PhoenixChat.User	do
		use	PhoenixChat.Web,	:model
		alias	PhoenixChat.Organization

		schema	"users"	do
				field	:email,	:string
				field	:encrypted_password,	:string
				field	:username,	:string
				field	:password,	:string,	virtual:	true

				has_one	:owned_organization,	Organization,	foreign_key:	:owner_id
				belongs_to	:organization,	Organization

				timestamps
		end

		...
end

Then	within	our	 Organization 	model,	we	add	a	 has_many 	association	with	 :admins 	with	the
:organization_id 	as	the	foreign	key,	telling	our	 Organization 	schema	that	it	should	expect	to	have
(potentially)	many	admins.	We	also	say	that	an	organization	 belongs_to 	whichever	 User 	is	the
:owner_id 	foreign	key	that	we	set	above	in	our	 User 	model.

We're	also	going	to	adjust	our	 changeset 	to	require	an	 :owner_id 	when	an	organization	is	created

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 293	of	407

https://hexdocs.pm/ecto/Ecto.Schema.html#belongs_to/3
https://www.learnphoenix.io

because	we	don't	want	organizations	without	an	owner.

/web/models/organization.ex
commit: coming soon

defmodule	PhoenixChat.Organization	do
		use	PhoenixChat.Web,	:model
		alias	PhoenixChat.{User,	Repo}

		schema	"organizations"	do
				field	:public_key,	:string
				field	:website,	:string

				has_many		:admins,	User,	foreign_key:	:organization_id
				belongs_to	:owner,	User,	foreign_key:	:owner_id

				timestamps()
		end

		@doc	"""
		Builds	a	changeset	based	on	the	`struct`	and	`params`.
		"""
		def	changeset(struct,	params	\\	%{})	do
				struct
				|>	cast(params,	[:website,	:owner_id])
				|>	validate_required([:website,	:owner_id])
				|>	update_change(:website,	&set_uri_scheme/1)
				|>	validate_change(:website,	&validate_website/2)
				|>	unique_constraint(:website)
				|>	put_public_key()
				|>	unique_constraint(:public_key)
		end

		...
end

The	last	thing	we	should	do	before	proceeding	is	update	our	model	tests	with	these	new	associations.

Update	model	tests

We'll	start	with	the	 User 	tests	because	they're	simpler.

Our	first	test	checks	to	make	sure	that	we	can	create	an	organization	with	an	 :owner_id 	that	references
a	user.	In	order	to	do	this,	we	need	to	use	 Repo.preload/3 	(docs)	to	load	the	 :owned_organization
association	with	our	user.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 294	of	407

https://hexdocs.pm/ecto/Ecto.Repo.html#c:preload/3
https://www.learnphoenix.io

If	you're	not	familiar	with	how	relational	databases	handle	associations,	you	can	think	of	the	association
as	a	way	of	pointing	to	another	struct	(in	our	case,	 User 	pointing	to	 Organization),	but	without	the	need
to	copy	the	entire	organization	into	the	user.	But,	if	you	want	to	actually	check	to	make	sure	that	the
organization	is	the	one	you're	intending	to	reference	(user.owned_organization),	you	need	to	load	it	into
the	user,	otherwise	the	 :owned_organization 	of	the	user	would	not	contain	any	data.

/test/models/user_test.exs
commit: coming soon

defmodule	PhoenixChat.UserTest	do
		use	PhoenixChat.ModelCase

		alias	PhoenixChat.{User,	Organization,	ConnCase}

		@valid_attrs	%{email:	"foo@bar.com",	encrypted_password:	"some	content",	username:	"some	content"
		@invalid_attrs	%{}

		test	"user	can	own	an	organization"	do
				user	=	ConnCase.create_user!
				org		=	Repo.insert!	%Organization{website:	"foo.com",	owner_id:	user.id,	public_key:	"test"
				user	=	Repo.preload(user,	:owned_organization)

				assert	user.owned_organization	==	org
		end

		test	"user	belongs	to	organization"	do
				org		=	Repo.insert!	%Organization{website:	"foo.com",	public_key:	"test"}
				user	=	ConnCase.create_user!(%{organization_id:	org.id})
											|>	Repo.preload(:organization)

				assert	user.organization	==	org
		end

		...
end

Then	we	need	to	set	up	and	alter	a	few	of	our	 Organization 	tests.	The	first	change	is	to	our	 setup
block,	in	which	we	want	to	create	a	user	for	every	test	since	every	organization	will	need	an	owner.	And
since	the	database	clears	before	every	test,	each	new	user	will	have	an	 id 	of	 1 .	Because	of	that,	we're
adding	 owner_id:	1 	to	our	 @valid_attrs ,	which	should	reference	the	user	created	at	the	start	of	each
test.

/test/models/organization_test.exs
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 295	of	407

https://www.learnphoenix.io

defmodule	PhoenixChat.OrganizationTest	do
		use	PhoenixChat.ModelCase

		alias	PhoenixChat.{Organization,	ConnCase}

		@valid_attrs	%{website:	"foo.com",	owner_id:	1}
		@invalid_attrs	%{}

		setup	do
				user	=	ConnCase.create_user!(%{id:	1})
				{:ok,	%{user:	user}}
		end

		test	"organization	belongs	to	owner",	%{user:	user}	do
				org	=	Repo.insert!	%Organization{website:	"foo.com",	owner_id:	user.id,	public_key:	"test"
										|>	Repo.preload(:owner)

				assert	org.owner	==	user
		end

		test	"organization	can	have	one	admin"	do
				org		=	Repo.insert!	%Organization{website:	"foo.com",	public_key:	"test"}
				user	=	ConnCase.create_user!(%{username:	"bar",	email:	"bar@foo.com",	organization_id:	org.id})

				org	=	Repo.preload(org,	:admins)

				assert	org.admins	==	[user]
		end

		test	"organization	has	many	admins"	do
				org	=	Repo.insert!	%Organization{website:	"foo.com",	public_key:	"test"}
				user	=	ConnCase.create_user!(%{username:	"bar",	email:	"bar@foo.com",	organization_id:	org.id})
				user2	=	ConnCase.create_user!(%{username:	"baz",	email:	"baz@qux.com",	organization_id:	org.id})

				org	=	Repo.preload(org,	:admins)

				assert	org.admins	==	[user,	user2]
		end

		...
end

Then	we	need	to	update	a	few	of	our	other	tests	with	the	new	 :owner_id 	attribute	so	that	their
changeset	becomes	valid.

/test/models/organization_test.exs
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 296	of	407

https://www.learnphoenix.io

...
test	"changeset	must	have	a	unique	public	key	generated	on	create"	do
		changeset	=	Organization.changeset(%Organization{},	@valid_attrs)
		org1	=	Repo.insert!	changeset

		changeset	=	Organization.changeset(%Organization{},	%{website:	"http://bar.com",	owner_id:	1})
		org2	=	Repo.insert!	changeset

		assert	org1.public_key	!=	org2.public_key
end

test	"changeset's	website	must	be	a	valid	url"	do
		...

		for	valid_url	<-	some_valid_urls	do
				changeset	=	Organization.changeset(%Organization{},	%{website:	valid_url,	owner_id:	1})

				assert	changeset.valid?
		end
end
...

Now	if	you	run	your	tests,	all	of	your	model	tests	will	pass	(though	you	should	still	have	5	errors	since	we
haven't	updated	our	 OrganizationControllerTest).

Also,	make	sure	you	run	your	migration!

$	mix	ecto.migrate

The	next	step	is	to	make	our	CRUD	endpoints	to	allow	our	users	to	create	a	new	organization.	From	there,
our	users	will	have	access	to	their	public	key	that	they	can	use	to	populate	their	 phoenix-chat
component	and	start	sending	and	receiving	messages	routed	to	the	proper	organization.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 297	of	407

https://www.learnphoenix.io

CRUD	Endpoints	for	Organization:	Part	1

Update	OrganizationControllerTest
Update	OrganizationController
Create	organization	on	signup

Now	that	we	have	our	 Organization 	ready,	we	need	to	give	our	frontend	the	ability	to	add	and	update
them.	We're	going	to	do	this	by	adding	some	simple	CRUD	(Create	Read	Update	Delete)	operations.

Update	OrganizationControllerTest

Most	of	the	work	for	creating	an	 Organization 	was	in	the	model.	In	fact,	there's	almost	nothing	we	have
to	change	from	the	generator	output	in	our	 OrganizationController ,	but	we	will	need	to	make	some
significant	changes	to	our	tests.

This	is	a	big	block	of	code,	but	none	of	this	is	new--we	covered	each	of	these	tests	in	the	previous	section
on	testing	controllers.	One	thing	to	note	is	that	we	can	call	 create_user!/1 	and	 create_user!/2 	since
we're	adding	 use	PhoenixChat.ConnCase 	to	our	module.	You	should	go	through	each	test	to	make	sure
you	understand	what	it's	testing.	If	you	run	into	issues,	refer	back	to	the	chapter	on	testing	controllers.

/test/controllers/organization_controller_test.exs
commit: coming soon

defmodule	PhoenixChat.OrganizationControllerTest	do
		use	PhoenixChat.ConnCase

		alias	PhoenixChat.{Organization,	Repo}
		@valid_attrs	%{website:	"http://www.foo.com",	owner_id:	1}
		@invalid_attrs	%{}

		test	"lists	all	entries	on	index",	%{conn:	conn}	do
				conn	=	get	conn,	organization_path(conn,	:index)
				assert	json_response(conn,	200)["data"]	==	[]
		end

		test	"shows	chosen	resource",	%{conn:	conn}	do
				create_user!(%{id:	1})
				changeset	=	Organization.changeset(%Organization{},	@valid_attrs)
				org	=	Repo.insert!(changeset)

				conn	=	get	conn,	organization_path(conn,	:show,	org)

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 298	of	407

https://www.learnphoenix.io

				response	=	json_response(conn,	200)["data"]
				assert	%{"public_key"	=>	_,	"owner_id"	=>	1,	"website"	=>	"http://www.foo.com",
						"id"	=>	_}	=	response
		end

		test	"does	not	show	resource	instead	throws	error	when	id	is	nonexistent",	%{conn:	conn}	do
				assert_error_sent	404,	fn	->
						get	conn,	organization_path(conn,	:show,	-1)
				end
		end

		test	"creates	and	renders	resource	when	data	is	valid",	%{conn:	conn}	do
				create_user!(%{id:	1})
				conn	=	post	conn,	organization_path(conn,	:create),	organization:	@valid_attrs

				assert	json_response(conn,	201)["data"]["id"]
				assert	Repo.get_by(Organization,	@valid_attrs)
		end

		test	"does	not	create	resource	and	renders	errors	when	data	is	invalid",	%{conn:	conn}	do
				conn	=	post	conn,	organization_path(conn,	:create),	organization:	@invalid_attrs
				assert	json_response(conn,	422)["errors"]	!=	%{}
		end

		test	"updates	and	renders	chosen	resource	when	data	is	valid",	%{conn:	conn}	do
				create_user!(%{id:	1})
				changeset	=	Organization.changeset(%Organization{},	@valid_attrs)
				org	=	Repo.insert!(changeset)

				new_attrs	=	%{website:	"http://www.bar.com"}
				conn	=	put	conn,	organization_path(conn,	:update,	org),	organization:	new_attrs

				assert	json_response(conn,	200)["data"]["id"]
				assert	Repo.get_by(Organization,	new_attrs)
		end

		test	"does	not	update	chosen	resource	and	renders	errors	when	data	is	invalid",	%{conn:	conn
				create_user!(%{id:	1})
				changeset	=	Organization.changeset(%Organization{},	@valid_attrs)
				org		=	Repo.insert!(changeset)
				conn	=	put	conn,	organization_path(conn,	:update,	org),	organization:	%{website:	nil}

				assert	json_response(conn,	422)["errors"]	!=	%{}
		end

		test	"deletes	chosen	resource",	%{conn:	conn}	do
				create_user!(%{id:	1})
				changeset	=	Organization.changeset(%Organization{},	@valid_attrs)
				org		=	Repo.insert!(changeset)
				conn	=	delete	conn,	organization_path(conn,	:delete,	org)

				assert	response(conn,	204)

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 299	of	407

https://www.learnphoenix.io

				refute	Repo.get(Organization,	org.id)
		end
end

Now	when	you	run	your	tests,	they	should	all	pass.

Update	OrganizationController

The	only	thing	we	need	to	change	in	our	controller	is	to	add	 scrub_params/2 	(docs),	which	simply	checks
to	make	sure	the	required	parameters	are	there	and	turns	all	empty	strings	into	 nil .	Everything	else	was
created	by	the	generator.

/web/controllers/organization_controller.ex
commit: coming soon

defmodule	PhoenixChat.OrganizationController	do
		use	PhoenixChat.Web,	:controller

		alias	PhoenixChat.{Organization,	Repo}

		plug	:scrub_params,	"organization"	when	action	in	[:create,	:update]

		...

end

Create	organization	on	signup

We'll	also	want	to	give	our	user	the	ability	to	create	an	organization	at	the	same	time	they	create	their
account.	To	accomplish	this,	we're	going	to	use	 Ecto.Changeset.cast_assoc/2 	in	our
User.registration_changeset/2 ,	which	will	allow	us	to	create	and	update	the	organization	association
at	the	same	time	we	create	our	organization.

The	first	thing	do	is	change	our	required	fields	in	our	 changeset .	Since	we	are	allowing	an	organization
to	be	created	at	the	same	time	as	a	user,	we	may	want	to	pass	a	newly-created	 User 	as	the
association 	parameter.	If	we	do,	then	we	don't	need	to	pass	in	an	 :owner_id 	since	we	will	handle	that
in	our	 cast_assoc/2 	in	our	 registration_changeset/2 	and	not	in	our	 changeset/2 .

/web/models/organization.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 300	of	407

https://hexdocs.pm/phoenix/Phoenix.Controller.html#scrub_params/2
https://www.learnphoenix.io

defmodule	PhoenixChat.Organization	do
		...

		def	changeset(struct,	params	\\	%{},	association	\\	false)	do
				required_fields	=	if	association,	do:	[:website],	else:	[:website,	:owner_id]

				struct
				|>	cast(params,	[:website,	:owner_id])
				|>	validate_required(required_fields)
				|>	update_change(:website,	&set_uri_scheme/1)
				|>	validate_change(:website,	&validate_website/2)
				|>	unique_constraint(:website)
				|>	put_public_key()
				|>	unique_constraint(:public_key)
		end

		@doc	"""
		User	for	`cast_assoc/2`	in	`User.registration_changeset/2`.	It's	only	difference
		from	`changeset/3`	is	that	it	does	not	require	an	`owner_id`.
		"""
		def	owner_changeset(struct,	params	\\	%{})	do
				changeset(struct,	params,	true)
		end

		...
end

So	now	within	our	 User 	model,	we	need	to	update	our	 registration_changeset/2 	to	handle	the
association	mentioned	above.	This	 cast_assoc/2 	will	look	for	an	 :owned_organization 	field	in	the
params	and	use	that	to	assign	an	 :owned_organization 	association	between	the	user	currently	being
created	and	a	new	organization.

/web/models/user.ex
commit: coming soon

...
		def	registration_changeset(model,	params)	do
				model
				|>	changeset(params)
				|>	cast(params,	~w(password),	[])
				|>	cast_assoc(:owned_organization,	with:	&Organization.owner_changeset/2)
				|>	validate_length(:password,	min:	6,	max:	100)
				|>	put_encrypted_pw
		end
...

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 301	of	407

https://www.learnphoenix.io

Note	that	our	 cast_assoc 	is	looking	for	an	 :owned_organization 	key,	so	we	will	need	to	change	the	data
we're	sending	on	account	creation	to	the	following	format:

{
		username,
		email,
		password,
		owned_organization:	{
				website
		}
}

Then	for	good	housekeeping,	let's	write	a	couple	tests	for	this	change.	For	our	 Organization 	test,	we	are
making	sure	that	the	new	 owner_changeset/2 	works	as	expected.

/test/models/organization_test.ex
commit: coming soon

...
		test	"owner	changeset	does	not	require	an	owner	id"	do
				changeset	=	Organization.owner_changeset(%Organization{},	%{website:	"foo.com"})
				assert	changeset.valid?
		end
...

Then	within	our	 User 	test,	we	are	updating	our	 registration_changeset/2 	test	to	make	sure	that	a	new
:owned_organization 	is	created	if	it's	provided.

/test/models/user_test.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 302	of	407

https://www.learnphoenix.io

...
		test	"registration	changeset	with	valid	attributes"	do
				valid_attrs	=	Map.put(@valid_attrs,	:password,	"password")
				changeset	=	User.registration_changeset(%User{},	valid_attrs)
				assert	changeset.valid?
				assert	get_change(changeset,	:encrypted_password)

				#	Test	that	a	new	owned_organization	is	created	properly	if	it	is	provided
				valid_attrs	=	%{owned_organization:	%{website:	"http://www.foo.com"}}
				changeset	=	User.registration_changeset(changeset,	valid_attrs)
				assert	changeset.valid?
				assert	get_change(changeset,	:owned_organization).changes.website	==	"http://www.foo.com"
				assert	get_change(changeset,	:owned_organization).changes.public_key
		end
...

And	that's	it.	Most	of	the	boilerplate	code	for	our	CRUD	endpoints	was	built	by	our	generator.	We	barely
had	to	change	 OrganizationController 	and	we	didn't	have	to	touch	our	 OrganizationView .

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 303	of	407

https://www.learnphoenix.io

CRUD	Endpoints	for	Organization:	Part	2

Additional	validation	for	organization	creation
Return	organization	data	on	authorization

Additional	validations

Since	we	currently	only	want	each	user	to	be	associated	with	one	organization	(either	as	an	admin	or	an
owner),	we	need	to	add	a	validation	to	make	sure	that	a	user	cannot	create	or	be	associated	with	more
than	one	account.	It's	easy	to	disable	this	endpoint	on	the	frontend,	but	we	also	want	to	make	sure	that	a
feisty	customer	can't	break	his	own	account	by	using	a	 curl 	command.

We're	going	to	create	another	validation	just	like	we	did	with	our	website	validation	above,	using
validate_change/3 	(docs).	In	this	case,	we're	creating	a	function	called	 validate_new_owner_admin/2
to	make	sure	the	user	trying	to	create	an	organization	is	not	already	associated	with	an	existing	account.
Just	like	we	did	in	our	 auth/me 	route,	we're	finding	a	user,	preloading	the	associations,	then	checking	to
see	if	we	get	an	organization.	If	we	do,	we	return	an	error.

/web/models/organization.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 304	of	407

https://hexdocs.pm/ecto/Ecto.Changeset.html#validate_change/3
https://www.learnphoenix.io

...
		def	changeset(struct,	params	\\	%{},	association	\\	false)	do
				required_fields	=	if	association,	do:	[:website],	else:	[:website,	:owner_id]

				struct
				|>	cast(params,	[:website,	:owner_id])
				|>	validate_required(required_fields)
				|>	validate_change(:owner_id,	&validate_new_owner_admin/2)
				|>	update_change(:website,	&set_uri_scheme/1)
				|>	validate_change(:website,	&validate_website/2)
				|>	unique_constraint(:website)
				|>	put_public_key()
				|>	unique_constraint(:public_key)
		end

		...

		defp	validate_new_owner_admin(:owner_id,	owner_id)	do
				user	=	Repo.get!	User,	owner_id
				org	=	Repo.preload(user,	:organization).organization	||	Repo.preload(user,	:owned_organization

				if	org	do
						[owner_id:	"user	is	owner	or	admin	of	existing	organiation"]
				else
						[]
				end
		end
		...

Update	auth/me

Now	that	we	can	create	an	organization,	we	need	to	be	able	to	return	the	 public_key 	to	the	user	in	a
consistent	manner.	Currently,	when	a	user	creates	an	organization	we	return	the	key	in	the	HTTP
response,	but	after	that	response	the	user	has	no	way	to	access	her	key	again.	To	solve	this,	we're	going
to	update	the	 auth/me 	route	to	return	the	 public_key 	of	the	organization	(if	there	is	one)	that	the	user
owns	or	is	an	admin.

Although	we	currently	only	have	 owners 	and	no	 admins ,	we	want	to	check	if	the	current	user	is	either	an
owner	or	an	admin	of	an	existing	organization.	We	check	this	by	using	 Repo.preload/3 	(docs)	to	load	the
associations	of	both	 :organization 	and	 :owned_organization .	We	then	check	to	see	if	there	is	a
match	in	either	one.	If	there	is	no	match,	it	returns	 nil 	so	we	want	to	render	just	the	user	data	without
the	organization	data.

/web/controllers/auth_controller.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 305	of	407

https://hexdocs.pm/ecto/Ecto.Repo.html#c:preload/3
https://www.learnphoenix.io

...

		def	me(conn,	_params)	do
				user	=	Guardian.Plug.current_resource(conn)
				org	=	Repo.preload(user,	:organization).organization	||	Repo.preload(user,	:owned_organization).owned_organization
				case	org	do
						nil	->	render(conn,	UserView,	"show.json",	user:	user)
						org	->	render(conn,	UserView,	"show.json",	user:	user,	org:	org)
				end
		end
...

Then	we	need	to	update	our	 UserView 	to	handle	this	new	data.

/web/views/user_view.ex
commit: coming soon

...

def	render("show.json",	%{user:	user,	org:	org})	do
		%{data:	render_one(user,	UserView,	"user_organization.json",	org:	org)}
end

def	render("show.json",	%{user:	user})	do
		%{data:	render_one(user,	UserView,	"user.json")}
end

...

def	render("user_organization.json",	%{user:	user,	org:	org})	do
		%{email:	user.email,
				id:	user.id,
				username:	user.username,
				website:	org.website,
				public_key:	org.public_key}
end

And	now	when	we	authorize	a	user,	we	check	to	see	if	that	user	is	associated	with	an	organization	and
return	the	organization's	data	along	with	the	authorization	request.	The	next	step	is	to	connect	our
frontend	and	allow	our	existing	user	to	create	an	organization.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 306	of	407

https://www.learnphoenix.io

Controlling	and	Validating	Forms

Controlled	forms
Validating	forms
Giving	UI	feedback

Controlled	form

Now	that	our	components	are	starting	to	look	closer	to	what	we	would	like,	we	should	tie	our	form	in	with
the	state	of	our	component.	When	people	first	start	using	Redux,	they	have	a	habit	of	tying	everything
into	 state .	But	just	because	you	have	the	global	 store 	doesn't	mean	that	everything	belongs	there.	Or
as	Redux	founder	Dan	Abramov	said:

You	don't	need	a	single	source	of	truth	for	everything.	Just	make	sure	you	have	a	single
source	of	truth	for	any	particular	thing.

A	form	like	a	signup	or	login	form	is	a	good	example	of	transitory	data	that	does	not	need	to	be	saved	in
your	Redux	 store .	If	a	user	navigates	away	and	comes	back,	does	he	expect	that	Redux	would
remember	the	status	of	that	form?	Probably	not.	In	fact,	she	would	probably	think	it's	weird.

It	is	for	this	reason	that	our	 Signup 	and	 Login 	components	will	have	their	values	tied	to	local	 state .
First	we	should	set	the	initial	values	of	our	form	state.

/app/components/Signup/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 307	of	407

https://www.learnphoenix.io

...
export	class	Signup	extends	React.Component	{
		constructor(props)	{
				super(props)
				this.state	=	{
						username:	"",
						email:	"",
						password:	"",
						passwordVerify:	""
				}
				this.submit	=	this.submit.bind(this)
		}
		...
}

/app/components/Login/index.js
commit: coming soon

...
export	class	Login	extends	React.Component	{
		constructor(props)	{
				super(props)
				this.state	=	{
						email:	"",
						password:	""
				}
		}
		...
}

Update	Login	component

Then	we	need	three	more	things.	We	need	a	 handleChange 	function	(or	whatever	you	prefer	to	name	it)
that	will	update	our	state	based	on	the	input,	we	need	to	set	the	 value 	of	each	input	to	the	value	of	the
corresponding	state	value,	and	we	need	to	change	the	values	that	we	submit	to	our	new	state	values.

/app/components/Login/index.js
commit: coming soon

export	class	Login	extends	React.Component	{
		constructor(props)	{
				super(props)
				this.state	=	{
						email:	"",

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 308	of	407

https://www.learnphoenix.io

						email:	"",
						password:	""
				}
				this.submit	=	this.submit.bind(this)
		}

		submit()	{
				const	user	=	{
						email:	this.state.email,
						password:	this.state.password
				}
				this.props.dispatch(Actions.userLogin(user))
		}

		handleChange(input,	e)	{
				this.setState({	[input]:	e.target.value	})
		}

		render()	{
				return	(
						<div	className={style.wrapper}>
								<div	className={style.form}>
										<div	className={style.inputGroup}>
												<input
														value={this.state.email}
														onChange={	e	=>	{	this.handleChange("email",	e)	}}
														placeholder="Email"
														className={style.input}
														type="text"	/>
										</div>
										<div	className={style.inputGroup}>
												<input
														value={this.state.password}
														onChange={	e	=>	{	this.handleChange("password",	e)	}}
														placeholder="Password"
														className={style.input}
														type="password"	/>
										</div>
										<Button
												onClick={this.submit}
												_style={{	width:	"100%"	}}
												type="primary">
												Submit
										</Button>
								</div>
						</div>
)
		}
}
...

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 309	of	407

https://www.learnphoenix.io

So	now,	when	you	type	something	into	the	 input 	field,	it	triggers	the	 onChange 	function,	which	in	turn
triggers	the	 this.handleChange 	function	that	we	defined.	Within	that	function,	we	set	the	local	 state 	of
the	relevant	input	to	the	value	of	the	input,	which	is	also	tied	to	the	relevant	 this.state[value] .	We've
provided	a	handy	chart	showing	the	general	flow	of	controlled	forms	below.

Handy	chart	coming	soon

This	might	sound	like	a	roundabout	way	of	filling	out	forms,	and	that's	because	it	is.	But	there	are
advantages	of	doing	it	this	way	(as	you	will	see	shortly).

Update	Signup	component

One	things	users	have	come	to	expect	from	forms	is	immediate	feedback	as	to	the	validity	of	their	form
inputs	because	it's	annoying	to	fill	out	an	entire	form	only	to	submit	the	form	and	have	an	error	telling	you
that	it's	invalid	(especially	when	it	then	erases	all	existing	form	data,	which	many	websites	do	for	some
reason).

Let's	start	by	updating	our	 Signup 	component	to	use	a	controlled	form	just	like	our	 Login 	component
above.

/app/components/Signup/index.js
commit: coming soon

export	class	Signup	extends	React.Component	{
		constructor(props)	{
				super(props)
				this.state	=	{
						username:	"",
						email:	"",
						password:	"",
						passwordVerify:	""
				}
				this.submit	=	this.submit.bind(this)
		}

		submit()	{
				const	user	=	{
						username:	this.state.username,
						email:	this.state.email,
						password:	this.state.password
				}
				this.props.dispatch(Actions.userNew(user))
		}

		handleChange(input,	e)	{
				this.setState({	[input]:	e.target.value	})
		}

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 310	of	407

https://www.learnphoenix.io

		}

		render()	{
				return	(
						<div	className={style.wrapper}>
								<div	className={style.form}>
										<div	className={style.inputGroup}>
												<input
														onChange={e	=>	{	this.handleChange("username",	e)	}}
														value={this.state.username}
														placeholder="Username"
														className={style.input}
														type="text"	/>
										</div>
										<div	className={style.inputGroup}>
												<input
														onChange={e	=>	{	this.handleChange("email",	e)	}}
														value={this.state.email}
														placeholder="Email"
														className={style.input}
														type="text"	/>
										</div>
										<div	className={style.inputGroup}>
												<input
														onChange={e	=>	{	this.handleChange("password",	e)	}}
														value={this.state.password}
														placeholder="Password"
														className={style.input}
														type="password"	/>
										</div>
										<div	className={style.inputGroup}>
												<input
														onChange={e	=>	{	this.handleChange("passwordVerify",	e)	}}
														value={this.state.passwordVerify}
														placeholder="Verify	Password"
														className={style.input}
														type="password"	/>
										</div>
										<Button
												onClick={this.submit}
												_style={{	width:	"100%"	}}
												type="primary">
												Submit
										</Button>
								</div>
						</div>
)
		}
}

And	now	that	we	have	a	controlled	form,	we	can	use	the	values	we	received	to	validate	our	inputs	before

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 311	of	407

https://www.learnphoenix.io

a	user	submits	them.	We're	going	to	create	two	validations	to	make	it	easy	for	a	user	to	know	in	advance
whether	the	email	address	they	entered	is	valid	and	whether	the	password	match.

We'll	start	by	creating	valid	and	invalid	constants	that	we	can	use	as	out	inline	style	objects.	If	valid,	the
input	will	receive	a	green	underline;	if	invalid,	it	will	receive	a	red	underline.

The	first	function	is	 validatePassword ,	which	compares	the	current	state	of	our	passwords	and	returns
invalid	if	less	than	6	characters	or	when	the	passwords	don't	match.	It	returns	valid	when	the	password
are	at	least	6	characters	and	match.

The	second	is	 validateEmail ,	which	uses	a	regular	expression	to	make	sure	the	email	address	contains
an	 @ 	symbol,	which	is	a	bit	oversimplified,	but	it	servers	our	purposes.

/app/components/Signup/index.js
commit: coming soon

...

const	validInput	=	{	borderBottom:	"3px	solid	#4CAF50"	}
const	invalidInput	=	{	borderBottom:	"3px	solid	#F44336"	}

export	class	Signup	extends	React.Component	{
		...

		validateEmail()	{
				if	(this.state.email.length	<	1)	return	{}
				return	/@/.test(this.state.email)	?	validInput	:	invalidInput
		}

		validatePassword()	{
				if	(this.state.password.length	<	1)	return	{}
				if	(this.state.password.length	<	6)	return	invalidInput
				return	this.state.password	===	this.state.passwordVerify	?	validInput	:	invalidInput
		}

		...
}

Then	we	need	to	connect	these	functions	to	our	inputs.	We're	going	to	add	a	 style 	tag	to	our	 email 	and
passwordVerify 	inputs,	and	in	that	 style 	tag	we	call	the	relevant	function	to	validate.	Note	that	in	the
event	of	no	match	(in	both	cases,	if	length	<	1),	we're	returning	an	empty	object.

/app/components/Signup/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 312	of	407

https://www.learnphoenix.io

...

export	class	Signup	extends	React.Component	{
		...

		render()	{

				return	(
						<div	className={style.wrapper}>
								<div	className={style.form}>
										...
										<div	className={style.inputGroup}>
												<input
														onChange={e	=>	{	this.handleChange("email",	e)	}}
														style={this.validateEmail()}
														value={this.state.email}
														placeholder="Email"
														className={style.input}
														type="text"	/>
										</div>
										...
										<div	className={style.inputGroup}>
												<input
														onChange={e	=>	{	this.handleChange("passwordVerify",	e)	}}
														style={this.validatePassword()}
														value={this.state.passwordVerify}
														placeholder="Verify	Password"
														className={style.input}
														type="password"	/>
										</div>
								</div>
						</div>
)
		}
}

And	now	you	have	form	validation.	As	you	can	see,	React's	inline	styling	makes	this	really	easy.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 313	of	407

https://www.learnphoenix.io

Create	and	Join	an	Organization	on	Signup

Update	Signup	component
Connect	to	endpoint
Create	new	action
Add	header	to	Chat	component

Now	that	we	can	create	an	organization	on	our	backend,	let's	add	a	new	view	on	our	frontend	that	will
access	our	new	endpoints.	We	already	have	a	 /settings 	route,	so	let's	use	that	for	creating	an
organization	from	an	existing	account	and	let's	update	our	 Signup 	component	to	handle	an	optional
organization	input.

Since	creating	an	organization	from	initial	signup	is	easier,	we	will	start	with	that	the	move	on	to	creating
a	user	from	our	 /settings 	route.

Update	Signup	component

As	it	turns	out,	this	requires	very	little	effort.	All	we	have	to	do	is	add	a	 website 	field	to	our	form	and
send	it	to	our	backend	in	the	format	that	it	expects.

/app/components/Signup/index.js
commit: coming soon

...

export	class	Signup	extends	React.Component	{
		constructor(props)	{
				super(props)
				this.state	=	{
						username:	"",
						email:	"",
						password:	"",
						passwordVerify:	"",
						website:	""
				}
				this.submit	=	this.submit.bind(this)
		}

		submit()	{
				if	(this.state.website)	{
						const	userWithOrg	=	{

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 314	of	407

https://www.learnphoenix.io

								username:	this.state.username,
								email:	this.state.email,
								password:	this.state.password,
								owned_organization:	{
										website:	this.state.website
								}
						}
						this.props.dispatch(Actions.userNew(userWithOrg))
				}	else	{
						const	user	=	{
								username:	this.state.username,
								email:	this.state.email,
								password:	this.state.password,
						}
						this.props.dispatch(Actions.userNew(user))
				}
		}

		render()	{
				return	(
						<div	className={style.wrapper}>
								<div	className={style.form}>
										...
										<div	className={style.inputGroup}>
												<input
														onChange={e	=>	{	this.handleChange("website",	e)	}}
														value={this.state.website}
														placeholder="Website	(optional)"
														className={style.input}
														type="text"	/>
										</div>
										...
								</div>
						</div>
)
		}
}
...

Now	go	ahead	and	logout	by	deleting	your	token	from	localStorage	(delete	localStorage.token),	then
refresh	the	page.	You	are	now	logged	out	and	unauthenticated.	Now,	when	you	create	a	valid	account
with	a	valid	website,	you'll	create	both	a	user	and	an	organization	at	the	same	time.

To	check	to	make	sure	this	is	working,	try	putting	a	 console.log 	in	your	 userAuth 	action.	If	you	do,	you
should	now	see	 public_key 	and	 website 	along	with	the	data	you	previously	received	from	the	server.

The	next	step	is	to	allow	a	user	who	already	has	an	account	but	no	organization	create	an	organization
from	the	 /settings 	route.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 315	of	407

https://www.learnphoenix.io

Create	an	action

Go	ahead	and	sign	out	again	by	deleting	your	token	and	refreshing,	then	create	a	new	user	without
including	a	website.	From	here,	we'll	create	a	new	Redux	action	that	connects	to	our	endpoint	so	that	the
existing	user	can	create	a	new	organization.

Everything	in	this	action	should	look	familiar.	In	the	event	of	an	error,	we're	passing	our	errors	to	our
reducers	but	we	aren't	going	to	bother	with	proper	error	handling	at	the	moment.

The	 organization 	parameter	we're	sending	to	our	server	expects	a	 website 	and	an	 owner_id ,	which	is
the	ID	of	the	currently	logged-in	user.	At	some	point	in	the	future,	we	will	refactor	this	to	handle
authentication	on	the	backend	using	 Guardian ,	but	for	now,	let's	just	pass	the	user's	ID	we're	storing	in
props 	as	the	 owner_id .

If	the	organization	is	created	successfully,	we	will	re-authorize	the	user	so	we	can	get	the	credentials	for
this	organization,	which	come	from	our	recently-changed	 auth/me 	route.

/app/redux/actions.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 316	of	407

https://www.learnphoenix.io

Actions.organizationNew	=	function	organizationNew(organization)	{
		return	dispatch	=>	fetch(`${API_HOST}/api/organizations`,	{
				method:	"POST",
				headers:	{
						Accept:	"application/json",
						"Content-Type":	"application/json"
				},
				body:	JSON.stringify({	organization	})
		})
		.then((res)	=>	{	return	res.json()	})
		.then((res)	=>	{
				if	(res.errors)	{
						return	dispatch({
								type:	"ORGANIZATION_NEW_ERROR",
								payload:	{
										errors:	res.errors
								}
						})
				}
				dispatch({
						type:	"ORGANIZATION_NEW"
				})
				return	dispatch(Actions.userAuth())
		})
		.catch((err)	=>	{
				console.warn(err)
		})
}

We	should	also	update	our	 user 	reducer	to	take	in	the	new	information	that	we	get	from	the	 auth/me
endpoint.	Recall	that	we	now	receive	 public_key 	and	 website 	from	that	endpoint.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 317	of	407

https://www.learnphoenix.io

function	user(state	=	{
		email:	"",
		username:	"",
		id:	"",
		public_key:	"",
		website:	""
},	action)	{
		switch	(action.type)	{

				...

				case	"USER_AUTH":
						return	Object.assign({},	state,	{
								email:	action.payload.user.email,
								username:	action.payload.user.username,
								id:	action.payload.user.id,
								public_key:	action.payload.user.public_key,
								website:	action.payload.user.website
						})
				default:	return	state
		}
})

The	next	step	is	to	update	our	 Settings 	component	and	connect	it	to	this	action.	But	before	we	do	that,
let's	update	our	 Chat 	component	with	a	header	that	can	easily	link	us	to	the	 /settings 	route.

Add	header	to	Chat	component

Now	that	we	have	an	endpoint,	we	should	add	a	header	to	the	top	of	our	app	that	contains	a	link	to	our
/settings 	route.	From	there,	can	add	the	functionality	to	create	a	new	organization.

We're	going	to	make	a	fairly	simple	header	that	shows	the	name	of	the	currently-selected	anonymous
user	(i.e.	room),	displays	a	(currently	placeholder)	avatar,	and	shows	when	they	were	last	active	(currently
a	placeholder	as	well).

If	there	is	no	current	room	selected	(!this.state.currentRoom),	then	we	render	an	empty	header	with
just	the	settings	cog.

/app/components/Chat/index.js
commit: coming soon

...
import	{	Link	}	from	"react-router"
...

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 318	of	407

https://www.learnphoenix.io

export	class	Chat	extends	React.Component	{
		...

		renderHeader()	{
				if	(!this.state.currentRoom)	{
						return	(
								<div	className={style.header}>
										<div	/>
										<Link	to="settings"	className={style.settings}>
												<img
														alt="link	to	settings"
														className={style.cog}
														src="https://s3.amazonaws.com/learnphoenix-static-assets/icons/cog.png"	/>
										</Link>
								</div>
)
				}

				const	avatar	=	{
						height:	"40px",
						width:	"40px",
						background:	"#ccc",
						border:	"1px	solid	#888",
						borderRadius:	"50%"
				}

				return	(
						<div	className={style.header}>
								<div	className={style.identity}>
										<div	style={avatar}	/>
										<div	className={style.titleGroup}>
												<h3	className={style.title}>
														{	this.state.currentRoom	}
												</h3>
												<div	className={style.lastActive}>
														Last	active:	__	minutes	ago
												</div>
										</div>
								</div>
								<Link	to="settings"	className={style.settings}>
										<img
												alt="link	to	settings"
												className={style.cog}
												src="https://s3.amazonaws.com/learnphoenix-static-assets/icons/cog.png"	/>
								</Link>
						</div>
)
		}

		render()	{
				return	(
						<div>

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 319	of	407

https://www.learnphoenix.io

								<Sidebar
										presences={this.state.presences}
										onRoomClick={this.changeChatroom}
										lobbyList={this.state.lobbyList}	/>
								<div	className={style.chatWrapper}>
										{	this.renderHeader()	}
										<div
												className={style.chatContainer}
												ref={ref	=>	{	this.chatContainer	=	ref	}}>
												{	this.renderEmpty()	}
												{	this.renderMessages()	}
										</div>
										{	this.renderInput()	}
								</div>
								{	this.props.children	}
						</div>
)
		}
}
...

From	here	we	can	add	some	styling	to	make	our	header	look	more	like	we	would	expect.

/app/components/Home/style.css
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 320	of	407

https://www.learnphoenix.io

...

.header	{
		position:	absolute;
		top:	0;
		left:	0;
		width:	100%;
		background:	rgb(238,	238,	239);
		border:	1px	solid	rgb(213,	213,	213);
		height:	60px;
		display:	flex;
		flex-flow:	row	nowrap;
		justify-content:	space-between;
		align-items:	center;
		z-index:	100;
}

.identity	{
		display:	flex;
		flex-flow:	row	nowrap;
		align-items:	center;
		padding-left:	30px;
}

.titleGroup	{
		padding-left:	10px;
}

.title	{
		font-size:	1em;
		font-weight:	normal;
		color:	#333;
}

.lastActive	{
		padding-top:	6px;
		color:	#727272;
		font-size:	0.8em;
}

.settings	{
		padding-right:	30px;
}

.cog	{
		filter:	invert(40%);
		height:	35px;
}

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 321	of	407

https://www.learnphoenix.io

Now	we	have	an	easy	way	to	navigate	to	our	 /settings 	route	by	clicking	on	the	cog	in	the	header.	From
here,	we	need	to	add	the	ability	to	create	an	organization	from	the	settings	page	or	display	the	affiliated
organization's	API	key.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 322	of	407

https://www.learnphoenix.io

Create	Organization	from	Settings	Route

Update	Settings	component

So	at	this	point,	we	can	create	an	organization	on	signup,	but	we	cannot	create	an	organization	after
we've	signed	up.	What	we	need	is	a	settings	page	that	will	allow	unaffiliated	administrators	to	create	a
new	organization	and	will	allow	affiliated	administrators	to	see	their	API	key.

Update	Settings	component

Now	that	we	can	easily	link	to	our	 /settings 	route,	we	should	add	the	ability	to	create	a	new
organization	from	within	that	component.

This	is	a	lot	of	code,	but	none	of	it	is	new.	We're	adding	a	form	just	like	we	did	in	all	our	other	forms	and
we're	selectively	rendering	either	a	form	or	an	API	key	depending	on	whether	or	not	the	current	user	has
an	associated	organization.

/app/components/Settings/index.js
commit: coming soon

import	React	from	"react"
import	cssModules	from	"react-css-modules"
import	{	connect	}	from	"react-redux"
import	{	Link	}	from	"react-router"
import	style	from	"./style.css"
import	Actions	from	"../../redux/actions"

import	Button	from	"../Button"

export	class	Settings	extends	React.Component	{
		constructor(props)	{
				super(props)
				this.state	=	{
						website:	""
				}
				this.submit	=	this.submit.bind(this)
		}

		submit()	{
				const	organization	=	{
						website:	this.state.website,
						owner_id:	this.props.user.id

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 323	of	407

https://www.learnphoenix.io

						owner_id:	this.props.user.id
				}
				this.props.dispatch(Actions.organizationNew(organization))
		}

		handleChange(input,	e)	{
				this.setState({	[input]:	e.target.value	})
		}

		renderOrganization()	{
				if	(!this.props.user.public_key)	{
						return	(
								<div	className={style.inputGroup}>
										<input
												onChange={e	=>	{	this.handleChange("website",	e)	}}
												placeholder="Website	(e.g.	https://phoenixchat.io)"
												type="text"
												className={style.input}	/>
										<Button
												onClick={this.submit}
												style={{	marginTop:	"15px"	}}
												type="primary">
												Create	Organization
										</Button>
								</div>
)
				}
				return	(
						<div	className={style.apiKey}>
								Your	API	key:	{this.props.user.public_key}
						</div>
)
		}

		render()	{
				return	(
						<div>
								<div	className={style.nav}>
										<Link
												className={style.logo}
												to="/">
												<img
														alt="learnphoenix	logo"
														className={style.image}
														src="https://s3.amazonaws.com/learnphoenix-static-assets/favicons/favicon-96x96.png"
												<div	className={style.title}>
														PhoenixChat.io
												</div>
										</Link>
										<div	/>
								</div>
								<div	className={style.settings}>
										{this.renderOrganization()}

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 324	of	407

https://www.learnphoenix.io

										{this.renderOrganization()}
								</div>
						</div>
)
		}
}

Settings.propTypes	=	{
		user:	React.PropTypes.object,
		organization:	React.PropTypes.object,
		dispatch:	React.PropTypes.func
}

const	mapStateToProps	=	state	=>	({
		user:	state.user
})

export	default	connect(mapStateToProps)(cssModules(Settings,	style))

That's	a	lot	of	code,	but	it's	nothing	you	haven't	seen	before.	And	now	to	make	this	page	usable,	we	need
to	add	some	styling.

$	touch	app/components/Settings/{style.css,spec.js}

/app/components/Settings/index.js
commit: coming soon

.settings	{
		display:	flex;
		flex-flow:	column	nowrap;
		align-items:	center;
		height:	calc(100vh	-	60px);
		margin-top:	50px;
		position:	relative;
		z-index:	100;
}

.nav	{
		height:	60px;
		padding:	0	30px;
		display:	flex;
		flex-flow:	row	nowrap;
		justify-content:	space-between;
		align-items:	center;
}

.logo	{
		display:	flex;

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 325	of	407

https://www.learnphoenix.io

		display:	flex;
		flex-flow:	row	nowrap;
		align-items:	center;
}

.title	{
		font-size:	1.5em;
		cursor:	pointer;
		color:	#4c4c4c;
}

.image	{
		height:	50px;
		padding-right:	5px;
}

.input	{
		padding:	1rem	1rem;
		border-radius:	3px;
		border:	1px	solid	#ccc;
		font-size:	1.1em;
		outline:	none;
		width:	400px;
}

.inputGroup	{
		display:	flex;
		flex-flow:	column	nowrap;
}

.apiKey	{
		font-size:	1.5em;
}

Now,	if	you're	signed	in	and	not	affiliated	with	an	organization,	you	can	create	one.	Otherwise,	it	shows
your	API	key.	Our	settings	page	is	a	little	bit	sparse,	but	to	be	fair,	we	don't	have	a	lot	of	settings	at	the
moment.

Settings	tests

We	should	also	write	a	few	tests.	This	component	really	doesn't	do	all	that	much,	so	all	we	should	really
test	is	that	it	renders,	it	has	a	submit	function,	and	that	the	proper	organization	option	is	rendered	(form
with	button	or	the	key).

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 326	of	407

https://www.learnphoenix.io

import	React	from	'react'
import	expect	from	'expect'
import	{	shallow	}	from	'enzyme'

import	{	Settings	}	from	'./'

const	props	=	{
		user:	{
				email:	"foo",
				id:	1234,
				public_key:	"asdf"
		}
}

describe('<Settings	/>',	()	=>	{
		it('should	render',	()	=>	{
				const	renderedComponent	=	shallow(
						<Settings	{...props}	/>
)
				expect(renderedComponent.is('div')).toEqual(true)
		})
		it('should	have	a	submit	function',	()	=>	{
				const	component	=	new	Settings()
				expect(component.submit).toExist()
		})
		//	TODO	does	not	work
		//	it('should	render	a	button	if	no	key	is	present',	()	=>	{
		//			const	renderedComponent	=	shallow(
		//					<Settings	{...props}	public_key=""	/>
		//)
		//			expect(renderedComponent.find('button').length).toEqual(1)
		//	})
		//	it('should	render	no	button	if	key	is	present',	()	=>	{
		//			const	renderedComponent	=	shallow(
		//					<Settings	{...props}	/>
		//)
		//			expect(renderedComponent.find('button').length).toEqual(0)
		//	})
})

Now	that	we	have	access	to	our	public	key,	let's	add	that	to	our	npm	component,	which	will	pass	it	along
to	our	API	in	order	to	properly	route	messages.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 327	of	407

https://www.learnphoenix.io

Pass	API	Key	from	Frontend

Add	API	key	to	phoenix-chat
Pass	key	via	socket

In	this	section,	we're	just	going	to	add	the	public	key	that	we	generated	to	our	 PhoenixChat 	component,
then	update	our	component	to	handle	that	key.

Add	token	to	PhoenixChat

In	 phoenix-chat-frontend ,	all	we	need	to	do	is	add	the	 token 	to	our	 PhoenixChat 	component.
Obviously,	add	the	proper	token	instead	of	 NlkfVrAM9/ .

/app/components/Home/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 328	of	407

https://www.learnphoenix.io

...

export	class	Home	extends	React.Component	{
		...

		render()	{
				if	(this.props.user.email)	{
						return	(
								<Chat>
										<PhoenixChat	token="NlkfVrAM9/"	/>
								</Chat>
)
				}
				return	(
						<div	className={style.leader}>
								<h1	className={style.title}>Phoenix	Chat</h1>
								{	this.state.formState	===	"signup"	?	<Signup	/>	:	null	}
								{	this.state.formState	===	"login"	?	<Login	/>	:	null	}
								{	this.renderToggleContent()	}
								<PhoenixChat	token="NlkfVrAM9/"	/>
								<img
										role="presentation"
										className={style.circles}
										src="https://s3.amazonaws.com/learnphoenix-static-assets/images/circles-full.png"	/>
						</div>
)
		}
}
...

Since	we're	already	passing	 this.props.user 	as	the	 params 	in	our	 Chat 	component	when	we	connect
to	the	socket,	we	don't	need	to	change	anything	else.

And	that's	it	for	our	frontend.	Now	your	 phoeinx-chat 	component	has	access	to	 token 	via
this.props.token .	Make	sure	you	have	 npm	run	watch 	going	in	your	 phoenix-chat 	directory	so	your
app	will	update	when	you	make	changes.

Update	phoenix-chat

Now	all	we	need	to	do	is	add	the	 token 	to	our	parameters	before	passing	it	along	to	the	socket.
Alternatively,	we	could	pass	the	public	key	along	with	every	message,	but	passing	it	along	in	the	socket
will	save	us	some	bandwidth.

/src/PhoenixChat.jsx
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 329	of	407

https://www.learnphoenix.io

...

export	class	PhoenixChat	extends	React.Component	{
		...

		componentDidMount()	{
				if	(!localStorage.phoenix_chat_uuid)	{
						localStorage.phoenix_chat_uuid	=	uuid.v4()
				}

				this.uuid	=	localStorage.phoenix_chat_uuid
				const	params	=	{	uuid:	this.uuid,	public_key:	this.props.token	}
				this.socket	=	new	Socket("ws://localhost:4000/socket",	{	params	})
				this.socket.connect()

				this.configureChannels(this.uuid)
		}
		...

}
...

And	believe	it	or	not,	that's	it!	We're	done	configuring	the	frontend	with	API	keys.	The	rest	of	the	work	will
be	in	our	API	to	route	messages	to	the	appropriate	organization.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 330	of	407

https://www.learnphoenix.io

Routing	Messages	Using	API	Keys

Update	UserSocket
Broadcast	by	public_key
Populate	lobby_list	by	public_key

At	this	point	in	our	app	we	can	create	a	new	organization	from	our	frontend,	but	the	organizations	don't
really	mean	anything	since	our	messages	aren't	associated	with	an	organization.	So	in	order	to	separate
the	messages	based	on	organization,	we	need	to	update	our	channels	so	that	admins	can	only	see
messages	of	other	admins	and	so	that	admins	can	only	see	messages	associated	with	the	API	keys	of
their	organizations.

Rather	than	send	the	 public_key 	as	data	along	with	every	message,	we've	required	the	client	to	connect
to	the	socket	with	the	key	in	the	params,	so	we	now	have	access	to	that	key	via	 assign/3 	(docs),	which
we've	used	a	number	of	times	already.

Update	UserSocket

We	will	start	by	updating	our	user	socket.	In	our	 connect/2 	function,	we're	assigning	 :public_key 	from
our	params	whether	the	user	is	an	anonymous	user	or	an	administrator.	Note	that	in	our	anonymous
client	the	token	comes	directly	in	the	params	while	in	our	admin	dashboard,	it	comes	from	our	user
information.

/web/channels/user_socket.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 331	of	407

https://hexdocs.pm/phoenix/Phoenix.Socket.html#assign/3
https://www.learnphoenix.io

...
		def	connect(params,	socket)	do
				user_id	=	params["id"]
				user	=	user_id	&&	Repo.get(User,	user_id)

				socket	=	if	user	do
								socket
								|>	assign(:user_id,	user_id)
								|>	assign(:username,	user.username)
								|>	assign(:email,	user.email)
						else
								socket
								|>	assign(:user_id,	nil)
								|>	assign(:uuid,	params["uuid"])
						end
								|>	assign(:public_key,	params["public_key"])

				{:ok,	socket}
		end
...

Then	we	should	update	our	tests	to	take	in	this	new	parameter.

/test/channels/user_socket_test.exs
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 332	of	407

https://www.learnphoenix.io

defmodule	PhoenixChat.UserSocketTest	do
		use	PhoenixChat.ChannelCase

		alias	PhoenixChat.{Repo,	User,	UserSocket}

		test	"connecting	to	user	socket	as	logged-in	user"	do
				admin	=	Repo.insert!(%User{email:	"admin@bar.com",	username:	"admin"})

				{:ok,	socket}	=	connect(UserSocket,	%{"id"	=>	admin.id,	"public_key"	=>	"pub_key"})
				{:ok,	_,	socket}	=	subscribe_and_join(socket,	"room:1",	%{})

				assert	socket.assigns.user_id	==	admin.id
				assert	socket.assigns.email	==	admin.email
				assert	socket.assigns.username	==	admin.username
		end

		test	"connecting	to	user	socket	as	anonymous	user"	do
				{:ok,	socket}	=	connect(UserSocket,	%{"uuid"	=>	25,	"public_key"	=>	"pub_key"})
				{:ok,	_,	socket}	=	subscribe_and_join(socket,	"room:25",	%{})

				refute	socket.assigns.user_id
				assert	socket.assigns.uuid	==	25
				assert	socket.assigns.public_key	==	"pub_key"
		end
end

Broadcast	by	public_key

Now	it's	time	to	match	the	chats	from	anonymous	users	to	the	admins	in	the	organization	associated
with	the	 public_key 	they're	passing	along.

Note	that	we	are	using	the	public	key	we	stored	in	 socket.assigns 	in	the	previous	lesson.	We	use	this
public	key	to	filter	out	the	admins	that	do	not	have	the	same	public	keys	from	receiving	the	 "lobby_list"
event	for	a	particular	user.	This	means	that	a	user	public	key	 "foo" 	will	only	be	visible	to	admins	with
public	key	 "foo" .

/web/channels/admin_channel.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 333	of	407

https://www.learnphoenix.io

defmodule	PhoenixChat.AdminChannel	do
		...

		def	handle_info(:after_join,	socket)	do
				push	socket,	"presence_state",	Presence.list(socket)
				%{assigns:	assigns}	=	socket
				id	=	assigns.user_id	||	assigns.uuid
				LobbyList.insert(id)
				broadcast!	socket,	"lobby_list",	%{uuid:	id,	public_key:	assigns.public_key}
				{:ok,	_}	=	Presence.track(socket,	id,	%{
								online_at:	inspect(System.system_time(:seconds))
						})
				{:noreply,	socket}
		end

		def	handle_out("lobby_list",	payload,	socket)	do
				%{assigns:	assigns}	=	socket
				if	assigns.user_id	&&	assigns.public_key	==	payload.public_key	do
						push	socket,	"lobby_list",	payload
				end
				{:noreply,	socket}
		end
end

Then	we	need	to	update	our	admin	channel	tests	to	handle	this	new	information.

/test/channels/admin_channel_test.exs
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 334	of	407

https://www.learnphoenix.io

...
		test	"joining	admin:active_users	as	admin"	do
				LobbyList.insert("foo")
				LobbyList.insert("bar")

				{:ok,	%{lobby_list:	lobby_list},	_socket}	=
						socket("user_id",	%{user_id:	1,	public_key:	"pub_key"})
						|>	subscribe_and_join(AdminChannel,	"admin:active_users")

				assert	length(lobby_list)	==	2
				assert_push	"lobby_list",	%{uuid:	1}
				assert_push	"presence_state",	%{}
				assert_push	"presence_diff",	%{joins:	%{"1"	=>	%{}}}
		end

		test	"non-admin	users	do	not	receive	the	'lobby_list'	event	on	join"	do
				{:ok,	%{lobby_list:	_},	_}	=
						socket("user_id",	%{user_id:	nil,	uuid:	5,	public_key:	"pub_key"})
						|>	subscribe_and_join(AdminChannel,	"admin:active_users")

				refute_push	"lobby_list",	%{}
		end
...

So	now	we're	properly	sorting	which	users	will	receive	the	lobby_list	associated	with	a	particular
public_key.	The	next	step	is	to	ensure	that	each	lobby_list	is	populated	with	the	right	anonymous	users.

Populate	lobby_list	by	public_key

We	want	to	populate	the	list	of	chatrooms	in	the	admin's	sidebar	only	with	chatrooms/users	that	have	the
same	public	key.	To	do	this,	we	store	 uuids 	in	ETS	using	their	 public_key 	as	the	filter.	Then	we'll	create
a	new	function,	 LobbyList.lookup/1 ,	that	will	allow	us	to	retrieve	all	uuids	in	the	LobbyList	table	with	the
same	public_key.

Note	that	we	set	the	 :bag 	option	for	our	:ets	table	so	that	it	can	store	multiple	values	with	the	same	key.
You	can	read	more	about	ETS	tables	and	the	difference	between	a	 :bag 	and	a	 :set 	in	the	(docs).

/lib/phoenix_chat/lobby_list.ex
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 335	of	407

http://erlang.org/doc/man/ets.html
https://www.learnphoenix.io

defmodule	PhoenixChat.LobbyList	do

		@table	__MODULE__

		@doc	"""
		Create	an	:ets	table	for	this	module.	We	set	the	`:bag`	option	so	that	we	can
		store	multiple	values	with	the	same	keys.
		"""
		def	init	do
				opts	=	[:public,	:named_table,	{:write_concurrency,	true},	{:read_concurrency,	false},	:bag
				:ets.new(@table,	opts)
		end

		def	insert(public_key,	uuid)	do
				:ets.insert(@table,	{public_key,	uuid})
		end

		def	delete(public_key)	do
				:ets.delete(@table,	public_key)
		end

		def	lookup(public_key)	do
				@table
				|>	:ets.lookup(public_key)
				|>	Enum.map(fn	{_,	uuid}	->	uuid	end)
		end
end

And	now	that	we've	significantly	altered	our	ETS	table,	we	need	to	change	our	admin_channel 	to	use	our
handy	new	 lookup/2 	function.

The	first	change	is	in	our	 join/3 	function,	in	which	we	get	a	list	of	uuids	of	users	with	the	same	public
key	as	the	current	admin	and	send	it	back	to	the	frontend	to	be	displayed	in	the	sidebar.

Then,	in	our	 handle_info/2 	function,	we	use	 LobbyList.insert/2 ,	which	now	takes	in	a	 public_key ,	to
keep	track	of	rooms	to	be	displayed	to	the	proper	admins.	And	finally	we	push	the	presence	state	of
these	users	to	track	which	users	are	online.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 336	of	407

https://www.learnphoenix.io

defmodule	PhoenixChat.AdminChannel	do
		...

		def	join("admin:active_users",	payload,	socket)	do
				authorize(payload,	fn	->
						send(self,	:after_join)

						public_key	=	socket.assigns.public_key
						lobby_list	=	LobbyList.lookup(public_key)
						{:ok,	%{lobby_list:	lobby_list},	socket}
				end)
		end

		def	handle_info(:after_join,	socket)	do
				%{assigns:	assigns}	=	socket
				id	=	assigns.user_id	||	assigns.uuid

				#	Keep	track	of	rooms	to	be	displayed	to	admins
				LobbyList.insert(assigns.public_key,	id)
				broadcast!	socket,	"lobby_list",	%{uuid:	id,	public_key:	assigns.public_key}

				#	Keep	track	of	users	that	are	online
				push	socket,	"presence_state",	Presence.list(socket)
				{:ok,	_}	=	Presence.track(socket,	id,	%{
								online_at:	inspect(System.system_time(:seconds))
						})
				{:noreply,	socket}
		end
		...

end

Finally,	we	need	to	make	some	minor	alterations	to	our	tests	to	handle	the	changes	in	our	 LobbyList .

/test/channels/admin_channel_test.exs
commit: coming soon

...
test	"joining	admin:active_users	as	admin"	do
		LobbyList.insert("pub_key",	"id1")
		LobbyList.insert("pub_key",	"id2")
		...

end
...

Granted,	we	aren't	doing	much	in	the	way	of	authentication,	but	we	now	have	a	functional	app!	Try

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 337	of	407

https://www.learnphoenix.io

opening	an	incognito	window	or	a	different	browser,	go	to	 localhost:3000 ,	and	sign	up.	You'll	see	that
you	no	longer	have	access	to	the	chats	from	other	organizations.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 338	of	407

https://www.learnphoenix.io

Store	and	Track	Recent	Activity

Generate	fake	name
Generate	fake	avatar
Store	and	send	last	active
Pass	along	last	message

coming	soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 339	of	407

https://www.learnphoenix.io

Display	Recent	Activity

Show	when	last	online
Use	MomentJs

Coming	soon

In	this	section,	we're	going	to	use	Presence	to	display	when	a	user	was	last	active.	To	handle	time,	we're
going	to	use	Moment.js,	which	gives	us	easy	access	to	things	like	relative	time.

Currently,	there	is	no	modular	way	to	import	Moment.js	and	it's	frustratingly	large	(about	50kb),	but	at
some	point	they	will	make	it	modular	and	we	can	replace	the	import	with	just	the	relative	time	function.
(If	this	change	has	happened	and	we	are	not	aware	of	it,	please	send	us	an	email	at	info@learnphoenix.io
and	we'll	update)

Update	users	when	present

TODO

Update	user	list

On	our	frontend,	the	first	thing	we	should	do	is	update	our	user	list	to	take	in	some	additional	information
about	our	user.	Currently,	we're	just	displaying	the	user's	uuid.	What	we	want	to	be	able	to	see	an	avatar
for	easy	reference,	a	generated	text	name	(again,	for	easy	reference),	the	last	messages	that	was	sent
between	the	two	users,	and	the	time	they	were	last	active.

It	makes	more	sense	to	handle	random	avatar	generation	and	names	on	the	server,	and	we	have	no	way
to	access	the	last	message	sent	from	the	frontend,	so	we	will	just	use	placeholders	for	now.

Our	user	element	is	basically	one	row	with	three	columns.	The	first	column	contains	the	avatar,	the
second	contains	the	user	id	(and	later	the	generated	words)	followed	by	the	latest	message,	and	the	third
contains	the	last	time	the	user	was	active.	The	avatar	and	last	active	will	have	fixed	width,	while	the	name
and	text	will	grow	to	fill	the	remaining	space.

/app/components/Sidebar/index.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 340	of	407

http://momentjs.com/
http://momentjs.com/#relative-time
https://www.learnphoenix.io

...

export	const	Sidebar	=	(props)	=>	{
		...

		const	renderList	=	lobbyList
		.filter(({	id	})	=>	{	return	id.length	===	36	})
		.sort(orderByActivity)
		.map(({	id,	active	})	=>	{
				const	newStyle	=	active	?	{	boxShadow:	"inset	0px	0px	6px	4px	rgba(58,	155,	207,	0.6)"	}	:	{}

				const	avatar	=	{
						height:	"40px",
						width:	"40px",
						background:	"#ccc",
						border:	"1px	solid	#888",
						borderRadius:	"50%"
				}

				return	(
						<div
								style={newStyle}
								className={style.user}
								key={id}
								onClick={()	=>	{	props.onRoomClick(id)	}}>
								<div	className={style.avatar}>
										<div	style={avatar}	/>
								</div>
								<div	className={style.content}>
										<div	className={style.name}>
												{	id	}
										</div>
										<div	className={style.lastMessage}>
												This	was	our	last	message
										</div>
								</div>
								<div	className={style.activity}>
										test
								</div>
						</div>
)
		})

		...
}

...

Then	we	need	to	add	styles	to	reflect	those	changes.	Nothing	is	new	here,	except	that	we	are	composing

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 341	of	407

https://www.learnphoenix.io

a	few	columns	from	 .column 	and	using	 white-space:	nowrap 	to	stop	our	uuid	from	wrapping	around.	If
the	message	or	the	uuid	is	too	long,	we	simply	hide	it.	At	some	point,	we'll	introduce	something	more
sophisticated	that	can	handle	ellipses	(...),	but	this	will	be	fine	for	now.

/app/components/Sidebar/style.css
commit: coming soon

...

.user	{
		display:	flex;
		flex-flow:	row	nowrap;
		align-items:	center;
		padding:	0.5rem;
		border-bottom:	1px	solid	#ccc;
		height:	70px;
		background:	white;
		cursor:	pointer;
		transition:	background	0.1s	ease;
		box-shadow:	0	3px	3px	-2px	rgba(0,0,0,0.25);
}
.user:hover	{
		background:	#eeeeee;
}

.column	{
		display:	flex;
		flex-flow:	column	nowrap;
}

.avatar	{
		composes:	column;
		padding-right:	10px;
}

.content	{
		composes:	column;
		flex:	1;
		overflow:	hidden;
}

.name	{
		white-space:	nowrap;
		padding-bottom:	6px;
}

.lastMessage	{
		color:	#565656;
}

.activity	{

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 342	of	407

https://www.learnphoenix.io

.activity	{
		composes:	column;
		width:	60px;
		color:	#aaa;
		font-weight:	300;
		font-size:	0.8em;
		align-items:	flex-end;
}

Now	that	our	user	is	styled	with	placeholders,	it's	time	to	add	Moment.js	and	add	the	last	activity	to	the
profile.

Latest	activity

Now	we	need	to	install	moment.	Then	we	just	need	to	use	time	from	now	to	display	the	proper	value	in
our	sidebar.

$	npm	install	--save	moment

/app/components/Sidebar/index.js
commit: coming soon

import	moment	from	"moment"
...

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 343	of	407

http://momentjs.com/docs/#/displaying/fromnow/
https://www.learnphoenix.io

Deploying	the	API	to	Heroku

Phoenix	Buildpacks
Configuring	the	App
Environment	Variables
Deploying

The	performance	of	Phoenix/Elixir	is	most	apparent	when	using	Heroku.	Popular	sites	like	Hex.pm	run	on
a	single	dyno	resulting	in	big	cost	savings.

Before	we	proceed,	you'll	need	to	register	for	a	Heroku	account	and	install	the	Heroku	toolbelt.	The
toolbelt	is	a	command	line	interface	for	Heroku	that	allows	us	to	easily	deploy	our	code,	read	logs,	or
make	environment	changes.

Phoenix	Buildpacks

Heroku	relies	on	buildpacks	to	configure	a	dyno	for	a	specific	language	and/or	framework.	For	our
Phoenix	application	we'll	add	a	buildpack	that	will	install	Erlang,	Elixir,	and	our	application	dependencies.

In	one	fell	swoop	we	can	create	our	new	Heroku	application	and	add	our	buildpack,	let's	run	the	Heroku
create	command	in	our	project	directory:

$	heroku	create	--buildpack	"https://github.com/HashNuke/heroku-buildpack-elixir.git"
Creating	enigmatic-ravine-4201...	done,	stack	is	cedar-14
Buildpack	set.	Next	release	on	enigmatic-ravine-4201	will	use	https://github.com/HashNuke/heroku-buildpack-elixir.git.
https://enigmatic-ravine-4201.herokuapp.com/	|	https://git.heroku.com/enigmatic-ravine-4201.git
Git	remote	heroku	added

Or	if	you've	already	signed	in	and	created	a	Heroku	project,	you	can	add	it	as	a	git	remote	and	assign	a
buildpack.

$	heroku	buildpacks:add	"https://github.com/HashNuke/heroku-buildpack-elixir.git"

It's	probably	worthwhile	to	look	through	the	brief	documentation	for	this	particular	buildpack	in	case	you
need	to	do	some	debugging.

Sometimes	Heroku	will	not	automatically	add	the	 git	remote .	You	can	test	this	by	running	the

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 344	of	407

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/hex.pm
https://toolbelt.heroku.com/
https://github.com/HashNuke/heroku-buildpack-elixir
https://www.learnphoenix.io

command	 git	remote	-v 	and	you	should	see	two	for	 origin 	that	go	to	Github	and	two	for	 heroku ,
which	go	to	Heroku.	In	the	event	that	it	does	not,	log	in	to	Heroku.com,	select	the	project,	click	 Settings ,
and	copy	the	 Git	URL 	from	the	 Info 	section	and	run	the	command	(with	the	proper	URL):

$	git	remote	add	heroku	<git_url>

The	create	command	tells	us	it	created	 enigmatic-ravine-4201 ,	the	name	of	our	application	within
Heroku,	set	our	buildpack,	and	finally	added	a	remote	to	git.	The	outputted	URL	is	the	URL	for	our
application,	right	now	it	only	shows	the	Heroku	welcome	page.

Note:	Our	Phoenix	application	doesn't	rely	on	static	assets	but	if	it	did,	we'd	need	to	add	>
another	buildpack	to	handle	asset	compliation:

$	heroku	buildpacks:add	https://github.com/gjaldon/heroku-buildpack-phoenix-static.git

Configuring	the	App

With	the	application	created	and	buildpack	set,	we	need	to	make	some	final	changes	to	Phoenix	before
we	can	deploy	to	Heroku.

For	the	purposes	of	security,	we	don't	want	to	store	our	secret	keys	in	a	file	on	Heroku.	Instead,	we'll	use
environment	variables.	Be	sure	to	use	the	 host: 	that	relates	to	your	Heroku	project.	Let's	open
config/prod.exs 	and	add	the	 secret_key_base 	key	and	retrieve	the	value	from	the	system.

We're	also	setting	 check_origin 	to	false	because	we	want	to	allow	all	of	our	anonymous	chat	clients	to
be	able	to	connect	no	matter	what	their	domain.

/config/prod.exs
commit: coming soon

config	:phoenix_chat,	PhoenixChat.Endpoint,
		http:	[port:	{:system,	"PORT"}],
		check_origin:	false,
		force_ssl:	[rewrite_on:	[:x_forwarded_proto]],
		secret_key_base:	System.get_env("SECRET_KEY_BASE")

Since	we	won't	be	storing	our	secret	keys	in	 config/prod.secret.exs ,	remove	the	following	line	from	our
config/prod.exs :

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 345	of	407

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/heroku.com
https://www.learnphoenix.io

import_config	"prod.secret.exs"

Lastly,	we	need	to	update	our	Repo	configure	to	rely	on	the	"DATABASE_URL" 	environment	variable	Heroku
sets:

/config/prod.exs
commit: coming soon

config	:phoenix_chat,	PhoenixChat.Repo,
		adapter:	Ecto.Adapters.Postgres,
		url:	System.get_env("DATABASE_URL"),
		pool_size:	10,
		ssl:	true

Environment	Variables

To	populate	our	 "DATABASE_URL" 	environment	variable,	we	need	to	use	a	Heroku	add-on	database.	For
our	application	the	Heroku	Postgres	hobby	tier	will	be	sufficient	(and	free).	Using	the	Heroku	toolbelt,	let's
add	it	to	our	project:

$	heroku	addons:create	heroku-postgresql:hobby-dev

We	will	also	need	to	create	an	 elixir_buildpack.config 	file	that	will	tell	Elixir	about	our	environment
variables	in	Heroku.

$	touch	elixir_buildpack.config

Within	that	file,	we	need	to	add	our	 DATABASE_URL 	that	you	can	find	when	you	log	into	Heroku.	This	one
will	actually	be	added	for	you	automatically,	but	we	will	need	to	do	this	in	the	future	with	Mailgun	and
other	environment	variables,	so	it's	best	to	get	used	to	doing	it	now.

/elixir_buildpack.config
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 346	of	407

https://www.learnphoenix.io

config_vars_to_export=(
		DATABASE_URL
		SECRET_KEY_BASE
)

Finally,	we	need	to	generate	and	set	a	new	secret	key.	With	mix,	let's	generate	a	new	secret:

$	mix	phoenix.gen.secret
NrRwQpjBoUeKz1JnvWT+WrmF+hSnRPvkeDkHKwIgv5blKVeS0PUp9GA69S6VGXVf

Now	we	can	add	our	new	secret	key	to	Heroku:

$	heroku	config:set	SECRET_KEY_BASE="NrRwQpjBoUeKz1JnvWT+WrmF+hSnRPvkeDkHKwIgv5blKVeS0PUp9GA69S6VGXVf"

If	you	intend	to	send	emails,	you'll	also	need	to	set	up	a	Mailgun	account	and	add	those	keys	to	your
configuration	as	well.	Otherwise,	you	should	comment	out	the	mail	portion	of	your	app	otherwise	it	will
cause	an	error	on	deployment.

It	might	also	be	a	good	idea	to	set	 always_rebuild 	to	true	since	this	will	save	you	from	some	hard-to-
debug	errors	later	on.

/elixir_buildpack.config
commit: coming soon

config_vars_to_export=(
		DATABASE_URL
		SECRET_KEY_BASE
		MAILGUN_API_KEY
		MAILGUN_DOMAIN
)
always_rebuild=true
elixir_version=1.3.2

$	heroku	config:set	MAILGUN_API_KEY=key-cec83902409402940958398a2cf3
$	heroku	config:set	MAILGUN_DOMAIN=https://api.mailgun.net/v3/mg.domainname.io

You're	also	going	to	need	a	 Procfile 	that	tells	your	server	how	to	run.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 347	of	407

https://www.learnphoenix.io

$	echo	"web:	MIX_ENV=prod	mix	phoenix.server"	>	Procfile

Deploying

We've	created	a	Heroku	project,	added	our	buildpack,	configured	our	application,	and	setup	the
environment,	all	that's	left	is	for	us	to	commit	our	changes	and	deploy	them	to	Heroku:

$	git	add	.
$	git	commit	-am	"chore:	adjust	configuration	for	deploy"

Deploying	to	Heroku	is	as	easy	as	pushing	your	code.	Note	that	Heroku	ignores	all	branches	other	than
master,	so	if	you	want	to	push	a	different	branch,	you	need	to	specify.	So	if	you	wanted	to	push	the
develop 	branch,	you	would	have	to	run:	 git	push	heroku	develop:master

$	git	push	heroku	master

Counting	objects:	3,	done.
Delta	compression	using	up	to	8	threads.
Compressing	objects:	100%	(3/3),	done.
Writing	objects:	100%	(3/3),	288	bytes	|	0	bytes/s,	done.
Total	3	(delta	2),	reused	0	(delta	0)
remote:	Compressing	source	files...	done.
...
...
...
remote:	Verifying	deploy....	done.
To	https://git.heroku.com/enigmatic-ravine-4201.git
			f7ac6d3..e08a63e		test	->	master

Before	we	visit	our	site,	let's	run	our	migrations	on	Heroku.	We	need	to	set	the	mix	environment	to	 prod ,
as	it	defaults	to	 dev .

$	heroku	run	MIX_ENV=prod	mix	ecto.migrate

Now	we're	ready	to	see	our	app	in	action,	typing	 heroku	open 	in	the	console	will	open	our	browser	to	our
app:

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 348	of	407

https://www.learnphoenix.io

$	heroku	open

And	now	we've	successfully	deployed	our	Phoenix	application	to	Heroku.	Take	note	of	the	URL	of	your
API	because	we	will	need	it	later.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 349	of	407

https://www.learnphoenix.io

Deploying	the	Frontend	to	S3

Webpack	production	optimizations
AWS	S3

Now	that	we	have	an	app	that	sort-of	functions	on	our	local	environment,	we	should	start	looking	into
deployment	options.	You	may	have	noticed	that	our	app	doesn't	have	much	in	the	way	of	server
configuration	in	our	 /server.js 	file.	That's	no	coincidence;	our	app	doesn't	run	on	a	server.

In	fact,	if	you	compile	your	app	using	webpack	with	the	 webpack 	command	and	then	open	the
index.html 	file	within	 /dist ,	you'll	see	that	you	have	a	fully	functional	app	just	from	static	assets.	That
index.html 	file	has	all	the	assets	it	needs	to	run	an	app	without	a	server	because	everything	is	static
and	all	of	your	data	comes	from	an	API	call	to	our	backend.

Given	that	everything	is	static,	it's	super	easy	to	host	our	site.	We	don't	even	have	to	spin	up	a	server	to
do	it;	we	can	simply	drop	in	the	files	and	serve	them	when	someone	hits	your	url.	We're	going	to	host
these	files	on	Amazon	Web	Service's	(AWS)	Simple	Storage	Service	(S3).	We	will	go	into	detail	on	these
later.

Change	API_HOST

Now	we	have	a	functional	app.	The	last	thing	we	need	to	do	in	preparation	for	deployment	is	change	out
our	hardcoded	 localhost:4000 	values.

To	do	this,	we	need	to	change	our	 webpack.config.js 	to	include	a	 webpack.DefinePlugin .

		...
		module:	{
				...
		},
		plugins:	[
				new	webpack.DefinePlugin({
						"process.env":	{
								API_HOST:	JSON.stringify('http://localhost:4000'),
								SOCKET_HOST:	JSON.stringify('ws://localhost:4000/socket')
						}
				})
],
		...

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 350	of	407

https://www.learnphoenix.io

Now	all	we	have	to	do	is	change	out	every	instance	of	 http://localhost:4000 	for
process.env.API_HOST .	We	can	use	ES6	string	interpolation	(which	uses	a	 ${})	to	insert	a	string	into	an
existing	string,	so	your	new	paths	would	look	something	like	this:	 ${API_HOST}/api/users .	Also	change
out	the	 ws://localhost:4000/socket 	for	 process.env.SOCKET_HOST .

You'll	probably	have	to	run	this	manually	with	a	find	and	replace.	Keep	in	mind	that	string	interpolation
only	works	with	back	ticks	(``),	not	quotes	("").	As	always,	when	you	change	your	webpack	configuration,
you	need	to	restart	your	server.

Starting	with	AWS

One	of	the	reasons	we're	using	S3	rather	than	a	Node	server	is	that	S3	is	 insanely	cheap.	It's	something
like	5	cents	per	gigabyte	per	month	for	storage	and	another	5	cents	per	gigabyte	for	data	transfer.	In
other	words,	you	would	have	to	have	an	insane	amount	of	traffic	for	the	cost	to	even	become	noticeable.

Not	only	that,	but	this	type	of	architecture	can	instantly	scale	to	a	seemingly-infinite	amount	of	traffic	(if
you're	at	a	point	at	which	AWS	cannot	handle	your	level	of	traffic,	then	you	shouldn't	be	reading	this
tutorial	series).

Go	to	aws.amazon.com	and	create	an	account.	You'll	need	to	add	your	credit	card	as	well,	but	this	is
going	to	cost	little-to-nothing,	so	relax.

Then	go	to	your	console	where	you	can	see	all	of	the	tools	that	AWS	has	to	offer.	There	are	lots	and	lots
of	them,	and	they	all	have	vague	and	confusing	names.	All	we're	going	to	use	for	the	time	being	is	S3,	so
go	ahead	and	click	on	 S3 .

On	the	left	you'll	see	a	list	of	your	 buckets .	Think	of	a	bucket	as	a	figurative	bucket	that	holds	your	files.
You	can	dump	all	kinds	of	data	in	a	bucket.	We're	going	to	create	a	new	bucket	that	will	hold	all	of	our
static	files	for	our	frontend	app.

Click	on	the	"Create	Bucket"	button	and	create	a	bucket	with	a	name	that	is	unique	across	all	AWS.	A
good	strategy	for	naming	your	domain	is	to	give	it	the	name	of	your	domain,	since	by	definition	your
domain	will	be	unique.	Since	we're	going	to	host	this	app	at	 www.phoenixchat.io 	we	can	give	it	that
bucket	name.	Since	yours	will	have	to	be	unique,	you'll	have	to	come	up	with	something	different,	but	you
get	the	idea.	Go	ahead	and	click	 Create .

Now	you'll	see	your	bucket	on	the	left.	On	the	right	you'll	see	an	option	for	 Static	Website	Hosting .	Go
ahead	and	click	on	that	dropdown	and	select	 Enable	website	hosting .	Where	it	says	 Index	Document
go	ahead	and	type	in	 index.html 	and	click	 Save .

The	next	part	is	a	little	bit	less	obvious.	We	need	to	set	up	 Permissions 	that	determine	who	can	access
the	bucket	and	what	can	be	done	with	it.	Under	 Permissions ,	click	on	 Add	bucket	policy ,	after	which
point	you'll	see	a	blank	textarea.	This	text	area	expects	your	configuration	options	in	JSON	and	Amazon
gives	us	a	tool	to	automatically	generate	this	code.	On	the	bottom	left	of	this	modal,	you	should	see	 AWS

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 351	of	407

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/aws.amazon.com
https://www.learnphoenix.io

Policy	Generator .	Click	on	that.

Change	 Select	Type	of	Policy 	to	 S3	Bucket	Policy .

Change	 Principal 	to	 * ,	which	means	"everyone".

For	 Actions 	go	ahead	and	check	the	box	for	 GetObject .

The	 Amazon	Resource	Name	(ARN) 	follows	a	pattern	that	is	shown	below	the	text	input.	It's	something
like	 arn:aws:s3:::<bucket_name>/<key_name> .	If	your	bucket	is	named	 www.phoenixchat.io 	and	you
want	it	to	apply	to	everyone	your	configuration	will	look	like:	 arn:aws:s3:::www.phoenixchat.io/*

Then	click	 Add	Statement ,	which	will	show	your	configuration	options	in	a	table.	Check	them	over	and
make	sure	they're	right	and	then	click	 Generate	Policy .

Copy	the	JSON	that	was	generated	and	paste	that	into	the	other	tab	with	the	empty	text	area	and	click
Save .

AWS	Identity	and	Access	Management	(IAM)

Now	we	want	to	send	our	files	to	S3.	But	before	we	can	do	that,	we	need	to	give	ourselves	access	to	S3
through	the	command	line	tool	(you	could	upload	your	files	through	the	website,	but	it's	clunky	and	can't
be	done	programmatically).

Go	back	to	the	AWS	console	and	click	on	 Identity	and	Access	Management .

From	here,	click	on	 Groups 	on	the	left	and	create	a	new	group.	 Administrators 	is	a	perfectly	valid	group
name,	but	you	can	enter	any	name	you	like	and	click	 Next	Step .

Then	add	the	policy	 AmazonS3FullAccess 	which	you	can	find	by	filtering	down	the	options.	Then	click
Next	Step 	to	review,	and	if	everything	looks	right	click	 Create	Group .

Now	that	we	have	a	group,	we	need	to	create	a	user	to	add	to	that	group.	On	the	left	side,	click	 Users ,
then	 Create	New	User .	Enter	a	username	for	that	user.	In	our	case,	we're	going	to	enter	the	username
phoenixchat ,	but	it's	common	to	use	your	first	and	last	name	as	the	username.

Make	sure	the	 Generate	an	access	key	for	each	user 	is	checked,	then	create	the	user.	You'll	see	an
option	to	 Download	credentials .	Go	ahead	and	do	that	now	because	we	will	need	those	credentials
later.

Now	click	on	the	username	from	the	list	(not	the	checkbox),	go	to	the	 Groups 	tab	and	 Add	User	to
Groups .	Select	the	 Administrators 	group	and	click	 Add	to	groups .

Finally,	under	the	 Security	Credentials 	tab	under	 Sign-In	Credentials ,	choose	 Manage	Password .	Go
ahead	and	fill	out	the	 Assign	a	custom	password 	option	and	click	 Apply .

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 352	of	407

https://www.learnphoenix.io

We're	now	ready	to	send	our	app	to	S3...	but	not	quite.	We	need	to	change	around	our	webpack
configuration	a	little	bit	to	prepare	our	app	for	production.

Configuring	webpack	for	production

We	need	webpack	to	build	our	app	in	production	mode.	This	means	a	few	things	need	to	change.

1.	 We	need	to	uglify	and	minify	our	code	to	make	it	smaller
2.	 We	need	to	dedupe	our	code	to	remove	duplicate	information
3.	 Export	our	environment	variables
4.	 (Potentially)	load	React	and	other	libraries	as	externals

The	first	takes	our	code	and	removes	whitespace	and	any	extraneous	data	to	make	our	bundle	as	small
as	possible.	This	simple	step	often	cuts	your	bundle	size	by	more	than	1/3.

The	second	is	deduplication	(dedupe),	which	looks	for	files	that	are	duplicates	and	removes	the	copy.
This	doesn't	often	noticeably	affect	the	bundle	size,	but	it	doesn't	cost	anything	to	add.

The	third	is	adding	our	environment	variables.	In	this	case,	we	only	have	one,	which	as	you	will	see	later
tells	webpack	to	use	our	Heroku	app	rather	than	 localhost:4000 .	In	the	future,	this	is	where	you	would
inject	things	like	Stripe	tokens.	But	keep	in	mind,	your	environment	variables	are	not	hidden	from	the
user.	You	shouldn't	have	anything	secret	living	in	your	frontend.

The	last	piece	of	optimization	is	to	load	some	of	our	libraries	as	externals.	It's	possible	that	our	user	will
already	have	common	libraries,	such	as	React,	cached	in	their	browser.	If	that's	the	case,	then	we	don't
need	to	fetch	that	data	again.	This	is	not	strictly	necessary,	and	we	aren't	going	to	bother	with	it	at	this
point.

In	the	future,	we	will	look	into	more	advanced	optimizations,	such	as	code	splitting	and	the	use	of	an
entry-chunk 	to	reduce	our	initial	bundle	size	as	much	as	possible.	For	more	on	webpack	optimization,
check	out	this	page.

Before	we	can	proceed,	with	our	build,	we're	going	to	need	to	set	up	some	environment	variables.	You
can	use	the	code	below	(with	the	proper	information	instead	of	the	placeholders	within	 <	>)	to	export
your	variables	to	the	environment.	You	can	also	keep	them	in	a	 .sh 	file	such	as	 .env.sh 	and	run	run	it
with	 source	.env.sh 	to	export	all	of	the	variables	at	the	same	time.

If	you	choose	to	keep	these	keys	in	a	file,	be	sure	to	add	that	file	to	your	 .gitignore 	so	you	don't
accidentally	expose	your	keys	to	the	world.

export	PROFILE=<profile	name>
export	AWS_ACCESS_KEY_ID=<access	key>
export	AWS_SECRET_ACCESS_KEY=<secret	key>
export	BUCKET=<bucket	name>

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 353	of	407

https://github.com/webpack/docs/wiki/optimization
https://www.learnphoenix.io

Go	ahead	and	run	this	now	so	we	have	access	to	these	variables.

Now	let's	create	a	special	webpack	configuration	just	for	production.	We'll	call	it
webpack.prod.config.js .

There	are	many	ways	to	go	about	setting	up	your	webpack	configuration	for	production.	Since	the
configuration	is	just	an	object,	you	can	run	it	through	a	series	of	functions	or	conditionals	to	determine
what	you're	exporting	(often	based	on	the	currently	chosen	environment).

It's	also	common	to	make	a	"shared"	configuration	that	all	apps	will	use	and	then	build	on	that	as	you	add
more	environments	and	platforms.	Keep	in	mind	that	this	configuration	is	just	JavaScript,	so	you	can
manipulate	the	configuration	object	just	like	you	could	any	other	JavaScript	object.

That	said,	we're	just	going	to	keep	it	simple	and	put	this	in	a	new	file	for	now	and	optimize	later	if	it
becomes	necessary.

$	touch	webpack.prod.config.js

We're	going	to	need	the	 extract-text-webpack-plugin ,	which	combines	all	of	our	CSS	into	a	separate
CSS	file,	which	prevents	React	from	inlining	your	styles	into	the	JavaScript	and	bundles	them	all	into	a
single	file	that	gets	loaded	in	parallel	with	your	JavaScript	bundle.	This	is	something	you	want	to	do	with
react-css-modules 	in	production.

$	npm	install	--save-dev	extract-text-webpack-plugin

Within	your	 webpack.prod.config.js 	file,	add	the	following	configuration.	It	will	be	almost	the	same	as
our	existing	code	with	a	few	differences,	explained	below	the	codeblock.

var	path	=	require('path')
var	webpack	=	require('webpack')
var	ExtractTextPlugin	=	require('extract-text-webpack-plugin')
var	cssnext	=	require('postcss-cssnext')
var	HtmlWebpackPlugin	=	require('html-webpack-plugin')

module.exports	=	{
		devtool:	'cheap-module-source-map',
		entry:	[
				"whatwg-fetch",
				'./app/index'
],
		output:	{
				path:	path.join(__dirname,	'dist'),
				filename:	'bundle.js'
		},
		plugins:	[

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 354	of	407

https://github.com/webpack/extract-text-webpack-plugin
https://github.com/gajus/react-css-modules#production
https://www.learnphoenix.io

		plugins:	[
				new	ExtractTextPlugin('style.css',	{
						allChunks:	true
				}),
				new	webpack.optimize.DedupePlugin(),
				new	webpack.optimize.UglifyJsPlugin({
						minimize:	true,
						compress:	{
								warnings:	false
						}
				}),
				new	webpack.DefinePlugin({
						API_HOST:	JSON.stringify("https://phoenix-chat-api.herokuapp.com"),
						SOCKET_HOST:	JSON.stringify("wss://phoenix-chat-api.herokuapp.com"),
						"process.env":	{
								NODE_ENV:	JSON.stringify('production')
						}
				}),
				new	HtmlWebpackPlugin({
						template:	"index.html",
						hash:	true,
						filename:	"index.html"
				})
],
		module:	{
				loaders:	[
						{
								test:	/\.js$/,
								loaders:	['babel'],
								exclude:	/node_modules/,
								include:	path.join(__dirname,	'app')
						},
						{
								test:	/\.css$/,
								loader:	ExtractTextPlugin.extract('style',	'css?modules&importLoaders=1&localIdentName=[local]_[hash:base64:5]!postcss'
								include:	path.join(__dirname,	'app')
						}
]
		},
		postcss:	function	()	{
				return	[cssnext]
		},
		resolve:	{
				extensions:	['',	'.js']
		}
}

The	first	thing	we	changed	is	our	 devtool ,	which	we	changed	from	 eval 	to	 cheap-module-source-map .
This	change	along	will	save	you	about	80%	on	your	bundle	size.	If	you	aren't	familiar	with	what	source
maps	are,	you	can	think	of	it	as	how	your	computer	lets	you	know	how	errors	that	occur	in	compiled	code

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 355	of	407

https://www.learnphoenix.io

correspond	to	your	un-compiled,	human-readable	code.	So	with	a	good	source	map,	rather	than	getting
an	error	like	"error	bundle.js	line	1",	you	would	get,	"error	app/components/Chat/index.js	line	42".

You'll	notice	that	our	 entry 	point	no	longer	includes	webpack	dev	server,	because	we	don't	need	it.	If
you're	worried	about	cross-browser	compatibility,	you	can	also	npm	install	 babel-polyfill 	and	add	that
as	entry	point	as	well.	That	will	add	some	weight	to	your	code,	but	it'll	make	sure	your	app	works	with
older	browsers.

We've	also	added	5	plugins.	The	first	is	the	extract	text	plugin,	which	pulls	out	your	inline	styles	and	adds
them	to	a	single	CSS	file	at	the	top	of	app.	The	next	two	are	simply	optimizations.	They	are	not	necessary
for	a	successful	build,	but	they	make	your	bundle	smaller	and	more	efficient.

The	last	plugin	is	the	 HtmlWebpackPlugin ,	which	is	not	an	optimization,	but	it	will	inject	our	 index.html
file	into	our	production	distribution.	You	could	simply	copy	this	over	or	use	the	 file-loader 	if	you
wanted,	but	we	want	to	use	this	plugin	to	hash	our	bundle	names	to	solve	any	cache	invalidation	issues
with	S3.	When	you	compile	a	production	build,	check	your	 index.html 	file	and	you'll	see	that	your	bundle
and	style	files	have	a	 ? 	and	a	random	series	of	numbers	and	letters	after	it.	We	will	explain	why	this	is
important	in	a	later	lesson	when	we	go	over	CloudFront.

And	now	that	we're	injecting	our	HTML	file	into	our	app,	we	should	remove	the	tags	we	have	hardcoded	in
our	 index.html 	file:

<!--	Delete	this	-->
<link	rel="stylesheet"	href="style.css">

<!--	Delete	this	too	-->
<script	src="bundle.js"></script>

But	in	doing	this,	we've	broken	our	dev	build,	so	you	need	to	add	the	 HtmlWebpackPlugin 	to	your
webpack.config.js 	file	as	well.

...
var	HtmlWebpackPlugin	=	require('html-webpack-plugin')

module.exports	=	{
		...

		new	HtmlWebpackPlugin({
				template:	"index.html",
				hash:	true,
				filename:	"index.html"
		})
		...
}

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 356	of	407

https://github.com/ampedandwired/html-webpack-plugin#configuration
https://www.learnphoenix.io

We	will	also	need	to	install	that	plugin.

$	npm	install	html-webpack-plugin	--save-dev

Now	go	ahead	and	run	webpack	with	the	 webpack.prod.config.js 	to	build	our	app	using	the	production
configuration.

$	webpack	--config	webpack.prod.config.js

Check	the	 /dist 	directory	to	make	sure	everything	is	in	order.	If	you	open	the	 dist/index.html 	file	in	a
browser,	you	should	have	a	fully	functional	app.	If	this	works	as	you	would	expect,	then	we're	ready	to
deploy.

For	now,	we'll	hack	this	together.	In	the	next	lesson,	we'll	go	over	continuous	integration	and	automated
deployments.

Hosting	on	S3

Go	back	to	AWS	and	click	on	that	bucket	we	made	earlier	(in	our	case,	 www.phoenixchat.io).	Click
Upload 	in	the	top	left	and	add	the	 index.html ,	 bundle.js ,	and	 style.css 	files	currently	in	 /dist .

Once	those	are	uploaded,	click	 Properties 	on	the	top	right	and	select	 Static	Website	Hosting .

Change	the	setting	to	 Enable	website	hosting 	and	set	the	 Index	document 	to	 index.html .	When	you
save,	you	should	see	an	endpoint	just	above	the	tabs	with	a	long	domain	name	ending	in
...amazonaws.com .

Click	on	the	link.	Your	site	is	now	live.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 357	of	407

https://www.learnphoenix.io

Continuous	Integration	and	Deployment

Automated	deployment
Continuous	integration	with	CircleCI
Continuous	deployment

We	now	have	a	(mostly)	functional	app	that	has	been	uploaded	to	S3	and	is	live	for	the	world	to	see.	But
opening	up	AWS	and	dragging	files	after	a	manual	build	is	tedious	and	prone	to	error.	To	remedy	this
situation,	we're	going	to	write	an	automated	deployment	script	that	will	run	a	series	of	commands	to
send	our	newly	created	site	to	S3.

Once	we	have	our	automated	deployment	set	up,	we'll	create	an	account	with	CircleCI	for	continuous
integration.	If	you're	not	familiar	with	continuous	integration,	it's	a	service	that	will	automatically	build
your	app,	run	your	tests,	and	if	everything	seems	to	work,	it	will	automatically	deploy	the	current	version.

Continuous	integration	is	extremely	useful	for	large	organizations	that	have	many	developers	pushing
code	to	the	same	codebase	at	the	same	time	while	in	production.	That	said,	it	requires	rigorous	testing	or
you	might	find	yourself	in	a	position	where	you	deployed	an	update	that	broke	something.

Automated	deployment

We're	first	going	to	set	up	automated	deployment	on	our	local	environment,	then	we'll	worry	about
continuous	integration.	We're	going	to	need	to	install	the	AWS	command	line	tool.

$	brew	install	awscli

Then	we	need	to	configure	our	AWS	credentials	so	we	can	deploy.	You	can	do	this	one	piece	at	a	time,
but	I	recommend	writing	a	shell	script	so	you	can	execute	these	the	same	way	every	time.	Let's	go	ahead
and	create	a	new	file	called	 deploy.sh .

$	touch	deploy.sh

Within	this	file,	we	should	add	all	of	the	necessary	commands	to	deploy	to	S3.	Remember	from	a
previous	lesson	that	we	need	to	 export 	all	of	our	environment	variables	so	we	can	access	them	later.
This	is	what	the	 source	.env.sh 	command	was	for.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 358	of	407

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/circleci.com
https://www.learnphoenix.io

echo	"Version	number..."
aws	--version

echo	"Configuring	access	id..."
aws	configure	set	aws_access_key_id	$AWS_ACCESS_KEY_ID

echo	"Configuring	secret	key..."
aws	configure	set	aws_secret_access_key	$AWS_SECRET_ACCESS_KEY

echo	"Syncing	with	$BUCKET"
aws	s3	sync	./dist	s3://$BUCKET

If	you	do	not	know	your	bucket	location,	you	can	run	the	following	to	find	out	your	default	region.

$	aws	s3api	get-bucket-location	--bucket	$BUCKET

We're	also	including	 echo 	commands	so	we	can	see	in	our	terminal	what	step	in	the	process	our
configuration	has	reached.	This	is	basically	just	a	 console.log 	to	let	us	know	if	and	where	we	run	into
issues.

Now	we	should	be	ready	to	deploy.	Make	sure	your	terminal	is	in	the	root	of	 phoenix-chat-frontend 	and
simply	run	the	commands	in	our	 deploy.sh 	script.

$	sh	deploy.sh

And	like	magic,	all	of	your	files	are	uploaded.	If	you	want	to	run	a	test	to	make	sure	your	 deploy.sh 	script
is	working,	try	changing	the	background	to	 red 	or	something	obvious	and	re-deploy.	You	should	see	the
changes	immediately	propagate	when	you	refresh	the	page.

Continuous	integration

The	next	step	is	to	set	up	continuous	integration.	Go	ahead	and	sign	up	with	CircleCI	and	link	your	Github
account.	If	you	have	a	preference	for	another	continuous	integration	company,	feel	free	to	use	them--
they're	mostly	all	the	same,	but	the	files	will	be	different.

Go	ahead	and	click	on	 Add	project 	from	the	menu	on	the	left,	then	add	those	environment	variables	we
have	stored	in	our	 .env.sh 	file	and	 API_HOST 	and	 SOCKET_HOST 	as	environment	variables	to	CircleCI.

Create	a	 circle.yml 	file	at	the	root	of	your	project.	This	is	required	for	CircleCI	and	it	gives	a	series	of
instructions	for	CircleCI	to	execute	in	order	to	properly	run	your	code.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 359	of	407

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/circleci.com
https://www.learnphoenix.io

$	touch	circle.yml

Then	add	the	following	code	to	configure	CircleCI.	We	will	go	over	each	line,	but	there	are	many	more
configuration	options	available.	It	might	be	worth	your	time	to	skim	through	the	configuration	docs	to	get
a	sense	of	how	much	you	can	do	with	CircleCI	and	the	various	continuous	integration	environments.

machine:
		node:
				version:	6.3.0	#	React	CSS	Loader	does	not	work	with	0.X	versions	of	node

dependencies:
		override:
				-	npm	install
				-	npm	install	-g	webpack	#	Need	access	to	webpack	cli	to	build	the	project
				-	sudo	pip	install	awscli	#	Need	access	to	AWS	CLI	to	deploy	the	project

deployment:
		aws:
				branch:	master
				commands:
						-	chmod	+x	deploy.sh
						-	webpack	--config	webpack.prod.config.js
						-	./deploy.sh

The	first	line	sets	the	version	of	Node	to	something	we	want	to	use.	This	is	not	strictly	necessary,	but	it's
good	to	know	what	version	you're	using	rather	than	just	accepting	the	default.

Next	we	set	our	dependencies.	In	this	case,	we	are	running	 npm	install 	(which	it	will	run	by	default
anyway,	but	we're	being	safe),	and	two	additional	installations	for	the	 webpack 	command	line	tool	that
will	allow	CircleCI	to	compile	our	code	and	 awscli 	which	is	the	AWS	command	line	tool	we	need	to	run
our	 deploy.sh 	script.

Finally,	we	have	our	deployment	to	AWS.	CircleCI	has	a	special	configuration	for	AWS	since	so	many
people	use	it.	We	are	telling	CircleCI	to	only	use	these	commands	for	our	 master 	branch.	If	you	wanted,
you	could	set	up	special	deploy	configurations	for	other	branches.	It's	not	uncommon	to	deploy	to	 beta
or	 develop 	to	make	sure	the	site	works	on	other	branches	as	you	go	along.

The	only	tricky	thing	here	is	the	 chmod	+x	deploy.sh ,	which	changes	the	permissions	of	our	container	to
allow	us	to	execute	the	deploy	script.	 chmod 	is	one	of	those	things	that	is	rarely	covered	and	used	often.
If	you	ever	run	into	errors	related	to	permissions,	it's	probably	an	issue	with	 chmod .

Save	this	file,	git	add,	git	commit,	and	git	push,	and	you	should	see	CircleCI	create	a	container,	build	the
project,	run	the	tests,	then	deploy	to	AWS.	Pretty	cool!

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 360	of	407

https://circleci.com/docs/configuration/
https://www.learnphoenix.io

SSL	and	CloudFront

Getting	an	SSL	certificate
Setting	up	CloudFront
Cache	Invalidation
Domain	names	with	Route	53

While	Heroku	automatically	gives	us	an	encrypted	connection	to	our	API	via	 HTTPS 	(which	is	just	a
normal	 HTTP 	connection	plus	an	 SSL 	security	layer--people	will	use	the	two	terms	interchangeably),	S3
does	not.	That's	because	there's	nothing	sitting	between	the	user	and	the	files.

The	only	way	to	solve	this	problem	is	to	1)	set	up	a	Node	server	to	handle	requests	and	run	this	on	EC2,
or	2)	run	our	requests	through	a	proxy	like	CloudFront.	Since	we're	going	to	need	to	communicate	to	our
backend	by	a	secure	route,	we're	going	to	need	to	set	up	CloudFront	and	route	our	connections	through	it.

We	will	also	need	an	SSL	certificate.	This	used	to	be	a	long,	tedious,	and	painful	process	that	often	cost
hundreds	of	dollars	a	year	(Godaddy	still	charges	$299/yr	for	it),	but	thanks	to	AWS,	you	get	it	for	free
and	it's	super	easy	to	set	up!

Getting	an	SSL	certificate

As	mentioned	above,	this	used	to	be	complicated	and	expensive,	but	now	it's	really	easy.	Log	in	to
aws.amazon.com 	and	open	up	the	 Certificate	Manager .	Click	the	 Request	a	certificate 	button	in	the
top	left.

Then	you	want	to	request	what	is	called	a	 wildcard 	certificate	and	a	naked	domain	certificate.	That
gives	you	the	ability	to	protect	all	the	single-level	sub-domains	of	a	particular	site,	so	it	would	cover
www.phoenixchat.io ,	 api.phoenixchat.io ,	etc.	Assuming	the	domain	is	 phoenixchat.io ,	the
requested	domains	would	be	 *.phoenixchat.io 	and	 phoenixchat.io .	Click	 Review	and	request 	and
Confirm	and	request .

It	often	takes	a	few	minutes	to	validate,	but	that's	it.	You're	done.

Setting	up	CloudFront

CloudFront	is	something	you	can	put	in	front	of	your	app	to	make	load	times	faster	and	enable	HTTPS.	It
does	aggressive	caching	in	certain	locations	around	the	world	so	your	app	loads	faster	since	your	app

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 361	of	407

https://www.learnphoenix.io

won't	have	to	request	assets	every	time	the	page	loads.

Within	 CloudFront ,	click	on	 Create	Distribution 	followed	by	 Create 	under	the	 Web 	section.	From
Origin	Domain	Name 	you	can	select	the	S3	bucket	you	just	made	from	the	dropdown.	Make	sure	you	add
domain	you	would	like	to	reference	in	the	 Alternate	Domain	Names 	section	(e.g.	phoenixchat.io).	Change
Viewer	Protocol	Policy 	to	 Redirect	HTTP	to	HTTPS 	and	add	 index.html 	as	the	 Default	Root
Object .	Then	under	 SSL	Certificate ,	choose	 Custom	SSL	Certificate 	and	select	the	certificate	you
just	created.	Then	create	the	distribution.

This	will	take	a	while	to	provision	(often	minutes	to	hours).	While	we're	waiting,	we	can	explain	how	cache
invalidation	works.

Cache	Invalidation

Cache	invalidation	is	a	big	subject	and	an	especially	complicated	one.	Fortunately	for	us,	our	use	case	is
pretty	simple.	Because	CloudFront	caches	files	based	on	their	names,	if	we	make	a	change	to
bundle.js ,	CloudFront	doesn't	know	that	it	needs	to	clear	the	cache	and	bring	in	the	new	version	of	the
app.	The	act	of	clearing	this	cache	is	called	an	 invalidation .

Since	we're	injecting	our	HTML	file	with	hashed	bundle	and	style	files,	all	we	have	to	do	is	tell	CloudFront
not	to	cache	our	 index.html 	file,	since	every	time	we	update	the	app,	our	bundle	and	style	files	will	have
a	new	hashed	suffix.

The	way	to	tell	CloudFront	to	never	cache	the	 index.html 	file	is	by	setting	a	new	behavior.	Select	the
distribution	by	clicking	on	the	ID.	Then	go	to	the	 Behaviors 	and	create	a	new	behavior.	Add	 index.html
to	the	 Path	Pattern .	Then	change	 Object	Caching 	to	 Customize ,	and	set	the	 Maximum 	and	 Default
TTL	(Time	To	Live--which	is	how	long	the	object	is	cached)	to	 0 .

Domain	names	with	Route	53

If	you've	purchased	your	domain	from	another	provider,	your	setup	is	going	to	be	different.	Assuming	you
used	Amazon's	 Route	53 ,	this	is	how	you	would	point	your	domain	to	the	CloudFront	distribution	you
just	created.

After	purchasing	a	domain,	go	to	 Hosted	zones 	in	the	left	panel	and	select	 Create	hosted	zone 	for	the
domain	you	would	like	to	change.

Now	choose	 Create	record	set .	Then	in	the	panel	on	the	right,	toggle	the	 Alias 	to	 Yes 	and	select	the
CloudFront	distribution	you	just	created.	Keep	in	mind	that	the	distribution	might	not	be	provisioned	yet,
in	which	case	you'll	have	to	wait	(if	you	go	to	CloudFront	and	it	says	"in	progress",	it	isn't	done).	Then
click	 Create 	and	you're	done.	Now	if	you	go	to	the	domain	you	purchased	(e.g.	 https://phoenixchat.io)	it
should	look	like	you	expect	with	HTTPS	enabled.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 362	of	407

https://phoenixchat.io
https://www.learnphoenix.io

Keep	in	mind,	these	changes	can	often	take	hours	to	propagate.	If	your	changes	don't	immediately	appear,
don't	automatically	assume	there	is	an	error.	Unfortunately	there	is	no	way	around	this	and	it	makes	your
code	really	difficult	to	debug.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 363	of	407

https://www.learnphoenix.io

ESLint	and	Airbnb	style	guide

What	is	ESlint
Install	ESLint
Examples	of	rule	overrides

When	you're	working	with	a	big	team	or	on	open	source	projects,	there	will	come	a	point	where	the
various	styles	of	each	person	will	begin	to	collide.	Some	people	insist	on	semicolons,	some	despise
them;	some	like	2	spaces	for	indentation,	some	insist	on	4.	At	a	certain	point,	your	codebase	begins	to
look	rather	inconsistent.	Wouldn't	it	be	nice	if	you	could	set	rules	for	your	codebase	that	everyone	needed
to	follow	so	your	format	was	totally	uniform	throughout	your	app?	Enter	ESLint.

ESLint	allows	you	to	set	formatting	rules	and	will	throw	errors/warnings	if	someone	attempts	to	violate
those	rules.	And	if	you're	using	an	IDE	like	Atom,	you	can	use	a	linter	in	realtime,	which	will	let	you	know	if
the	code	you	just	wrote	is	out	of	format	every	time	you	save.	If	you're	using	Atom,	you	can	install	ESLint
by	using	the	Atom	package	manager,	apm	(below).

$	apm	install	linter-eslint

Install	ESLint

The	most	commonly	used	starting	point	for	ESLint	is	the	Airbnb	style	guide.	Almost	everyone	uses	this	as
the	default	options	when	building	a	React	application.

$	npm	install	--save-dev	eslint-config-airbnb	eslint	\
		eslint-plugin-jsx-a11y	eslint-plugin-import	\
		eslint-plugin-react	babel-eslint

Once	those	are	installed,	you'll	need	a	 .eslintrc.js 	file,	in	which	you	specify	options	for	ESLint	(you	will
often	see	this	as	simply	 .eslintrc ,	but	this	is	deprecated	in	favor	of	explicit	file	extensions	like	 .js).
These	options	include	plugins,	globals,	and	rule	overrides.

$	touch	.eslintrc.js

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 364	of	407

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/atom.io
https://www.npmjs.com/package/eslint-config-airbnb
https://www.learnphoenix.io

Within	this	file,	we	will	extend	the	existing	 airbnb 	style	guide	and	add	the	plugins	that	enable	us	to	use
React	and	jsx.	We	also	define	our	 globals 	here.	ESLint	will	throw	an	error	if	you	try	to	use	a	function	or
variable	that	is	not	declared	in	the	file,	so	global	namespaces	like	 document 	or	 window 	will	not	work.	In
order	to	get	around	this,	you	have	to	declare	all	your	global	variables	within	your	configuration	so	ESLint
knows	what	to	expect.

From	there,	we	define	a	few	rules.	These	rules	are	necessarily	a	matter	of	opinion.	We	have	included
some	pretty	common	overrides	and	we	will	go	over	each	of	them	(and	the	reason	for	using	them)	below
the	codeblock.

module.exports	=	{
		"extends":	"airbnb",
		"parser":	"babel-eslint",
		"plugins":	[
				"react",
				"jsx-a11y",
				"import"
],
		"globals":	{
				"window":	true,
				"document":	true,
				"fetch":	true,
				"localStorage":	true
		},
		"rules":	{
				"comma-dangle":	[1,	"never"],
				"semi":	[2,	"never"],
				"arrow-body-style":	0,
				"quotes":	["error",	"double"],
				'react/jsx-closing-bracket-location':	[1,	'after-props'],
				'no-param-reassign':	["error",	{	"props":	false	}],
				"react/jsx-filename-extension":	[1,	{	"extensions":	[".js"]	}]
		}
}

Rules

Every	rule	in	ESLint	has	documentation--pretty	darn	good	documentation,	actually.	If	you	want	to	learn
more	about	a	particular	rule,	you	can	always	find	it	by	using	the	search	bar	at	the	top	of	the	ESLint	docs.

Within	the	configuration	of	your	rules,	you	can	set	a	rule	to	 0 ,	which	means	"off",	 1 ,	which	means
"warning",	or	 2 ,	which	means	error	and	will	throw	a	exit	code	of	1.	Many	of	these	rules	will	have
additional	configurations,	which	are	specified	in	the	documentation	associated	with	each	rule.

The	first	rule	we're	going	to	override	is	the	 comma-dangle 	(docs).	Some	people	like	comma	dangles

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 365	of	407

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/eslint.org
http://eslint.org/docs/rules/comma-dangle
https://www.learnphoenix.io

because	it	can	save	you	from	errors	caused	by	a	lack	of	a	comma	when	adding	or	removing	items	from
lists	or	objects.	We're	not	going	to	use	them	because	comma	dangles	don't	work	with	JSON.	But	we're
just	going	to	turn	this	into	a	warning	rather	than	an	error,	so	our	code	will	still	pass	even	if	we	have	a	few
comma	dangles	here	and	there.

The	second	rule	is	 semi ,	which	requires	semicolons.	We're	setting	the	configuration	to	require	that
semicolons	are	not	used	or	it	will	throw	an	error.	This	is	because	semicolons	provide	nothing	and	merely
serve	to	clutter	your	JavaScript	code.

The	third	rule	is	 arrow-body-style ,	which	controls	how	you	use	curly	braces	around	your	ES2015	arrow
functions.	We're	just	going	to	turn	this	off	because	there	is	too	much	variation	in	how	these	functions	can
be	written	in	React.

The	fourth	rule	is	requiring	that	all	quotes	are	double	quotes.	For	some	reason,	this	is	always
controversial,	but	we're	using	double	quotes	because	you're	more	likely	to	include	a	single	 ' 	within	a
string	than	you	are	a	double	quote	and	because	Elixir	and	JSON	use	double	quotes	for	strings.

The	fifth	rule	is	specific	to	React,	where	we	determine	how	the	closing	bracket	should	be	formed.	Some
people	like	the	extra	 > 	on	a	new	line,	others	do	not.	We're	going	to	add	this	extra	character	at	the	end	of
our	element	properties,	like	we've	been	doing	so	far	in	the	React	lessons.	For	more	information	on	this
rule,	check	the	(docs).

The	sixth	rule,	 no-param-reassign ,	is	somewhat	obscure,	but	it	makes	it	so	that	you	cannot	reassign
variables	that	are	passed	in	as	parameters	(docs).	We're	overriding	part	of	the	rule	so	that	we	still	cannot
reassign	the	variable,	but	we	can	assign	its	properties.	For	example,	we	cannot	reassign	 foo 	if	it's
passed	in	from	 myFunction(foo) ,	but	we	can	assign	 foo.bar .

The	last	rule	we're	overriding	is	the	filename	extension.	We're	just	going	to	name	all	of	our	files	 .js
rather	than	specifying	 .jsx 	or	 .es6 	or	anything	like	that.	There	aren't	any	real	advantages	to	including
all	the	extra	filetypes,	so	we're	just	going	to	make	everything	 .js .

Additional

You'll	also	want	to	create	a	 .eslintignore 	file	so	you	can	ignore	files	that	you	don't	need	to	lint.

$	touch	.eslintignore

We're	going	to	add	all	the	generated	files,	as	well	as	our	webpack	configuration,	our	 server.js 	file,	and
all	of	our	tests.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 366	of	407

https://github.com/yannickcr/eslint-plugin-react/blob/master/docs/rules/jsx-closing-bracket-location.md
http://eslint.org/docs/rules/no-param-reassign
https://www.learnphoenix.io

.nyc_output
dist
coverage
node_modules
webpack.*
server.js
**/spec.js

The	reason	we're	ignoring	these	files	is	because	they'll	each	require	a	litany	of	ESLint	overrides.	For
example,	you	can	include	specific	ESLint	overrides	in	a	comment	on	the	top	of	any	file.	Just	to	get	our
server.js 	file	to	pass,	we'll	need	to	add	the	following	3	overrides.

/*	eslint-disable	import/no-extraneous-dependencies	*/
/*	eslint-disable	no-console	*/
/*	eslint-disable	no-unused-expressions	*/

And	to	get	each	of	our	 spec.js 	files	to	pass,	we'd	have	to	add	even	more,	and	we'de	have	to	add	them	to
every	spec	file.	So	unless	you	want	to	do	that	(which	you're	more	than	welcome	to	do--writing	an	alias
would	probably	speed	up	the	process),	it's	just	easier	to	skip	them.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 367	of	407

https://www.learnphoenix.io

Refactoring	Redux

Separating	concerns	in	Redux
Best	practices

In	this	section,	we're	going	to	change	all	of	our	Redux	actions	into	actions	that	are	more	performant,
testable,	and	easier	to	read.	You	probably	noticed	that	our	Actions	were	starting	to	get	a	little	out	of
control.	Now	it's	time	we	refactor	them.

Incremental	refactoring

As	far	as	refactors	go,	this	will	be	pretty	easy	so	we're	going	to	do	this	a	little	differently	than	previous
lessons.	Since	all	of	our	actions	are	more	or	less	the	same,	we're	just	going	to	show	you	how	to	refactor
one	of	the	actions	and	you	should	try	refactoring	the	others	using	the	same	strategy.	If	you	get	stuck,
send	us	a	message	on	Slack	and	we'll	walk	you	through	it.

Let's	take	a	look	at	our	 userAuth 	action:

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 368	of	407

https://www.learnphoenix.io

Actions.userAuth	=	function	userAuth()	{
		return	dispatch	=>	fetch(`${process.env.API_HOST}/auth/me`,	{
				method:	"GET",
				headers:	{
						Accept:	"application/json",
						"Content-Type":	"application/json",
						Authorization:	`Bearer	${localStorage.token}`	||	""
				}
		})
		.then((res)	=>	{
				return	res.json()
		})
		.then((res)	=>	{
				dispatch({
						type:	"USER_AUTH",
						payload:	{
								user:	res.data
						}
				})
		})
		.catch((err)	=>	{
				console.warn(err)
		})
}

We	should	also	move	our	actions	into	new	directory	and	into	an	 index.js 	file.	It	will	make	sense	why	we
are	doing	this	later	on.

$	mkdir	app/redux/actions
$	touch	app/redux/actions/{index,async}.js

Then	copy	over	the	existing	content	from	 actions.js 	into	 async.js 	and	delete	 actions.js .	So	now
your	Redux	directory/file	structure	should	look	like	this,	with	all	of	your	actions	living	in	 async.js :

redux
|--	reducers.js
|--	store.js
|--	actions
				|--	async.js
				|--	index.js

The	next	thing	we	should	do	is	change	our	exports	so	that	we're	exporting	each	action	individually.	So
let's	get	rid	of	the	 Actions 	object	and	simply	use	 export	function .	We'll	also	need	to	get	rid	of	that
default	export 	at	the	end.	So	now,	each	of	your	functions	should	look	like	this	(with	the	body	of	the

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 369	of	407

https://www.learnphoenix.io

actions	removed	for	brevity):

/app/redux/actions/async.js
commit: coming soon

export	function	userAuth()	{
		...
}

export	function	userNew(user)	{
		...
}

export	function	userLogin(user)	{
		...
}

export	function	organizationNew(organization)	{
		...
}

But	now	we	aren't	exporting	our	actions,	so	nothing	will	work.	In	order	to	export	all	of	our	exported
actions,	let's	add	an	 export 	in	our	 index.js 	file	that	takes	in	all	the	actions	from	 async.js .

/app/redux/actions/index.js
commit: coming soon

export	*	from	"./async"

And	now	we're	ready	for	major	refactoring.

Remove	Try-Catch

The	first	thing	we	should	do	is	remove	the	 catch 	statement	at	the	end	and	handle	errors	within	 then .
This	is	debatable,	but	using	 try-catch 	for	logic	can	end	up	displaying	errors	that	aren't	what	you	would
expect.	For	example,	if	you	had	a	spelling	error	or	something	like	that	within	your	 then ,	it	would	raise	in
your	 catch 	statement,	making	bugs	harder	to	track	down.	Check	out	this	comment	from	Dan	Abramov
for	another	example.

/app/redux/actions/async.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 370	of	407

https://github.com/facebook/react/issues/7617#issuecomment-247710003
https://www.learnphoenix.io

Actions.userAuth	=	function	userAuth()	{
		return	dispatch	=>	fetch(`${process.env.API_HOST}/auth/me`,	{
				method:	"GET",
				headers:	{
						Accept:	"application/json",
						"Content-Type":	"application/json",
						Authorization:	`Bearer	${localStorage.token}`	||	""
				}
		})
		.then((res)	=>	{
				return	res.json()
		})
		.then((res)	=>	{
				dispatch({
						type:	"USER_AUTH",
						payload:	{
								user:	res.data
						}
				})
		})
}

Pulling	out	HTTP	calls

The	next	part	of	our	refactor	involves	pulling	our	HTTP	calls	into	a	separate	file.	Let's	create	an	 http.js
file	within	our	 actions 	directory	and	add	some	logic	there.

$	touch	app/redux/actions/http.js

Again,	we're	only	going	to	change	 userAuth 	in	this	lesson,	but	you	should	refactor	the	other	actions	as
well.

/app/redux/actions/http.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 371	of	407

https://www.learnphoenix.io

export	function	userAuth()	{
		return	fetch(`${process.env.API_HOST}/auth/me`,	{
				method:	"GET",
				headers:	{
						Accept:	"application/json",
						"Content-Type":	"application/json",
						Authorization:	`Bearer	${localStorage.token}`	||	""
				}
		})
}

So	now	that	we	have	our	HTTP	call	pulled	out,	we	can	use	it	in	our	 async.js 	file.

/app/redux/actions/async.js
commit: coming soon

import	*	as	http	from	"./http"

export	function	userAuth()	{
		return	dispatch	=>	{
				http.userAuth()
				.then((res)	=>	{
						return	res.json()
				})
				.then((res)	=>	{
						dispatch({
								type:	"USER_AUTH",
								payload:	{
										user:	res.data
								}
						})
				})
		}
}

This	will	allow	us	to	write	tests	specific	to	our	HTTP	calls	and	different	tests	specific	to	our
asynchronous	actions.

Async-Await

The	next	thing	to	do	is	to	get	rid	of	the	 then 	block	by	using	the	ES2016	Async-Await	which	was	added	in
July	of	2016.	If	you're	not	familiar,	it's	similar	to	a	generator.

We're	also	going	to	add	a	failure	action	(USER_AUTH_FAILURE)	in	case	we	want	to	do	something	in	the

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 372	of	407

https://github.com/tc39/ecmascript-asyncawait
https://www.learnphoenix.io

event	of	auth	failure.

/app/redux/actions/async.js
commit: coming soon

import	*	as	http	from	"./http"

export	function	userAuth()	{
		return	async	dispatch	=>	{
				const	response	=	await	http.userAuth()
				if	(response.status	!==	200)	{
						dispatch({	type:	"USER_AUTH_FAILURE"	})
				}	else	{
						const	result	=	await	response.json()
						dispatch({
								type:	"USER_AUTH",
								payload:	{
										user:	result.data
								}
						})
				}
		}
}

If	you	try	to	run	this,	you	will	get	an	error.	That's	because	we	need	 babel-polyfill 	to	handle	 async-
await 	until	it's	widely	supported.

$	npm	install	--save-dev	babel-polyfill

Then	add	it	as	an	entry	point	in	our	webpack	configuration	just	like	we	did	with	 whatwg-fetch .	You'll	have
to	do	this	in	both	 webpack.config.js 	and	 webpack.prod.config.js .

/webpack.config.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 373	of	407

https://www.learnphoenix.io

...
module.exports	=	{
		devtool:	'eval',
		entry:	[
				'whatwg-fetch',
				'babel-polyfill',
				'webpack-dev-server/client?http://localhost:3000',
				'./app/index'
],
		...
}

Although	it	doesn't	affect	us	here,	something	to	keep	in	mind	that	is	that	every	time	you	dispatch	and
change	state,	you're	causing	a	re-render.	So	if	you	look	at	our	 userNew 	function,	you'll	see	that	we're
dispatching	the	user	data	to	our	reducer,	then	calling	 userAuth .	This	will	cause	two	renders,	which	you
may	or	may	not	want	to	do	depending	on	your	situation.

Separating	synchronous	actions

The	last	major	change	we'll	make	is	to	pull	out	our	synchronous	actions.	These	are	all	of	our	actions	that
don't	require	a	request	to	our	server.	So	that	includes	changing	modal	states,	loading	states,	and
dispatching	the	results	of	an	asynchronous	request.

$	touch	app/redux/actions/sync.js

/app/redux/actions/sync.js
commit: coming soon

export	const	userAuthSuccess	=	user	=>	({
		type:	"USER_AUTH",
		payload:	{
				user
		}
})

export	const	userAuthFailure	=	()	=>	({
		type:	"USER_AUTH_FAILURE"
})

/app/redux/actions/async.js
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 374	of	407

https://www.learnphoenix.io

import	*	as	http	from	"./http"
import	*	as	sync	from	"./sync"

export	function	userAuth()	{
		return	async	dispatch	=>	{
				const	response	=	await	http.userAuth()
				if	(response.status	!==	200)	{
						dispatch(sync.userAuthFailure())
				}	else	{
						const	result	=	await	response.json()
						dispatch(sync.userAuthSuccess(result.data))
				}
		}
}

We're	also	going	to	want	to	use	our	synchronous	actions	in	some	of	our	components,	so	we	should	add
an	export	in	our	 index.js 	file	that	gives	us	access	to	them.

/app/redux/actions/index.js
commit: coming soon

export	*	from	"./sync"
export	*	from	"./async"

The	only	other	immediate	change	you	should	make	for	this	refactor	is	in	you	 App 	component.	Instead	of
importing	 Actions ,	we	need	to	import	the	individual	action,	 userAuth .	And	then	we	have	to	change	the
dispatch.

import	{	userAuth	}	from	"../../redux/actions"

export	class	App	extends	React.Component	{
		componentDidMount()	{
				this.props.dispatch(userAuth())
		}

		...
}

And	that	should	do	it.	Our	Redux	actions	are	now	split	into	functions	that	are	task-specific,	which	will
make	them	much	easier	to	test	and	reason	about.	When	you	refresh,	your	app	should	still	function.

You	will	need	to	refactor	out	all	of	the	 Actions 	imports,	since	we	are	only	exporting	named	exports	now.
So,	for	example,	the	 Login 	component	should	now	import	 userLogin 	like	this:

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 375	of	407

https://www.learnphoenix.io

//	Old	import
import	Actions	from	"../../redux/actions"

//	New	import
import	{	userLogin	}	from	"../../redux/actions"

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 376	of	407

https://www.learnphoenix.io

Testing	Redux

Action	tests
Reducer	tests

coming	soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 377	of	407

https://www.learnphoenix.io

Refactoring	React

mapDispatchToProps

coming	soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 378	of	407

https://www.learnphoenix.io

UI	Component	Development	with	React
Storybook

Installation
Component	isloation

What	is	it?

$	npm	install	--save-dev	@kadira/storybook

"scripts":	{
		"storybook":	"start-storybook	-p	9001"
}

https://github.com/kadirahq/react-storybook

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 379	of	407

https://github.com/kadirahq/react-storybook
https://www.learnphoenix.io

Redux	Optimization	with	ImmutableJS

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 380	of	407

https://www.learnphoenix.io

Basics	of	analytics

The	goal	of	analytics
What	to	track
All	of	the	options

If	you've	built	a	website	any	time	since	about	2005,	you've	probably	used	Google	Analytics.	You	add	a
snippet	to	your	page	and	you	magically	have	access	to	pageviews,	bounce	rate,	customer	location,
browser,	device,	and	many	other	pieces	of	information.	This	is	a	good	starting	point,	but	there	is	so	much
more	that	can	be	done	with	analytics.

Two	common	tools	are	Mixpanel	and	Kissmetrics,	which	give	you	deeper	insights	into	customer	behavior
and	conversion	rates.	If	you're	a	lazy	programmer	and	you	want	to	pawn	even	tracking	off	on	non-
technical	people,	Heap	Analytics	is	a	great	option	since	it	tracks	all	events	and	lets	you	define	them	on	a
graphical	user	interface	after	the	fact.

Any	tool	you	choose	will	be	fine.	They've	all	converged	on	some	of	the	same	basic	functionality	that	we'll
need.

The	goal	of	analytics

Developers	who	are	new	to	analytics	often	take	the	"analyze	everything"	approach,	where	they	want	to
track	every	event	and	user	interaction	down	to	the	last	excruciating	detail.	While	this	approach	has	its
advantages,	it's	usually	better	to	take	a	step	back	and	think	about	what	you	hope	to	accomplish	with	your
analytics.

If	you	have	an	e-commerce	site,	your	goal	is	to	get	as	much	revenue	as	possible.	You	will	want	to	track
the	series	of	actions	that	users	take	that	lead	to	a	purchase.

If	users	that	come	from	a	particular	source	(Google	ads,	Facebook	ads,	organic	traffic)	have	a	particular
affinity	to	certain	products,	then	you	need	to	know	that.	If	users	often	get	frustrated	and	leave	because
they	have	too	many	menus	to	click	through,	then	you	need	to	know	that.

Everything	you	do	will	be	focused	on	how	to	get	customers	to	make	purchases	and	turn	the	average
visitor	into	a	customer.

We	are	building	a	business-facing	chat	app,	so	our	goals	are	different	than	the	goals	of	an	e-commerce
site.	There	are	really	two	things	we	want	to	track:

1.	 Conversion	rate

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 381	of	407

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/mixpanel.com
https://www.kissmetrics.com/
https://heapanalytics.com/
https://www.learnphoenix.io

2.	 Feature	usage

We	will	go	over	each	of	these	independently	at	a	high	level.

Conversion	tracking

Conversion	tracking	lets	you	know	how	effective	certain	things	are	in	your	site	at	turning	a	potential
customer	into	a	paying	customer.	For	example,	it's	worthwhile	for	a	marketing	team	to	know	which	of
their	ads	are	the	most	successful	both	in	terms	of	allocating	their	budget	and	adjusting	their	messaging.

A	typical	way	to	track	conversions	is	to	keep	track	of	a	variety	of	 UTM 	codes.	 UTM 	stands	for	"Urchin
Tracking	Module",	which	is	from	a	company	that	Google	bought	and	they	decided	to	keep	the	name.

There	are	5	universal	UTM	codes.	They	are:

utm_source :	identifies	the	source	of	the	traffic	(for	example,	Google)

utm_medium :	identifies	a	medium,	such	as	email,	newsletter,	etc

utm_term :	identifies	the	search	term	used	to	get	the	user	to	click	on	the	ad.

utm_content :	used	for	A/B	testing	to	differentiate	between	two	pages	that	link	to	the	same	url.	This	is
not	used	very	often.

utm_campaign :	identifies	a	broad	campaign	that	your	ad	is	a	part	of.	For	example,	"spring_sale"	could	be
the	overall	campaign.

Within	Mixpanel,	you	can	use	these	UTM	codes	to	track	which	ads	are	the	most	successful.

To	achieve	reasonable	conversion	tracking,	we're	going	to	need	to	track	the	original	source	of	the	traffic
and	follow	that	user	through	a	series	of	events	that	lead	us	to	the	desired	action.

So,	an	example	funnel	for	conversion	tracking	would	be:

1.	 A	user	gets	to	our	site	through	a	Google	ad	for	the	term	"phoenix	tutorial",	which	we	know	because	of	the	tag
utm_source=google?utm_term=phoenix+tutorial	that	was	appended	to	the	link	and	tracked	by	Mixpanel.

2.	 The	user	viewed	four	of	the	free	lessons,	which	we	know	because	we	tracked	that	user	across	multiple	page
routes.

3.	 That	user	went	back	to	the	homepage.
4.	 The	the	user	clicked	the	purchase	button.
5.	 The	user	went	through	with	the	purchase.

At	every	level	of	this	process	there	is	something	that	could	go	wrong	and	therefore	something	to	learn.

At	step	1,	we	know	that	the	keyword	was	able	to	convince	someone	to	come	to	the	site.	But	perhaps	the
keyword	was	not	as	specific	as	it	should	have	been	and	the	user	was	actually	looking	for	something	else.
If	the	user	quickly	leaves,	it's	safe	to	assume	we	did	not	target	this	properly.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 382	of	407

https://support.google.com/analytics/answer/1033867?hl=en#more_information_and_examples_for_each_parameter
https://www.learnphoenix.io

Alternatively,	if	we	chose	a	keyword	such	as	 phoenix	tutorial	free ,	we	might	be	attracting	the	wrong
customers,	which	is	to	say,	only	people	who	do	not	want	to	pay	for	tutorials.	There's	something	to	be	said
for	the	marketing	effect	of	free	lessons,	but	it's	something	to	keep	in	mind.

At	step	2,	we	know	that	the	user	viewed	several	free	lessons.	This	tells	us	that	the	free	lessons	are	useful
for	keeping	the	user's	attention.	If	this	user	eventually	converts,	it	means	that	giving	her	a	sample	of	what
the	lessons	are	all	about	helped	turn	her	into	a	paying	customer.

At	step	3,	we	see	that	the	user	went	back	to	the	homepage.	And	why	would	she	do	that?	Well,	it	might	be
because	there's	no	purchase	button	in	the	view	she	was	in	before.	If	there	is	significant	drop-off	between
step	3	and	4,	then	maybe	you	should	make	it	easier	for	someone	to	purchase	your	product,	reducing	the
friction	to	make	the	purchase.

At	step	4,	the	user	has	committed	to	making	the	purchase.	But	that	doesn't	always	guarantee	that	the
user	will	actually	pay.	Sometimes	if	you	force	them	to	go	through	a	long	signup	process,	you'll
successfully	convince	them	that	it's	not	worth	the	time	to	fill	everything	out	and	they'll	just	leave.

And	finally,	step	5	means	that	you	got	a	new	customer.	It's	always	worth	your	time	to	find	customers	who
actually	converted	and	backtrack	their	actions	to	see	what	converting	customers	so	you	might	be	able	to
garner	some	insights	into	how	to	turn	other	potential	customers	into	paying	customers.

Customer	engagement

Are	new	users	more	engaged	than	existing	users?	Are	people	in	Australia	more	engaged	than	people	in
Texas?	If	so,	why?	Are	users	that	receive	direct	communication	from	an	admin	more	likely	to	be	engaged?
There	are	hundreds	of	useful	questions	you	could	ask.

For	PhoenixChat,	we	also	want	to	know	if	people	are	actually	using	the	app.	But	not	only	that,	we	want	to
know	how	they're	using	the	app.	If	we	find	that	all	of	our	customers	are	using	a	certain	feature,	but	we	are
hiding	that	feature	behind	several	layers	of	dropdown	menus,	then	maybe	we	should	move	that	item	to
somewhere	more	visible.

If	you	build	out	a	feature	(say,	gamification	or	statistics),	and	you	later	discover	that	nobody	is	using	it,
that's	helpful	information.	It	tells	you	that	you	need	to	1)	figure	out	a	way	to	make	these	features	more
interesting	to	your	users,	2)	easier	to	find,	or	3)	abandon	them	altogether	and	stop	spending	resources	on
something	that	nobody	uses.

Feature	usage	also	tells	you	what	features	are	useful	to	your	customers	and	what	you	should	be
spending	your	time	on.	If	your	customers	seem	to	spend	lots	of	time	looking	at	their	statistics,	perhaps
you	should	add	fancier	charts	and	give	them	more	feedback	about	the	performance	of	their	posts.	If
users	seem	to	send	direct	messages	to	each	other	on	a	regular	basis,	maybe	you	should	expand	chat	into
a	standalone	app	with	additional	functionality.

Tracking	feature	usage	is	one	of	the	keys	to	knowing	how	and	where	to	pivot	if	necessary.	You	might	find

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 383	of	407

https://www.learnphoenix.io

that	you	set	out	to	build	a	social	network,	but	your	users	are	actually	more	interested	in	some	small
subset	of	your	app,	such	as	image	sharing.	You	can	either	try	to	force	everyone	into	the	existing	feature
set	(which	is	almost	always	wrong),	or	you	can	embrace	the	behavior	of	your	users	and	focus	your	app	on
what	they	find	most	useful.

The	many	options	in	analytics

There	are	a	seemingly	endless	number	of	options	when	it	comes	to	analytics.	Google	Analytics,	Mixpanel,
Kissmetrics,	Heap,	Segment.io,	Customer.io,	Intercom.io,	and	dozens	(hundreds?)	of	others.

At	the	end	of	the	day,	most	of	these	are	the	90%	the	same.	They	all	track	events	and	they	all	track	user
behavior	and	pageviews.

Almost	every	website	uses	Google	Analytics.	There	is	much	more	to	Google	Analytics	than	just	the
snippet	of	code	that	tracks	pageviews	etc.,

In	the	software	space,	the	two	big	players	are	Mixpanel	and	Kissmetrics.	The	two	are	more	or	less
identical	with	a	slightly	different	user	interface.	They	give	you	great	reporting,	deep	user	analytics,	and	a
lot	of	other	useful	features--some	of	which	we	will	go	over	later.

For	this	app,	we	are	going	to	use	Segment.io	and	Mixpanel.

Segment.io	is	an	intermediary	that	separates	your	data	from	your	analytics.	You	send	all	of	your	events
to	Segment.io	and	then	have	Segment.io	pass	that	data	to	the	analytics	service	you	want	to	use.	We	are
going	to	use	Segment.io	to	pass	data	into	both	Mixpanel	and	Customer.io.

If	you	have	a	preference	for	Kissmetrics,	feel	free	to	use	it.	We	are	going	with	Mixpanel	over	Kissmetrics
solely	because	it	has	a	free	tier.	Also,	since	we're	using	Segment.io	as	a	data-intermediary,	there	is
nothing	stopping	you	from	using	both.	All	you	need	to	do	is	toggle	the	switch	to	turn	on	any	number	of
analytics	tools.

The	next	step	is	to	actually	integrate	Segment.io	and	start	tracking	the	usage	statistics	of	our	app.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 384	of	407

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/link
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/link
http://segment.io
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/mixpanel.com
https://www.learnphoenix.io

Connecting	Segment.io	and	Mixpanel

Using	redux-segment
Activating	Mixpanel

Since	we're	using	Redux,	we're	lucky.	We	don't	have	to	worry	about

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 385	of	407

https://www.learnphoenix.io

React	and	SEO

structured	data

document.title

sitemap.xml

data	highlighter

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 386	of	407

https://www.learnphoenix.io

Password	Reset	Link	and	Email

Password	reset	flow
Generate	reset	token
Validate	token	and	reset	password

In	this	lesson,	we're	going	to	cover	how	to	send	a	password	reset	link	via	email.	If	you've	skipped	any
lessons	so	far,	you'll	want	to	make	sure	that	you've	at	least	implemented	transactional	email.

Password	reset	flow

Resetting	a	password	is	more	complicated	than	you	might	expect.	The	way	password	reset	works	is

First,	create	a	link	that	allows	a	user	to	request	a	new	password

Second,	create	the	view	that	for	the	user	to	submit	the	reset	link

Third,	generate	and	send	the	password	reset	link	via	email

Fourth,	create	another	view	that	accepts	a	token	as	a	query	parameter	and	sends	the	new	password
along	with	the	token

Fifth,	match	the	token	with	an	existing	user	account

Sixth,	automatically	log	the	user	in	if	the	token	and	new	password	is	valid

Generate	reset	token

The	first	thing	we're	going	to	do	is	change	our	backend	to	accept	a	password	reset.	We're	going	to	need
two	additional	endpoints	to	add	this	functionality.

The	first	endpoint	will	be	 reset-request 	which	will	take	the	initial	request	from	the	frontend	and	will
include	the	email	address	for	which	we	want	to	reset	the	password.	The	second	endpoint	will	be	 reset
which	will	pass	along	the	new	password	and	a	(presumably)	valid	token	in	order	to	reset	the	password	of
the	account	that	made	the	request.	Let's	add	those	endpoints	now.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 387	of	407

https://www.learnphoenix.io

...

scope	"/api",	PhoenixChat	do
		pipe_through	[:api,	:api_auth]

		resources	"/users",	UserController,	except:	[:index,	:show,	:new,	:edit]
		post	"/users/reset-request",	UserController,	:reset_request,	as:	:reset
		post	"/users/reset",	UserController,	:reset,	as:	:reset

		...
end

...

The	next	thing	we	should	do	is	update	our	 UserController .	You	can	see	in	the	code	above	that	we
created	two	new	functions,	 :reset_request 	and	 :reset ,	so	we	should	define	those	now.	We	will	start
with	 reset_request ,	which	is	the	function	we'll	call	along	with	an	email	to	send	the	reset	link	to	the	email
address	specified.	We'll	go	over	each	line	below	the	code	block.

defmodule	PhoenixChat.UserController	do
		...

		def	reset_request(conn,	%{"email"	=>	email})	do
				user	=	Repo.get_by(User,	email:	String.downcase(email))

				if	user	do
						user
						|>	User.password_reset_changeset
						|>	Repo.update!
						|>	send_password_reset_email

						send_resp(conn,	:no_content,	"")
				else
						send_resp(conn,	:bad_request,	"user	does	not	exist")
				end
		end

		...
end

First,	we	check	to	see	if	the	user	exists	by	using	 Repo.get_by .	If	the	user	exists,	we	pass	the	user	along
to	the	 password_reset_changeset 	(which	we	will	create	later)	that	will	generate	the	token	and	store	it
along	with	our	user	so	we	can	match	against	it	later.

Then	we	send	it	along	to	the	 send_password_reset_email 	function,	which	we	will	define	later.	If	it	does
not	exist,	we	send	along	an	error.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 388	of	407

https://www.learnphoenix.io

In	order	to	store	this	token	with	our	user,	we	need	to	create	a	new	migration	to	update	our	User 	model.

$	mix	ecto.gen.migration	add_user_password_reset_fields

Within	our	new	migration,	we	need	to	add	two	fields.	One	is	the	token	that	we	will	match	against	and	the
other	is	a	timestamp	for	the	last	time	a	user	changed	her	password.

defmodule	PhoenixChat.Repo.Migrations.AddUserPasswordResetFields	do
		use	Ecto.Migration

		def	change	do
				alter	table(:users)	do
						add	:password_reset_token,	:string,	default:	nil
						add	:password_reset_timestamp,	:datetime
				end
		end
end

Go	ahead	and	run	 mix	ecto.migrate .	Now	that	we	have	our	model	updated,	we	need	to	create	our
password_reset_changeset .	This	looks	similar	to	our	other	changesets	except	for	the	put_token
function,	in	which	we	will	generate	a	token	and	add	it	to	our	user.

...

def	password_reset_changeset(model,	params	\\	%{})	do
		model
		|>	changeset(params)
		|>	put_change(:password_reset_timestamp,	Ecto.DateTime.utc)
		|>	put_token(:password_reset_token)
end

...

Now	we	need	to	define	 put_token .	In	the	function	below,	we're	checking	to	make	sure	the	changeset	is
valid	(recall	that	changesets	have	the	 valid? 	parameter),	and	if	it	is,	we	call	 generate_token 	(defined
later)	and	use	 put_change 	to	add	the	token	to	our	user.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 389	of	407

https://www.learnphoenix.io

...

def	put_token(changeset,	field)	when	field	in	~w(password_reset_token)a	do
		case	changeset	do
				%Ecto.Changeset{valid?:	true}	->
						token	=	generate_token()
						put_change(changeset,	field,	token)
				_	->
						changeset
		end
end

...

So	now	we	need	to	define	 generate_token .	All	we're	doing	is	creating	a	50-character	random	string.

...

defp	generate_token	do
		50
		|>	:crypto.strong_rand_bytes
		|>	Base.url_encode64
		|>	binary_part(0,	50)
end

...

This	confuses	a	lot	of	people	because	it's	so	simple.	Contrary	to	what	you	might	think,	there	is	no	magic
that	comes	with	keys	or	tokens—they're	just	random	numbers	and	letters	that	you	match	against	another
key	or	token.

In	our	case,	we	are	creating	a	token	and	saving	it	with	our	user.	When	that	user	requests	a	new	password,
we	send	along	that	token	as	a	query	parameter	in	a	link	via	email.	When	that	link	is	clicked,	we	search	our
database	for	matching	tokens,	and	if	we	find	a	match,	we	allow	the	user	to	reset	the	password.

Send	reset	email

Now	that	we	have	our	token,	we	need	to	define	the	password	reset	email	function,	which	we're	calling	in
our	 reset_request 	function.	This	simply	takes	in	the	user	and	passes	it	along	to	the
Email.password_reset_email 	function,	which	we	will	also	need	to	define.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 390	of	407

https://www.learnphoenix.io

defmodule	PhoenixChat.UserController	do
		...

		defp	send_password_reset_email(user)	do
				user
				|>	Email.password_reset_email
				|>	Mailer.deliver_later
		end

		...
end

Now	we	need	to	define	the	email	that	is	sent	to	the	user	who	forgot	her	password.	Recall	that	we're
taking	in	the	 user ,	which	now	has	a	 password_reset_token 	field.	For	now,	we're	going	to	hard-code	the
reset	link,	but	eventually	we	would	want	to	use	the	 email_reset_link 	function	to	set	the	link	based	on
the	environment	(test ,	 dev ,	 prod ,	etc).

The	first	thing	we	do	is	 URI 	encode	the	query	so	that	it	makes	for	a	valid	link,	then	we	concatenate	it	with
the	 email_reset_link .	From	there,	we	pass	along	the	 reset_link 	to	the	email	address	associated	with
the	current	user.

defmodule	PhoenixChat.Email	do
		...

		def	password_reset_email(user)	do
				query	=	URI.encode_query(token:	user.password_reset_token)
				reset_link	=	"#{email_reset_link}?#{query}"

				user
				|>	base_email
				|>	subject("Password	Reset")
				|>	text_body("""
						A	password	reset	was	requested,	follow	#{reset_link}	to	reset	your	password.
						If	this	was	a	mistake,	please	ignore	this	email.
						""")
		end

		defp	email_reset_link	do
				#	This	will	eventually	handle	for	environment	using
				#	Application.get_env(PhoenixChat.Mailer)
				"http://localhost:3000/#/reset-password"
		end

		...
end

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 391	of	407

https://www.learnphoenix.io

Now,	when	a	user	clicks	on	the	link,	she	will	be	directed	a	page	that	will	allow	her	to	set	a	new	password.

The	last	thing	we	need	to	do	before	moving	to	the	frontend	is	to	set	up	our	 reset 	endpoint	that	will
actually	allow	our	user	to	change	her	password.

In	this	function,	we're	going	to	find	the	user	that	has	the	matching	token	(user_for_password_token),
ensure	that	the	token	is	less	than	48	hours	old,	update	the	password,	send	the	user	an	email,	and	log	the
user	in.

Adding	an	expiration	is	a	good	idea	from	a	security	perspective	because	it	limits	the	time	that	an	account
could	be	potentially	vulnerable.	That	said,	it's	still	next	to	impossible	that	someone	can	guess	a	50-
character	token	in	their	lifetime	no	matter	how	many	guesses	per	second	(see	our	blog	post	for	more
information	on	collision	probabilities),	so	leaving	an	account	sort-of-vulnerable	for	48	hours	is	not	a	big
deal.

defmodule	PhoenixChat.UserController	do
		...

		def	reset(conn,	%{"token"	=>	token,	"password"	=>	password})	do
				case	user_for_password_token(token)	do
						user	=	%User{}	->
								user
								|>	User.registration_changeset(%{password:	password})
								|>	Repo.update!

								{:ok,	jwt,	_claims}	=	Guardian.encode_and_sign(user,	:token)

								send_password_change_email(user)

								conn
								|>	put_status(:ok)
								|>	render("show.json",	user:	user,	web_token:	jwt)
						nil	->
								conn
								|>	put_status(:bad_request)
								|>	render(ErrorView,	"error.json",	errors:	["invalid	or	expired	token"])
				end
		end

		...
end

This	should	all	look	familiar.	We	are	using	 user_for_password_token 	(defined	below)	to	match	the	token
and	sure	validity,	then	using	the	existing	 registration_changeset 	to	update	the	password,	then
Guardian.encode_and_sign 	to	log	the	user	in,	just	as	we	did	before	in	our	automatic	login	on	signup,	and
finally	sending	the	email.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 392	of	407

https://blog.learnphoenix.io/how-long-should-i-make-my-api-key-833ebf2dc26f#.whgoujsrw
https://www.learnphoenix.io

The	 user_for_password_token 	function	is	a	little	bit	tricky.	We're	creating	a	query	that	searches	through
our	 User 	models	and	finds	a	 password_reset_token 	that	matches	the	token	that	was	passed	into	the
function.	Then,	it	checks	to	make	sure	that	the	timestamp	is	less	than	48	hours	old	using	fragment,	which
allows	us	to	send	database	queries	directly	to	Postgres.

...

		defp	user_for_password_token(token)	do
				query	=	from	u	in	User,
												where:	u.password_reset_token	==	^token
														and	u.password_reset_timestamp	>	fragment("now()	-	interval	'48hours'"),
												select:	u
				Repo.one(query)
		end

...

Now	we	need	to	define	the	function	in	which	we	send	the	confirmation	email.

...

defp	send_password_change_email(user)	do
		user
		|>	Email.password_change_email
		|>	Mailer.deliver_later
end

...

And	finally,	define	the	email.

...

def	password_change_email(user)	do
		user
		|>	base_email
		|>	subject("Password	Change")
		|>	text_body("Your	password	on	Learn	Phoenix	has	been	updated	recently.")
end

...

And	that's	it	for	our	backend.	Now	we	need	to	create	the	forms	on	our	frontend	and	connect	it	to	our
backend.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 393	of	407

https://hexdocs.pm/ecto/Ecto.Query.API.html#fragment/1
https://www.learnphoenix.io

Connect	Password	Reset

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 394	of	407

https://www.learnphoenix.io

Send	New	Message	Notifications

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 395	of	407

https://www.learnphoenix.io

Browser	Notifications

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 396	of	407

https://www.learnphoenix.io

Web	Workers	and	Page	Visibility

Basics	of	Web	Workers
Page	Visibility	API
Send	messages	in	the	background

coming	soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 397	of	407

https://www.learnphoenix.io

Persisting	ETS	Data

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 398	of	407

https://www.learnphoenix.io

Add	Profile	Image

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 399	of	407

https://www.learnphoenix.io

Basics	of	React	Native

Background
Differences	from	React
Installation
Hello	World!
Ignite

One	of	the	biggest	advantages	of	this	stack	is	the	ease	with	which	you	can	create	native	mobile
applications	that	share	code	and	allow	for	significantly	faster	iteration	cycles.

In	this	lesson,	we're	going	to	go	over	some	of	the	basics	of	React	Native,	walk	through	a	"Hello	World!"
app,	then	use	Ignite	to	create	a	boilerplate	app.

Background

TODO(image:	cordova,	ionic)

In	the	olden	days	we	built	hybrid	apps	with	technologies	like	Cordova,	Phonegap,	Ionic,	Sencha	Touch,	et
al.	They	gave	us	easy	access	to	native	API	calls,	but	the	majority	of	the	app	still	ran	as	HTML	and
JavaScript	within	a	WebView,	but	it	was	still	better	than	the	alternatives	(which	were	limited).	The	motto
of	the	hybrid	app:

Write	once,	run	everywhere

But	while	these	hybrid	apps	made	the	development	process	easier,	it	was	not	as	performant	as	truly
native	app	written	in	Objective	C	(iOS)	or	Java	(Android).	Things	like	scrolling,	keyboard	behavior,	and
other	small	things	were	a	dead	giveaway	that	the	app	wasn't	really	native.

TODO(image:	react	native)

Then	in	2015,	Facebook	released	React	Native,	which	changed	everything.	While	everything	is	still	written
in	JavaScript	(similar	to	a	web-based	React	project),	the	components	are	rendered	as	native	platform
widgets	that	run	on	a	separate	thread,	giving	you	native	look,	feel,	and	performance	(for	most	tasks)	that
was	not	possible	with	your	typical	hybrid	app.	The	new	motto:

Learn	once,	write	everywhere

The	reason	for	this	change	in	mindset	is	that	while	you	can	share	logic	between	platforms,	it	does	not
make	sense	to	deploy	the	same	frontend	app	to	Android	as	iOS,	since	user	experience	will	be	noticeably

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 400	of	407

https://github.com/infinitered/ignite
https://www.learnphoenix.io

different.	But,	by	sharing	a	similar	syntax,	we	can	at	least	save	ourselves	the	time	of	learning	a	new
programming	language	and	syntax	and	we	can	reuse	a	lot	of	our	core	logic	between	the	platforms.

To	further	drill	down	on	the	question,	"But	is	it	really	native?",	for	all	practical	purposes	the	answer	is
"yes".	Your	JavaScript	code	is	run	on	its	own	thread	that	is	separate	from	the	main	UI	thread,	so	even
when	your	JavaScript	code	is	running	complicated	logic,	it	won't	mess	with	your	UI,	which	is	the	reason
that	hybrid	apps	can	feel	janky.

Differences	from	React

Since	we've	been	working	with	React,	you'll	feel	right	at	home.	Instead	of	using	 <div> 	and	 <p> 	tags,	you
use	 <View> 	and	 <Text> .	These	are	mapped	to	the	iOS	and	Android	equivalents	of	 UIView 	and
android.view 	respectively	and	are	rendered	as	native	components.

React	Native	also	does	not	support	CSS,	so	you'll	have	to	do	all	your	styling	in	JavaScript,	much	like	how
we	handled	styles	in	our	NPM	component.	An	example	stylesheet	would	look	like	the	code	below.

import	{	StyleSheet	}	from	'react-native'

export	default	StyleSheet.create({
		container:	{
				justifyContent:	'center',
				marginVertical:	'25'
		}
})

You	probably	noticed	the	 StyleSheet.create 	function.	This	is	not	strictly	necessary,	but	it's	something
you	get	for	free	with	React	Native	which	handles	style	caching	and	it's	something	you'll	want	to	use.

React	Native	also	uses	a	subset	of	Flexbox	to	handle	alignment	and	justification.	Since	we're	already
using	Flexbox,	this	should	be	easy	to	understand	once	we	start	implementing	it.

Routing	is	done	through	 Navigator 	and	there	are	several	libraries	out	there	that	make	it	as	easy	to	use
as	 react-router ,	which	we	have	already	used.

And	that's	about	it.	With	the	exception	of	directory	structure	changes,	you'll	start	to	feel	comfortable
writing	React	Native	code	in	no	time.

Installation

There's	a	lot	to	install,	and	this	can	take	some	time.	Follow	the	steps	in	the	 docs	to	install	everything	you
need.	The	basics	are:

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 401	of	407

https://facebook.github.io/react-native/docs/getting-started.html
https://www.learnphoenix.io

$	brew	install	node
$	brew	install	watchman
$	npm	install	-g	react-native-cli

Then	you	need	to	make	sure	you	have	Xcode	installed	as	well	as	Android	Studio.	Once	that's	done,	we
can	move	to	the	next	step.

Hello	World!

The	React	Native	Docs	handle	the	"Hello	World!"	app	about	as	well	as	it	can	be	handled,	but	we'll	go	over
it	here	for	the	sake	of	simplicity.	The	simplest	possible	app	looks	like	the	code	below.

import	React,	{	Component	}	from	'react'
import	{	AppRegistry,	Text	}	from	'react-native'

class	HelloWorldApp	extends	Component	{
		render()	{
				return	(
						<Text>Hello	world!</Text>
)
		}
}

AppRegistry.registerComponent('HelloWorldApp',	()	=>	HelloWorldApp)

With	the	exception	of	 AppRegistry 	(which	is	effectively	 ReactDOM),	this	should	look	very	familiar.	And
that's	it!	You	can	run	this	on	iOS	with	the	following	command:

$	react-native	run-ios

Ignite

Unlike	previous	lessons	where	we	built	the	app	from	an	empty	text	file,	we're	going	to	use	a	generator.
One	of	the	best	generators	out	there	is	Ignite	put	together	by	the	fine	people	at	 Infinite	Red,	a	dev	shop
based	out	of	Portland	and	San	Francisco.	Once	we	have	that	set	up,	we'll	spend	the	rest	of	the	lesson
walking	through	the	different	pieces	of	the	app.

The	first	step	is	to	install	Ignite.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 402	of	407

https://facebook.github.io/react-native/docs/tutorial.html#content
https://github.com/infinitered/ignite
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/infinite.red
https://www.learnphoenix.io

$	npm	install	-g	react-native-ignite

Then	we	should	create	our	app.

$	ignite	new	phoenix-chat-mobile

Now	to	run	it,	 cd 	into	the	directory	and	build	it.	We'll	stick	with	iOS	for	now.

$	cd	phoenix-chat-mobile
$	react-native	run-ios

This	will	build	your	app	and	launch	the	simulator.	This	can	take	some	time,	so	be	patient.	Also,	for	some
reason	this	can	error	out	on	your	first	build,	so	go	ahead	and	refresh	with	Command	+	R	if	you	run	into	a
glaring	red	error	screen.

Now	let's	take	a	look	at	the	directory	structure.	Most	of	the	code	you	write	will	be	within	the	 App

directory.	We're	only	going	to	touch	on	things	that	are	directly	relevant	to	our	app	for	now,	then	branch
out	as	other	pieces	become	necessary.

The	 Components 	directory	is	where	things	like	buttons	will	live.	You'll	see	that	all	of	these	components
have	an	associated	 .js 	file	in	the	 ./Styles 	sub-directory.	This	is	where	the	styles	for	those
components	live.

The	next	directory	to	look	at	is	 Containers ,	which	contains	your	views.	The	first	view	you'll	see	when	you
run	the	simulator	is	 PresentationScreen ,	so	let's	check	out	that	file:

/App/Containers
commit: coming soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 403	of	407

https://www.learnphoenix.io

import	React	from	'react'
import	{	ScrollView,	Text,	Image,	View	}	from	'react-native'
import	{	Images	}	from	'../Themes'
import	RoundedButton	from	'../Components/RoundedButton'
import	{	Actions	as	NavigationActions	}	from	'react-native-router-flux'

//	Styles
import	styles	from	'./Styles/PresentationScreenStyle'

export	default	class	PresentationScreen	extends	React.Component	{
		render	()	{
				return	(
						<View	style={styles.mainContainer}>
								<ScrollView	style={styles.container}>

										<View	style={styles.section}	>
												<Text	style={styles.sectionText}	>
														Default	screens	for	development,	debugging,	and	alpha	testing
														are	available	below.
												</Text>
										</View>

										<RoundedButton	onPress={NavigationActions.componentExamples}>
												Component	Examples	Screen
										</RoundedButton>

										...

										<View	style={styles.centered}>
												<Text	style={styles.subtitle}>Made	with	❤️	by	Infinite	Red</Text>
										</View>

								</ScrollView>
						</View>
)
		}
}

With	the	exception	of	the	different	tag	names,	this	should	look	very	familiar.	 <View> 	is	the	replacement
for	 <div> ,	 <ScrollView> 	docs	lets	React	Native	know	that	this	should	scroll	and	 <Text> 	contains	text.
The	 RoundedButton 	component	is	simply	an	imported	component,	just	like	we've	done	several	times
already.	Also,	 onPress 	replaces	 onClick .

It's	also	worth	checking	out	the	list	of	generators	that	Ignite	gives	us,	which	will	save	you	some	time
down	the	road.

Now	that	we	have	the	app	template,	it's	time	to	dig	into	the	meat	of	Ignite	and	build	our	mobile	app	with
React	Native.

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 404	of	407

https://facebook.github.io/react-native/docs/scrollview.html
https://github.com/infinitered/ignite#arrow_up-built-in-generators
https://www.learnphoenix.io

Server-Side	Rendering	with	React

Set	up	Express	server

Coming	Soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 405	of	407

https://www.learnphoenix.io

Stripe	Subscriptions

Add	Stripe
Connect	customer_id	to	user

While	one-off	payments	with	Stripe	are	so	easy	as	to	be	almost	trivial,	setting	up	subscriptions	is
surprisingly	complicated.	This	is	primarily	due	to	the	sizable	number	of	edge	cases	that	need	to	be
handled.	For	example,	you	need	to	handle	all	of	the	following:

Does	subscription	end	immediately	when	user	cancels?
Does	subscription	refund	pro-rated	amount?
User	upgrades/downgrades?
User	cancels,	then	re-subscribes?
Plan	expiration	date?
Plan	is	active,	but	does	not	auto-renew?

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 406	of	407

https://www.learnphoenix.io

Patch	Security	Vulnerabilities

Index	and	show	user	endpoints
Delete	other	users

coming	soon

Learn	Phoenix	by	Sam	Corcos
11/3/16

www.learnphoenix.io 407	of	407

https://www.learnphoenix.io

	Introduction
	What is Phoenix?
	What is React
	What will be covered?
	What is the ideal type of app for this framework?
	What are some alternatives?
	General formatting
	Contact

	Installing Phoenix and React
	Install Homebrew
	Install Node.js
	Install Elixir
	Install Phoenix
	Install PostgreSQL
	Postgres errors
	Additional Installations

	Directory structure
	Generating the frontend
	Frontend directory structure
	Generating the backend
	Backend directory structure

	Basics of React
	What is React?
	What is Webpack?
	Setting up our frontend
	SemVer
	Loaders
	Back to setting up the frontend

	Basics of Webpack
	Webpack configuration
	Server configuration
	HTML, React, and ReactDOM
	Hello World!
	Additional

	Routes and views
	Components
	React Router
	Hash history

	Set Up Styles in Webpack
	Webpack configuration
	Resetting default css and globals

	Style a React Component
	Creating a Sidebar component
	Optional formatting for styles
	Styling the Sidebar component
	Additional

	Snippets and Aliases
	Snippets
	Aliases
	.vimrc

	Unit Tests with Enzyme
	What is a unit test?
	What to test?
	Setting up Enzyme
	Writing a unit test
	Running our tests
	Full and static rendering
	Istanbul and test coverage
	Additional

	Basics of Elixir and Functional Programming
	Basics of functional programming
	Interactive Elixir
	Basic types
	Atoms
	Strings in Elixir
	Collections
	Pattern Matching
	Additional

	More Basics of Elixir and Phoenix
	Control Structures
	Pipes
	Functions
	Modules
	Structs
	Notes for Ruby Developers
	Model-View-Controller
	Additional

	User Accounts and Signup: Part 1
	Creating our user
	The Controller
	The View
	The Migration
	The Model
	The Router

	User Accounts and Signup: Part 2
	Sign-up
	Registration changeset
	Controller updates
	Cross-Origin Resource Sharing (CORS)

	Create a Reusable Button Component
	Style the buttons
	Unit tests

	Login and Signup Forms
	Unit tests
	Styling the homepage

	Connect the API
	Making HTTP calls
	Chat component

	Basics of Redux
	What is Redux?
	Basics of Flux
	Working with data
	Basics of Redux
	Setting up Redux

	Actions, Reducers, and Store
	The action
	The reducer
	The store
	Proof of concept

	Login and Authentication: Part 1
	Account login
	Configuring Ueberauth
	Configuring Guardian
	Plugs
	Creating our AuthController

	Login and Authentication: Part 2
	Adding authentication
	Automatic login on signup

	Move Logic to Redux
	Asynchronous actions
	Connecting the login form
	Connecting the signup form
	Toggling between signup/login forms

	Check Login Status
	Setting up userAuth action
	Automatic authentication
	Authenticated pages
	A Note on Frontend Security

	NPM Package for a React Component: Part 1
	Installing dependencies
	Creating the PhoenixChat component
	Connecting in development

	NPM Package for a React Component: Part 2
	Chat interface
	Auto-scroll
	peerDependencies

	Set up Phoenix Channels
	Setting up a room channel
	Extracting authorization

	Connect React to Channels
	Adding Phoenix.js
	Configuring your channel
	Anonymous users
	Submitting messages

	Use Presence to List Active Users
	Basics of Phoenix Presence
	Creating the AdminChannel

	Persist Messages to the Database
	Creating the Message model
	Updating our RoomChannel
	Updating handle_in
	Unix timestamp to DateTime

	Create Anonymous User Model
	Add Faker
	Create and update models

	Persist Anonymous Users
	Add anonymous users to admin channel
	Validate params

	Broadcast Active and Inactive Users
	Reactor Message and RoomChannel
	Broadcast lobby_list

	Connect the Frontend to AdminChannel
	Updating phoenix-chat
	Adding AdminChannel to Chat

	Join Room and Receive Messages
	Create ChatRoom component
	Connecting to channel

	Change Room and Respond to Messages
	Responding to messages

	List Active and Inactive Users
	List inactive users
	Merge with Presence
	Empty room indicator

	Styling the Chat Component
	Update styles
	Refactor Sidebar component
	Refactor ChatRoom component

	Transactional Email with Mailgun and Bamboo
	Install Bamboo
	Configuration
	Defining Emails
	Sending Emails

	Testing with Elixir and Phoenix: Controllers
	UserController tests
	Metaprogramming
	AuthController tests
	Debugging

	Testing with Elixir and Phoenix: Channels
	RoomChannel tests
	ChannelHelpers tests
	AdminChannel tests
	UserSocket tests

	Testing with Elixir and Phoenix: Models
	User model
	Message model

	Creating an Organization Model
	Creating an Organization model
	Organization model tests

	Associate Organizations and Users
	Alter :users table
	Update User and Organization models
	Update model tests

	CRUD Endpoints for Organization: Part 1
	Update OrganizationControllerTest
	Update OrganizationController
	Create organization on signup

	CRUD Endpoints for Organization: Part 2
	Additional validations
	Update auth/me

	Controlling and Validating Forms
	Controlled form
	Update Login component
	Update Signup component

	Create and Join an Organization on Signup
	Update Signup component
	Create an action
	Add header to Chat component

	Create Organization from Settings Route
	Update Settings component
	Settings tests

	Pass API Key from Frontend
	Add token to PhoenixChat
	Update phoenix-chat

	Routing Messages Using API Keys
	Update UserSocket
	Broadcast by public_key
	Populate lobby_list by public_key

	Store and Track Recent Activity
	Display Recent Activity
	Update users when present
	Update user list
	Latest activity

	Deploying the API to Heroku
	Phoenix Buildpacks
	Configuring the App
	Environment Variables
	Deploying

	Deploying the Frontend to S3
	Change API_HOST
	Starting with AWS
	AWS Identity and Access Management (IAM)
	Configuring webpack for production
	Hosting on S3

	Continuous Integration and Deployment
	Automated deployment
	Continuous integration

	SSL and CloudFront
	Getting an SSL certificate
	Setting up CloudFront
	Cache Invalidation
	Domain names with Route 53

	ESLint and Airbnb style guide
	Install ESLint
	Rules
	Additional

	Refactoring Redux
	Incremental refactoring
	Remove Try-Catch
	Pulling out HTTP calls
	Async-Await
	Separating synchronous actions

	Testing Redux
	Refactoring React
	UI Component Development with React Storybook
	Redux Optimization with ImmutableJS
	Basics of analytics
	The goal of analytics
	Conversion tracking
	Customer engagement
	The many options in analytics

	Connecting Segment.io and Mixpanel
	React and SEO
	Password Reset Link and Email
	Password reset flow
	Generate reset token
	Send reset email

	Connect Password Reset
	Send New Message Notifications
	Browser Notifications
	Web Workers and Page Visibility
	Persisting ETS Data
	Add Profile Image
	Basics of React Native
	Background
	Differences from React
	Installation
	Hello World!
	Ignite

	Server-Side Rendering with React
	Stripe Subscriptions
	Patch Security Vulnerabilities

