11/3/16

Introduction

What is Phoenix?

What is React?

What will be covered?

What are some alternatives?

As any experienced developer knows, scaling is not a trivial problem. In fact, if your product is successful,
building the app is often the easiest part of the process.

Scaling is more than just handling concurrent connections or a boat-load of simultaneous requests. It
also means dealing with a large team pushing code at the same time, building architecture that makes it
easy to change pieces of the app without breaking everything, and knowing about important DevOps
concepts that are generally ignored by most tutorials.

Scaling problems are much harder to predict, track down, and prevent if you do not consider them from
the outset of your project. You need to be aware of every inefficiency, ensure actions from different
customers do not conflict, grow your database, handle errors, tolerate server failures, among a litany of
other issues that a smaller app simply does not need to consider.

Developers who have to deal with legacy code on a regular basis know the feeling of staring at a
codebase that looks like a Frankenstein monster of outdated technologies and an assortment of hacks
that could fall apart at any moment. Refactoring would take too much time, so you just continue to pile
onto the monster and pretend that everything is fine.

| How you think prototyping [] [After you're funded [| Two years later
works
We're not quite ready for the
rebuild. Let's just add this one Dear gOClI What have
Let's just build a basic prototype. more feature... we done?!
We can rebuild it with better /

tech once we're funded.

So why not just build your app in a framework that is designed from the ground up to easily handle your
scaling concerns, refactors without server shutdowns, and comes in an easily-understood syntax? Enter
Phoenix.

www.learnphoenix.io 1 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

What is Phoenix?

Phoenix is a web framework built with Elixir that is able to leverage the insanely powerful Erlang VM gives
you the ability to handle millions of concurrent connections, while also remaining fault-tolerant and easy
to implement.

To give you a real comparison, here is how Phoenix performs compared to other popular frameworks
(data from mroth):

Framework Throughput (req/s) Latency (ms) Consistency (o ms)
Gin 51483.20 1.94 0.63
Phoenix 43063.45 2.82 (1) 7.46
Express Cluster 27669.46 3.73 2.12
Martini 14798.46 6.81 10.34
Sinatra 9182.86 6.55 3.03
Express 9965.56 10.07 0.95
Rails 3274.81 17.25 6.88
Plug (1) 54948.14 3.83 12.40
Play (2) 63256.20 1.62 2.96

This is the same underlying technology that WhatsApp uses and one of the reasons Facebook paid $19b
for them. Check out this article in Wired appropriately titled Why WhatsApp Only Needs 50 Engineers for
Its 900M Users. As you might guess, it has to do with Erlang.

Phoenix uses the programming language Elixir, which is a functional programming language built on
Erlang. The syntax is very similar to Ruby and most programmers find it easy to understand. The hardest
part is not the language itself, but wrapping one's head around the concepts of functional programming.

The basic syntax for Elixir looks like this:

defmodule Fib do
def (@) do @ end
def (1) do 1 end

def (n) do fib(n-1) + fib(n-2) end
end

www.learnphoenix.io 2 of 407
e

http://elixir-lang.org/
http://www.wired.com/2015/09/whatsapp-serves-900-million-users-50-engineers/
https://github.com/mroth/phoenix-showdown
http://www.wired.com/2015/09/whatsapp-serves-900-million-users-50-engineers/
https://medium.com/@chetcorcos/functional-programming-for-javascript-people-1915d8775504
https://www.ruby-lang.org/en/
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

What is React

React is the "V" in "MVC" (Model View Controller). It is all JavaScript and it has quickly become the new
standard for frontends. Rather than using a markup language like HTML to render the DOM, React
creates each element in the DOM with a function and creates a "virtual DOM" which it can use to compare
against the current version of the DOM and render only the smallest necessary amount of information. If
this sounds complicated, don't worry. React does all of this behind the scenes, so all you have to do is
write JavaScript.

This roundabout approach might seem like overkill, but it leads to more efficient rendering, better code
maintainability, and the advantage of being able to write everything in a syntax that is more coherent than
a markup language: JavaScript.

React has become immensely popular, it is supported by Facebook, and it's already used in production in
countless major websites and apps.

The basic syntax for JavaScript is:

function (n) {
if (n <2) {
return n
} else {

return fibonacci(n - 2) + fibonacci(n - 1)

}

What will be covered?

This set of lessons is intended for people with at least some experience programming. An ideal candidate
for this series is someone who just finished a coding bootcamp and wants to start learning how to write
production-ready code. If you're a Ruby on Rails developer, or if you have experience with another
framework, you should have no problem picking this up.

It would be ideal for someone with experience in functional programming, but this is not necessary; we
will go through the fundamental concepts of functional programming.

We will cover some of the basics of Elixir and we will touch on Erlang when necessary. For more detailed
tutorials on Elixir, check out ElixirSips.com and ElixirSchool, which will teach you a lot more about the
language.

On the frontend, we will cover the basics of React and Redux, but a deeper knowledge of React will be

www.learnphoenix.io 3 of 407
e

https://en.wikipedia.org/wiki/Markup_language
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/elixirsips.com
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/elixirschool.com
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

very useful. The egghead.io tutorials on React, Redux, and React Native are really good if you're looking
for additional resources.

We will cover some of the basics of styling and we will use Sass as our preprocessor. We will also be
using CSS Modules to make our CSS more maintainable and modular.

This is not an intro-level tutorial. We will not cover the basics of programming. You do not need to be an
expert, but you should at least know what a function is and generally how to use them in at least one
language. You should also know what a library (Lodash, Bootstrap, etc) is and have at least some idea
of how to use one.

If you are totally new to programming, start with something like CodeSchool. HTML and CSS is probably
the easiest place to start, followed by JavaScript and Ruby on Rails. Once you have the basics down,
come back and sign up.

What is the ideal type of app for this framework?

Phoenix is ideal for highly concurrent apps, meaning, apps that have a lot of things happening at the
same time. For example, a popular messaging app might have a few million people using it at any given
time, and each of those users will expect to receive real-time updates when a message is sent or
received.

This is not to say that Phoenix does not perform well for apps that do not demand concurrency. Its fault-
tolerance alone makes it ideal for most environments. You lose very little in the way of developer
efficiency for a final product that is significantly better.

That said, for a small hackathon-type app, Phoenix is probably overkill. A self-contained JavaScript
framework such as Meteor.js or Feather.js are hard to beat for this type of app.

There are also languages other than Elixir/Erlang that are better suited for large-scale computation. So if
you foresee a lot of number crunching or machine learning in your future, you might want to consider
Java, Python, or R.

What are some alternatives?

You can use Phoenix for both the frontend and the backend using Elixir's builtin markup language. If you
choose to go that route, check out the book Programming Phoenix.

If you're looking to make a quick prototype and you're proficient in JavaScript Meteor.js and Feathers.js
are excellent options.

Ruby on Rails is also a safe bet and is probably the default choice for the majority of startups as of 2016.
There are a nearly-endless number of resources Rails. A good place to start is CodeSchool if you're new

www.learnphoenix.io 4 of 407
e

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/egghead.io
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/css-modules
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/lodash.com
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/getboostrap.com
http://codeschool.com
http://www.oracle.com/technetwork/java/index-138747.html
https://www.python.org/
https://www.r-project.org/
https://pragprog.com/book/phoenix/programming-phoenix
http://codeschool.com
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

to the framework.

There are hundreds, if not thousands of options. If you need something more specific than the options
listed above, you probably already know what you need and this section has not been especially useful to
you.

General formatting

Each lesson takes you through the process of building an app with varying levels of complexity. We will
also generally use different technologies for each app as the landscape evolves. For example, this app
will use React and Redux, while a future app may use Cycle.js, React Native, or EIm.

In the event you have a bug to report, please post an issue in the Github repository. The Node ecosystem
in particular moves very quickly and it is likely some pieces of this tutorial will become outdated in a
matter of weeks. If the question is more generally about Phoenix, React, Elixir, et al, please post the
question on StackOverflow.

Code written in codeblocks, such as the code below, shows you the code being added, removed, or
changed. Ellipses (...) are often used in place of code that is being omitted for reasons of brevity.

Command line inputs will look like the example code below. The command line inputs assume you are
using a Mac. If you're on a Linux machine, you probably already know what you're doing and it will be
similar.

$ cd ~/directory/name

Contact

Feel free to contact us at any time with comments or questions at info@learnphoenix.io.

A special thanks to Josh Adams, Sean Callan, and Ryan Swapp for all your help in making this possible.

www.learnphoenix.io 5 of 407
e

http://cycle.js.org/
http://elm-lang.org/
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/stackoverflow.com
https://github.com/knewter
https://github.com/doomspork
https://github.com/ryanswapp
https://www.learnphoenix.io

11/3/16

Installing Phoenix and React

Install Phoenix
Node and npm
e Brew
Postgres

To use Phoenix and React, you need to install a few things on your computer. There are a surprising
number of things that can go wrong with the installation, usually involving the installation of PostgreSQL.

Install Homebrew

The first thing you should get is Homebrew. Homebrew allows you to run the command brew to install
just about anything on your Mac. Run the following command if you do not already have Homebrew
installed. It might require you to install xcode or some extra software. If it prompts you to do so, install
that too:

$ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)”

You should check to make sure the installation ran properly by running the command brew help, which
should pop up with some helper text. If you get an error, something went wrong and you should do some
Googling to figure out what went wrong.

Install Node.js

Now that you have Homebrew, it's pretty easy to install everything else. You will need Node to run your
JavaScript server and to have access to the Node Package Manager (NPM), which you will use to install a
variety of assets, including React and Redux.

Run the following command to install Node:

$ brew install node

Then, for good measure, check to make sure the installation was successful by running node -v, which

www.learnphoenix.io 6 of 407
e

http://brew.sh/
https://developer.apple.com/xcode/download/
https://nodejs.org/en/
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

will return the version of Node you are using. You should also check to make sure that NPM was installed
by running npm -v.

Install Elixir

We are assuming you're using a Mac, so the instructions below will be for a Mac installation. If you have
a different machine, follow this link to find instructions.

If you're on a Mac, run:

$ brew install elixir

And you're done. To ensure the installation went smoothly, run iex to see if the interactive Elixir shell
worked.

If it did, and this is your first installation of Elixir, you will need to install the Hex package manager (the
Elixir equivalent to NPM). You can install it by running mix local.hex

Install Phoenix

Now it's time to install Phoenix. Run the following command to install:

$ mix archive.install https://github.com/phoenixframework/archives/raw/master/phoenix_new.e

Install PostgreSQL

We will use PostgreSQL (often referred to as "Postgres") as our default database. A lot of things can go
wrong here, so you might have to do some debugging to make sure you can get Posgres to work on your
machine.

Install Postgres by running the command:

$ brew install postgresql

Postgres is now installed on your machine, but it is not running. You'll want to start Postgres at login, so
run the following two commands to both set Postgres to launch at login and launch now:

www.learnphoenix.io 7 of 407
e

http://elixir-lang.org/install.html
https://hex.pm/
https://www.learnphoenix.io

11/3/16

$ 1n -sfv /usr/local/opt/postgresql/*.plist ~/Library/LaunchAgents
$ launchctl load ~/Library/LaunchAgents/homebrew.mxcl.postgresqgl.plist

To make sure everything installed properly, run the command which psql, which should return
/usr/local/bin/psql . If it does not, something went wrong and you're in for some debugging.

Now you need to create a default database, which should be the same as your username. If you do not
know your username, you can find it by running the command whoami . Create the database with the
following command, with your username in place of <username> :

$ createdb ‘<username>'

Thenrun psgl to make sure the database was created properly. If you enter the Postgres shell, you're in
business!

Postgres errors

If you already have a previous version of Postgres installed, you will probably run into some problems.

$ pg_ctl -D /usr/local/var/postgres -1 logfile start

Another potential problem that comes up regularly is the lack of a "role". If you get the following error, you
will need to configure a role:

% (Mix) The database for Firestorm.Repo couldnt be created, reason given: psql: FATAL: ro

You can configure a role by entering the psql shell and creating the role. Run the following command:

$ psql postgres

This will bring up a new shell that gives you the ability to run commands. You should enter the following
to create the new role (note that postgres=# is the prompt and should not be entered):

postgres=# CREATE ROLE postgres LOGIN CREATEDB;

www.learnphoenix.io 8 of 407

https://www.learnphoenix.io

_ 11/3/16
/ ? Learn Phoenix by sam Corcos

You should receive CREATE ROLE as the response. Then exit the shell with \q and you should be in
business!

If you're still having issues, try restarting Postgres with the following commands.

$ pg_ctl -D /usr/local/var/postgres stop -s -m fast

$ pg_ctl -D /usr/local/var/postgres -1 /usr/local/var/postgres/server.log start

And if you still can't get it working, try Stackoverflow or a Google search.

Additional Installations

You will also need a text editor of some sort. You can use Sublime Text 3, Atom, or any other text editor
you'd like (or if you're a ninja, you can use vim). Some people also prefer an IDE (integrated development
environment) such as Webstorm. At the end of the day, this is all a matter of preference and will make
little difference.

www.learnphoenix.io 9 of 407
e

https://www.sublimetext.com/
https://atom.io/
http://www.vim.org/
https://www.jetbrains.com/webstorm/
https://www.learnphoenix.io

11/3/16

Directory structure

¢ Create a new Phoenix project
¢ Create a new React project
e Overview of directory structure

This app is separated into two pieces: the frontend and the backend . This separation should be familiar

to you, as it is the general structure of just about every app. The frontend will be built with React, and the
backend with Phoenix.

The first thing we're going to do is create a directory (also known as a "folder") with the name of our app.
The app we are building is a clone of the Acquire functionality of Intercom.io. You've probably seen it
before—it's the little chat bubble on the bottom right of many websites that allows you to chat with a
representative of the company:

www.learnphoenix.io 10 of 407

https://www.intercom.io/live-chat
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/intercom.io
https://www.learnphoenix.io

. 11/3/16
/ Learn Phoenix by Sam Corcos

Intercom Team

Ask us anything. We'd love to
hear what brought you to
Intercom!

, capture
mers.

N

When the chat bubble is clicked, a chat window is overlayed on the page:

www.learnphoenix.io 11 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

w INTERCOM ° Acquire Products ¥ Resources ¥ Blog L New Conversation

Intercom Team

THE INTERCOM PRODUCT FOR LIVE CHAT s‘:‘ @ @
revo F Darren

Every website visitor

iS as a[e s Oppo rtunity_ e Zﬁ?ﬁlﬂ?,ﬁfi \:;:y;no:wm o
Chat and convert
them to customers.

Enter your email Get Started

(B) WATCH THE VIDEO

We will also want to build a web and mobile app that allows the company representative to easily
manage several chats at once. We will model this chat feature on Slack and WhatsApp's web app.

Since we are not especially creative when it comes to naming our projects, we'll call this app PhoenixChat
and we will keep a live, production-ready version of the completed app at PhoenixChat.io.

$ mkdir phoenix-chat-api phoenix-chat-frontend

Now that we have directories to contain our project, we need to generate the code for our React frontend
and Phoenix backend.

Generating the frontend

Now we need to create our React app. Let's create the folder frontend, then enter it and create a Node
app with npm init, filling out the command line prompts as necessary (you can also use the -y flag to
accept all defaults if you're feeling lazy):

$ cd phoenix-chat-frontend && npm init

That's all you need to do for React at the moment. We will go over React in more detail in the next
section.

www.learnphoenix.io 12 of 407
e

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/phoenixchat.io
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/phoenixchat.io
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Frontend directory structure

We are not going to set up the directory structure in advance of the app, but the general structure will be
(and for those of you who want to know how the tree below was generated, check out tree):

phoenix-chat-frontend
| -- node_modules

components
images
redux
styles

frontend will contain everything for the frontend of our application. This includes code for our
development environment, as well as our production code. This includes our webpack configuration, our
package. json file, and everything else we'll need to compile our app into something we can run in
production.

app contains just the code that will become our app. This includes our components, our styles, and how
all those components fit together.

components will contain all of our React components. This is what renders on the screen and displays
our data.

images will contain our static images.

redux will contain our actions, our reducers, and our store . These are the core components of
Redux and will be covered in a later chapter.

styles will contain default styling, such as a css reset or other css libraries we might need import.

Overall, the React structure is pretty straight-forward.

Generating the backend

Fortunately, Phoenix makes it easy to generate boilerplate code. We can use mix phoenix.new to create
a simple app. We are creating our Phoenix app without Brunch because we are not using Phoenix for our
frontend. When you run mix phoenix.new, you will be prompted to fetch and install dependencies. You
want to enter y to install your dependencies.

Run the following commands to go back a directory, and create your new app.

www.learnphoenix.io 13 of 407
e

http://brewformulas.org/tree
http://brunch.io/
https://www.learnphoenix.io

11/3/16

$ mix phoenix.new phoenix-chat-api --app phoenix_chat \
--module PhoenixChat --no-brunch

The first command sends you back a directory (we may not include directory changes in the future), then
the second command creates your new project within the phoenix-chat-api directory we made earlier.

You probably noticed mix, which is a command line tool that we will use extensively with Phoenix.

We then choose the phoenix-chat-api directory and create a new application called "PhoenixChat". We
are passing in the --no-brunch flag because we do not need to render HTML or generate all the
boilerplate for a frontend since we are building our frontend with React.

Backend directory structure

The Phoenix generator has taken care of most of our boilerplate for us. The general structure is as
follows (with some directories omitted for the sake of brevity):

phoenix-chat-api
|-- config

deps
lib
| -- phoenix_chat
priv
|-- repo
|-- static

channels
controllers
models
static
templates
views

config contains several files related to configuration. Among the most useful are prod.secret.exs,
which can hold all your secret production keys with less risk.

deps contains all the dependencies you installed.

1lib contains configuration for your endpoints and your Ecto repositories (don't worry about what that
means, we will cover it later).

www.learnphoenix.io 14 of 407

https://www.learnphoenix.io

. 11/3/16
/ 2 Learn Phoenix by sam Corcos

priv contains all of your data migrations (i.e. a record of all your database changes), and your static
files.

test contains all your Elixir tests.

web contains everything related to the web API, including channels, controllers, models, and other
useful goodies.

If you do not know what all of this means, do not be concerned. We will go into each of these in greater
detail in later chapters as they become relevant. For now, just know that Phoenix has generated most of
what we need to get started. Since we are creating a web API, most of what we are interested in lives in
the web directory.

www.learnphoenix.io 15 of 407
e

https://www.learnphoenix.io

11/3/16

Basics of React

¢ Basics of React
e Basics of Webpack
e npm and SemVer

In this section, we go over the basics npm and React and some of its syntactical quirks and install some
necessary dependencies to be able to handle ES2015, 2016, and 2017 syntax, as well as jsx.

What is React?

React is a JavaScript library built by Facebook for highly efficient DOM rendering and a more functional
programming approach to the frontend. From the React docs:

We built React to solve one problem: building large applications with data that changes over
time.

Rather than use a markup language such as HTML, each React component is a function, so you can build
the elements within your DOM using a much more powerful language: JavaScript .

And because each component is encapsulated in a function, you can reuse code, run tests, and build
better abstractions much more easily.

There are a few React competitors that are formidable and arguably better. Among them are Cycle.js,
Elm, and Om. Each has its advantages.

The reason we are using React is because it has a much larger community, it is easier to hire developers
who know React, and it is supported by Facebook, which makes it more likely to have long-term staying
power.

Since React v0.14.0,the main React function has been splitinto React and ReactDOM; ReactDOM is
what we use to render our components to the DOM and React is what we use to create our components.

Most people use React.createClass to create components and ReactDOM.render to render our
components to the DOM. Most people also use the JSX syntax, which mimics HTML's syntax. A very
simple React app looks like this:

www.learnphoenix.io 16 of 407
e

https://en.wikipedia.org/wiki/HTML
http://cycle.js.org/
http://elm-lang.org/
https://github.com/omcljs/om
https://www.learnphoenix.io

11/3/16

import React from "react”
import ReactDOM from "react-dom”

const App = React.createClass({
render() {
return (<div>Hello World!</div>)

3
b))

ReactDOM.render (<App />, document.body)

There are those who prefer to use a different syntax for creating React components. That syntax extends
the Component export from React . Both are perfectly valid.

We will be using the class syntax, as it is the syntax that Facebook suggests going forward. For a good
article that explains the differences between the two, check out this article by Todd Motto. An example of
this syntax would be:

import React from "react”
import ReactDOM from "react-dom”

class extends
render () {
return (<div>Hello World!</div>)

3
}

ReactDOM. render(<App />, document.body)

Another option (though slightly different), and one that we will be using on occasion, is to create your
React components as a pure function, also referred to as a "stateless function", or a "presentational
component”.

import React from "react”
import ReactDOM from "react-dom”

const App = () => {
return (<div>Hello World!</div>)

by

ReactDOM. render (<App />, document.body)

Pure functions are highly performant with React, and since we are using Redux to handle state, many of
our components will be pure functions. This is the case because our data is all passed down from the

www.learnphoenix.io 17 of 407

https://toddmotto.com/react-create-class-versus-component
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

highest-level component, so none of our child components need to worry about their local state. We will
cover these concepts in greater detail in the Redux section.

Also worth noting, if you want to pass props into one of these functions, you must pass it in through the
function: const App = (props) => { ...

This should look familiar to people who have used the PureRenderMixin . Both rely on pure functions and
give a nice performance boost. Just keep in mind that mixins are not supported by ES6 classes and are
slowly being phased out.

When using Webpack, you will want to export these components so you can import them in other files.
There are two options when it comes to exporting: default exports and named exports.

Each file can only have one default export, and we will primarily use default export.

import React from "react”
import ReactDOM from "react-dom”

class extends
render() {
return (<div>Hello World!</div>)
3
3

export default App

If you then wanted access to this component in a different file, you would simply import it the same way
you imported React and ReactDOM, using the path to the file:

import React from "react”
import ReactDOM from "react-dom”

import App from "path/to”

So if your component lived within app/components , you would import it from that directory.

Named exports are slightly different, and you can export several named exports in a single file. The
syntax for a named export uses curly braces for the import to pull out a specifically named pieces from
within a module: import { Component } from ’'react’ . You can export functions, objects, classes, and
other such things. For more information on exporting modules, check out this link.

You will also see examples where we don't name the actual file being imported and simple leave it at the
directory name. This is only possible if you name the file index.js with a default export. Webpack will
assume that the index. js file is the file you were looking for.

www.learnphoenix.io 18 of 407
e

http://www.2ality.com/2014/09/es6-modules-final.html
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

For example, if the path were app/Home/index. js, you could simply import from app/Home and Webpack
will assume that you meant to import from index. js .

What is Webpack?

Webpack is a module bundler. If you've ever used Browserify and/or RequireJS, the concept is very
similar but Webpack allows for much greater functionality.

This added functionality comes at the cost of simplicity. Finding oneself stuck in Webpack configuration
hell is a not-so-uncommon experience for developers who have used it. That said, the advantages of
webpack outweigh the pain of added upfront configuration.

Webpack is the technology that gives us the ability to split our app into modules that we can piece
together to make our frontent efficient and well organized.

It also gives us a bunch of loaders which allows Webpack to replace your traditional build tool, such as
Grunt or Gulp. We will go over all of this in greater detail as it becomes relevant, so if this is at all
confusing, just know that Webpack is awesome, almost everyone uses it for their React projects, and we
will be using it for this app.

Webpack is also where even the most advanced developer can find himself stuck in Webpack
configuration hell for hours on end. So if you find yourself stuck on Webpack, know that you are not
alone.

Setting up our frontend

We're going to change a few things in our newly-generated package.json file. We're going to add a
start command so we can start our server with additional configuration using the command npm
start . We can do this by changing the scripts in our package.json file:

/package. json
commit: coming soon

"scripts”: {
"start”: "node server.js",

"test”: "echo \"Error: no test specified\” && exit 1"

b

What we are doing here is telling Node to use the server. js file, which we will create shortly, to start our
server. This allows us to keep all of our basic server configuration in one file and is common practice.

www.learnphoenix.io 19 of 407
e

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/webpack.github.io
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/browserify.org
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/requirejs.org
https://webpack.github.io/docs/loaders.html
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

We are going to leave test alone for now. At the moment, if you run the command npm test, you will
simply receive a message letting you know that it has not been set up yet.

Something that is worth noting about these scripts is that there are some commands that NPM handles
by default. These include npm start, npm test, and a few others. If you want to run a custom script that
is not supported by default (which we will do later on), you must use npm run <name of script>, with the
name of your script in the appropriate field. You will see this in action later.

The next thing we want to do is set up a few dependencies so we can quickly get this project up and
running. These dependencies are split into devDependencies and dependencies .

Development dependencies (devDependencies) will not be run in production, so this is where you put
things like your module bundler (Webpack) and transpilers (Babel). Basically, anything that is processed
before going into production goes here.

Your production dependencies (dependencies) are anything that you need to run your app after
compilation. React is an example of a dependency that you will need when your app is live, because your
app depends on React to render the frontend.

Add the following dependencies, each of which will be elaborated upon after the codeblock (note that a
\ denotes a line break in your terminal):

$ npm install --save-dev babel-core babel-loader \

babel-preset-es2015 babel-preset-react babel-preset-stage-0

When adding packages to your app, you have the option of adding them to the package. json file and
running npm install, which will install the dependencies you added, or running the command in your
terminal.

It is also important to use the --save or --save-dev flag. If you do not, your app will run locally but when
someone clones your repository or when you try to deploy, your app will not work because it will not know
which dependencies to install.

After running the command above, you should see the following dependencies in your package. json file
automatically added (though the version numbers will likely be different since these packages are
updated constantly). You can also specify version numbers with the @ syntax: npm install --save-dev
babel-core@6.7.6 .

SemVer

Another thing that sometimes confuses people is the caret (*) that comes before the version number.
This is for use in packages that abide by (as all packages should) SemVer, which stands for "semantic
versioning". SemVer is very important for maintaining project stability and it is definitely worth checking

www.learnphoenix.io 20 of 407
e

https://docs.npmjs.com/misc/scripts
http://semver.org/
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

out the docs to learn more about it.

The short version is that versioning should follow a pattern, and that the pattern actually means
something. For example, X.Y.Z denotes X = major version, Y = minor version, Z = patch.Any
changes in X will likely break your app, changes in Y will add new features but shouldn't break anything,
and Zz is for small patches and bug fixes that won't break anything.

So coming back to the caret (*) and using the example 6.14.0, this tells npm that we want to use any
package that is major version 6 and any minor version that is at least 14 (i.e. 6.15.2 would be fine).
You might also see a tilde (~), which denotes a minor version. So for the same version above, it would
tell npm to use anything with major version 6, minor version 14, and any acceptable patch (i.e. 6.14.3
would be fine). You can also use x in place of the version you want updated (i.e. 6.x.x is equal to
"6.14.0).

"devDependencies”: {
"babel-core”: "%6.14.0",
"pbabel-loader”: "*6.2.5",

"babel-preset-es2015": "*6.14.0",
"babel-preset-react”: "*6.11.1",
"babel-preset-stage-0": "*6.5.0"

The first dependency we add is babel-core . This is something you have to add to use babel-loader,
which is really what we want. Why the two are separated, | have no idea, but I'm sure there is a perfectly
good reason.

The second dependency is babel-loader . This is probably a good time to go over what loaders are and
why they are a very useful part of Webpack.

Loaders

Loaders allow you to take code of a particular type and apply transformations to it. Or as it says in the
Webpack docs:

Loaders allow you to preprocess files as you require() or "load" them. Loaders are kind of like
"tasks" are in other build tools, and provide a powerful way to handle frontend build steps.
Loaders can transform files from a different language like, CoffeeScript to JavaScript, or inline
images as data URLs. Loaders even allow you to do things like require() css files right in your
JavaScript!

One cool feature of loaders is that you can chain them to apply multiple transformations. For example, if
you had a .less that had styles you wanted to apply to your component, you could run the less-loader,

www.learnphoenix.io 21 of 407
e

http://semver.org/
https://webpack.github.io/docs/loaders.html
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

followed by the css-loader (becausethe less-loader transformed it into css), followed by the style-
loader , which loads the style into your React component:

("style-loader!css-loader!less-loader!./styles.less")

We'll cover the specifics of each loader we use as we progress through this course.

Back to setting up the frontend

The next three dependencies are babel-preset-react, babel-preset-es2015, and babel-preset-
stage-0 . These give you access to all the Babel plugins under that category. So, when you add the
babel-preset-react plugin, you get access to the plugins:

® react-constant-elements
® react-display-name

® react-inline-elements

® react-jsx

® react-jsx-compat

The last dependency we add is babel-preset-stage-0, which tells Babel to use the most recent
experimental version of Babel. The stages range from 0 to 4, with 0 being the least stable and 4 being the
most stable. We are going to use stage-0 because it gives us access to a lot of handy features that are
not yet implemented in ES6, such as destructuring assignment and spread operators. We will explain
what each feature is in more detail as we use them.

As of Babel 6, you need to be more explicit about what Babel uses. To do this, you have two options:
create a .babelrc file, oradd a babel configuration option within package. json . This is entirely a
matter of preference, but since in this case we don't have many options to configure, let's just add it to

package. json :

/package. json
commit: coming soon

"devDependencies”: {

b
"babel"”: {

"presets”: ["es2015", "react”, "stage-0"]

}

www.learnphoenix.io 22 of 407

https://babeljs.io/docs/plugins/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Then let's go ahead and add Webpack as a development dependency. We will add both Webpack and the
the Webpack development server so we don't have to continually refresh the page to see the changes we
made:

$ npm install --save-dev webpack webpack-dev-server

The last dependency we need before we can render "Hello World!" to our DOM is React. Let's go ahead
and add React as a dependency for our app. Recall that this is not a development dependency, but a
production dependency. Since we're building this app into static assets, it actually doesn't matter if you
install things as devDependencies or dependencies, but it's generally advisable to keep modules that are
exclusively for testing etc separate from things that your app actually depends on in runtime.

$ npm install --save react react-dom

In version 0.14.0, React split into two main pieces: React and ReactDOM. ReactDOM handles everything
DOM-related, such as rendering to the DOM, while React itself handles the creation of all of your
components. If this does not makes sense now, it will become immediately obvious as soon as we start
using them.

In the 15.0.0 update, they changed their versioning to major versioning in accordance with SemVer
mostly because corporate people were afraid to use software that "isn't even 1.0 yet". There are few, if
any, breaking changes that will affect most applications.

www.learnphoenix.io 23 of 407
e

http://semver.org/
https://www.learnphoenix.io

11/3/16

Basics of Webpack

e Set up Webpack
¢ Hello World!

In this section, we set up Webpack and get our Hello World! app running.

Webpack configuration

Now that we have all of our NPM dependencies set up, we need to configure Webpack. As mentioned
before, this is not the simplest task. There are a seemingly limitless number of configuration options, but
for now, we will only use the minimum.

Create a file using the touch command in your /phoenix-chat-frontend directory called

webpack.config. js.

In that file, add the following configuration options, which we will go over line-by-line below the code:

/webpack.config.js
commit: coming soon

www.learnphoenix.io 24 of 407
e

https://www.learnphoenix.io

11/3/16

var path = require(’'path’)
var webpack = require('webpack’)

module.exports = {
devtool: 'eval',
entry: [
'webpack-dev-server/client?http://localhost:3000',
'./app/index’
1,
output: {
path: path.join(__dirname, 'dist'),
filename: ’'bundle.js'’
P
module: {
loaders: [
{
test: /\.js$/,
loaders: ['babel’],
exclude: /node_modules/,
include: path.join(__dirname, 'app’)
3
]
o
resolve: {
extensions:

The first line requires the Node's path, which is used to keep track of directory names. This is not strictly
necessary, but makes directory paths clearer.

The second line requires webpack . We need this because we are going to use some of the plugins from
Webpack later on in the configuration.

Next we have our devtool , which we set to eval . This just sets your debugging tool to one of several
options, but almost everyone uses eval because it builds faster. If you want better bug tracking, you
should use source-map or inline-source-map .

The next configuration option is entry . Entry is an important concept in Webpack because it defines all
the modules that are to be loaded when you start the app, with the last one being exported. This is an
important piece to understand, so we will go into greater detail.

The first entry point is the webpack-dev-server , which we want to run our app through first. Next, we run
it through the Webpack hot loader, which hot-loads our code and allows the changes you make to take
effect immediately without losing the state of your app. The last thing is app/index . This will finally
export whatever we eventually put in the index.js file, which we will create shortly.

www.learnphoenix.io 25 of 407
e

https://webpack.github.io/docs/configuration.html#devtool
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

You might be wondering at this point why we left off the .js part of index.js in our configuration file.
That's because of the resolve configuration option, which allows us to leave off the file extensions of
any named file type—in this case, .js.

The next configuration option is output . This is another important part of webpack to be aware of.
Because React is all JavaScript, Webpack is able to bundle everything into a single file (though not
necessarily one file, as we will see much later in this course) and insert it into a script tag in your app.

¥ <body>
» <div id="root">..</div>
<!— Webpack Bundle —>
<script src="bundle.js"></script>
</body>

In our case, we are cleverly naming our bundle, bundle. js . We are also specifying the location of all
static assets to be compiled into dist/ . If you want to see webpack in action or look at what would be
built in production, you can run webpack from the command line and it will compile your app and drop it
in phoenix-chat-frontend/dist .

The next line is our list of loaders . By the time this project is through, we will have several additional
loaders for different types of files. This is where you tell Webpack how to handle different file types. You
can handle images (.png, etc), styling (.less, .scss, etc), and just about any other type of file
imaginable—-even file extensions that you set arbitrarily, such as .potato . Loaders are among the most
useful features of webpack, and they are the easiest to understand.

Also within our loaders, we are telling it to ignore any files within our node_modules directory, because
those files are already compiled, and we telling it to explicitly look for files within our app directory.

We now have a functional (if basic) webpack configuration.

Server configuration

The last piece of configuration we need is to configure our server. Recall we changed our npm start
script to call a server.js file so we could add some additional configuration. So the first thing we need
to do is create the server.js file in our /phoenix-chat-frontend directory.

$ touch server.js

In that file, add the following configuration:

/server.js
commit: coming soon

www.learnphoenix.io 26 of 407
e

https://www.learnphoenix.io

11/3/16

var webpack = require('webpack’)
var WebpackDevServer = require(’'webpack-dev-server')
var config = require('./webpack.config')

new WebpackDevServer (webpack(config), {
historyApiFallback: true
}).listen(3000, 'localhost’, function (err, res) {
err ? console.log(err) : console.log("Listening at localhost:3000")

1

First we declare our dependencies for this module (webpack , webpack-dev-server, and
webpack.config), then we create a new WebpackDevServer , with some of the options from our Webpack
configuration and tell it to listen on port 3000 .

The historyApiFallback is necessary for handling route changes. We will start out with something
called hashHistory (explained in detail later), which handles all routing on the client with no server-side
configuration necessary. This flag makes routing possible for single page apps. If you want to dig deeper
into why this is, check out this resource.

If there is an error, it tells us there was an error. Otherwise, it logs Listening at localhost:3000 .

HTML, React, and ReactDOM

There are only two remaining additions we need to make to get our "Hello World!" app running. First we
need an index.html in our root directory, then we need to create our app/index.js file to render to the

page.

Go ahead and create an index.html file in the root directory and add the following.

$ touch index.html

/index.html
commit: coming soon

www.learnphoenix.io 27 of 407
e

https://github.com/bripkens/connect-history-api-fallback
https://www.learnphoenix.io

11/3/16

<html>
<head>
<title>PhoenixChat.io</title>
<meta name="description” content="Free, easy-to-use React component for real-time chat |
<meta name="viewport"” content="width=device-width, initial-scale=1" />
<meta charset="UTF-8">

</head>
<body>
<div id='root'></div>
<!-- Webpack Bundle -->
<script src="bundle.js"></script>
</body>
</html>

Google actually doesn't care about most meta tags, but it does care about the description tag.

The next meta tagisthe viewport tag, which makes it possible to resize your app based on the size of
the screen that is viewing it--namely, this is what makes viewing your site on a mobile device possible.
Pretty much every app should have this tag.

We are also including a meta tag that sets the charset to UTF-8. This is not usually necessary since
most browsers will assume this is the case. This allows you to use lots of new characters and symbols.
For more on this, check out UTF-8.

Next is the body, in which we are creatinga div withan id of root . Itis within this div that we will
create our entire app. Though it is possible to render your app directly to document.body, it is bad
practice and should be avoided. If this point is confusing, it will become clear once we fill out our
index. js file.

The last thing we add is a script tag that links to bundle. js . This is where Webpack puts all of our
React code to allow us to render our app. You may recall in our Webpack configuration we set our
output to have a filename of bundle.js and a path of dist. This is where we reference that
configuration option.

Let's create a few basic files that we'll use later while building the app. First, create an app directory
within /phoenix-chat-frontend, and then a file called index.js within app:

$ mkdir app

$ touch app/index. js

Now, within our app/index. js file, we want to write the code that will render our app. First, let's create a
React component that will render the text "Hello World!" within a div .

/app/index.js
commit: coming soon

www.learnphoenix.io 28 of 407
e

https://support.google.com/webmasters/answer/79812?hl=en
https://en.wikipedia.org/wiki/UTF-8
https://www.learnphoenix.io

11/3/16

[}

import React from "react”

class extends
render () {

return (<div>Hello World!</div>)
}
3

The next thing we need to do is render that component to the DOM. For that, we need react-dom. Chance
your code to the following to tell ReactDOM to render your component under the div we created in our
index.html file withan id of root.

/app/index.js
commit: coming soon

import React from "react”
import ReactDOM from "react-dom”

class extends
render() {
return (<div>Hello World!</div>)
3
3

ReactDOM. render (
<HelloWorld />,
document.getElementById("root")
)

Hello World!

We're finally done with configuration! Now it's time to start the app. Within the phoenix-chat-frontend/
directory, run the following commands to install all your npm dependencies and start your app (using the
script we created at the beginning of this lesson):

$ npm install && npm start

You should now have an app that renders "Hello World!" to the screen like this

coming soon

www.learnphoenix.io 29 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Additional

There are a few optional configurations you can do that will save you some headache down the road. If
you're using git for version tracking, you should probably add a .gitignore to make sure you don't
commit your node_modules . Withina .gitignore file in the root of your app, simply add the line
node_modules and git will not track anything in that folder.

If you're on a Mac, you should probably add .DS_Store to this list as well, because they're annoying. And
while you're at it, add npm-debug.log incase you try to run npm start from the wrong directory, or cause
any other errors with npm. And since everything in dist will be created from the contents of app, we

can safely ignore its contents.

$ touch .gitignore

/.gitignore
commit: coming soon

node_modules
.DS_Store

npm-debug. log
dist

A few additional notes regarding common practices. JavaScript generally uses camelCase, Elixir uses
PascalCase, and erlang uses under_scores . You will occasionally use erlang code within Phoenix.

www.learnphoenix.io 30 of 407
e

https://www.learnphoenix.io

11/3/16

Routes and views

e React components
e React router
¢ Hash history

In this section, we set up our router using react-router , which has become the default router for React.
We're also going to create a few basic views so that our router has something to display.

We're also going to go some of the very basics of how routers work and the various routing options. For
the time being, we're going to stick to a hash router (explained below).

Components

The first thing we should do is create a few components for our router to render. For now, let's create a
Home component for our root route (/) and a Settings component for our user profile and settings
(/settings).

Because React allows us to reuse components, we should be as explicit as possible with our component
names. At some point in the future, we will have a Message component that will be used once for every
message in a chat between customer and representative, and may even be shared across applications.

For the sake of clarity, we will avoid using plural names whenever possible. Comment vs. Comments will
always lead to confusion down the road. As we add more components, it will become abundantly clear
why this is necessary.

We will want to keep all of these organized in a components/ directory under app/ . Let's create that now
along with directories and files for each of our new components. Remember, directory changes may not
be included in the remainder of this course for the sake of brevity.

Note the -p flag in our mkdir command. This tells bash that if the directory does not exist, go ahead
and make it. If we did not use this, we would have to run mkdir app/components first.

And while we're at it, let's create some generic content in each of those index.js files we just created.

www.learnphoenix.io 31 of 407
e

https://www.learnphoenix.io

/ E Learn Phoenix by Sam Corcos

/app/components/Home/index. js
commit: coming soon

import React from "react”

export class extends
render() {
return (

<div>Home component</div>

export default Home

11/3/16

/app/components/Settings/index.js
commit: coming soon

import React from "react”
export class extends
render() {

return (
<div>Settings component</div>

export default Settings

React Router

We are going to use the popular React Router for our routing. If you are not familiar with what routing is,
it's the thing that handles your url path, such as http://github.com/learnphoenix, and directs you to the
proper view. Without a router, your app will be limited to a single page (this is not strictly true as there are

ways around using a router, but this is generally true).

Now that we have a few components set up, we should direct our router to access them. In order to use

React Router, we need to add a few dependencies.

$ npm install --save history react-router

www.learnphoenix.io

32 of 407

https://github.com/rackt/react-router
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

React Router requires the history package and does not automatically install it for you.

The next thing we need to do is change the index. js file within our app directory to use our router.
Rather than use ReactDOM to directly render directly to the DOM, we're going to go through React Router
to render the appropriate content based on the current path.

Add the following code the index.js file at the root of your project. Each line will be described in detail
after the code block.

/app/index.js
commit: coming soon

import React from "react”
import ReactDOM from "react-dom”
import { Router, Route, IndexRoute, hashHistory } from "react-router”

import { default as Home } from "./components/Home"
import { default as Settings } from "./components/Settings”

const App = props => (<div>{props.children}</div>)

ReactDOM. render(
<Router history={hashHistory}>
<Route path="/" component={App}>
<IndexRoute component={Home} />
<Route path="settings" component={Settings} />
</Route>
</Router>,
document.getElementById("root")

)

The first thing we have here is a list of our dependencies for this file. React and ReactDOM should look
familiar. From react-router, we need Router, Route, and IndexRoute. The Router is the outer
element that controls our routes, Route is each individual route, and IndexRoute displays a component
when you get to the / root route.

Also, since we're exporting both a named export (export class Home ...) and a default export (export
default Home), we are specifying that we are importing the default import using the syntax { default
as ... }.Thisis not strictly necessary, and your app will not throw an error, but it's the recommended
syntax as of July 2016.

A note on ES2016 arrow function syntax: We've also (temporarily) changed around our App component to
show of the different ways in which you can write functions in ES2015. When writing arrow functions in
ES2015:

e parentheses are optional when there is only one argument (in this case "props" is the only

www.learnphoenix.io 33 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

argument)
e if the function is only one ling, it is implicitly returned (you do not need to type out "return”)
e curly braces are optional for single-line functions
e you can destructure the arguments.

In other words, all the following are equivalent:

const App = function (props) {
return (
<div>
{props.children}
</div>

)
}.bind(this)

const App = (props) => {
return (
<div>
{props.children}
</div>

const App = (props) => { return (<div>{props.children}</div>)}

const App = props => (<div>{props.children}</div>)

const App = ({ children }) => (<div>{children}</div>)

The hashHistory bit is something that React Router is using to create URLs. It does not require server-
side configuration, so it is ideal for single page apps like this one. Eventually we might want to change
this over to browserHistory , but we will hold off on that until we deal with server-side rendering and
other options that require us to run our frontend through a server.

Then we import the three components we just made so they can be rendered by the router when the user
hits the relevant url.

The next thing we need to do is create a an App component that holds all of our other components.
Anything in this component will be rendered in every view, so use it sparingly. Within this component, we
render all of the child components as we define in our router below.

The last thing we need to do is set up our routes. You should be able to see a pretty obvious hierarchy of
routes, with the App component holding each of two child components(Home, Settings) each of which
has its own path.

So now, if you go to localhost: 3000, you should see your Home component. If you go to

www.learnphoenix.io 34 of 407
e

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

localhost:3000/#/settings , you should see your settings component.

Hash history

There are a few things to note about hashHistory . Your routes will all have a # in them. So if you want
to view the settings, it will be accessible at localhost:3000/#/settings rather than just
localhost:3000/settings .

What's actually happening under the hood is there is an event listener that listens for a change in the url,
and whenever it changes, it triggers a function. When you enter a url, your server ignores anything that
comes after a # by default. This is because data after a hash (referred to as a fragment) is generally
used to change things only on the client; it is often used to set scroll position.

You can try this out if you want by typing in https://github.com/#learnphoenix . You'll notice that what
you actually see is the GitHub homepage. This is because when you make a request to a particular url
(e.g. https://github.com/learnphoenix), you're sending a message to the server that says, "give me the
data | need for github.com fromthe /learnphoenix route", but when you use a hash router, the server is
only asked for github.com and the client handles the routing for everything after the hash (#) using
react-router.

There is also some random stuff that gets put on the end of your url, such as _k=vm23gw . This is for
people who are using an older browser that does not support the HTML5 push API. This is not strictly
necessary and can be disabled if you are not worried about supporting old browsers.

It's actually really easy to create your own basic router. All you have to do is listen for changes in your url
path and run a function that renders a new view when a particular route is hit. There's nothing magical
about routers; try running window. location in your browser console to see what you have access to.
That said, there are many additional features and edge cases that make using something like react-
router more practical.

www.learnphoenix.io 35 of 407
e

https://www.learnphoenix.io

11/3/16

Set Up Styles in Webpack

e Style loaders
e CSS Modules

Now that we have a few routes set up, we should start building out our frontend components so we can
render something more interesting to the user. But before we do that, we need to configure our styling.

There is a seemingly limitless number of options when it comes to styling. You have LESS, Sass, Stylus,
plain-old CSS, as well as extra features such as PostCSS and CSSNext, autoprefixers, and some React-
specific bits such as the style-loader, and react-css-modules .

We are going to use the following, and we'll go over why:

° style—loader'and css-loader
® react-css-modules
® postcss-loader

® postcss-cssnext

Preprocessors (LESS, Sass, Coffeescript, etc) save countless hours of development time and allow for
additional features. That said, the next CSS specs are pretty similar to what you'll get from a preprocessor
and postcss-cssnext gives you all of those features now. You can think of it as Babel for styles. Also,
CSSNext gives you a built-in autoprefixer, so we won't need to install one ourselves.

The style-loader and css-loader are loaders that every React project needs in order to add styling to
a component. After you compile down to CSS, you need to use the style-loader to put that CSS into
your React component, so you will always see it as the last loader in any styling configuration. For
example:

{ test: /\.scss$/, loaders: 'stylelcss!sass’ }

So, in effect, you are starting with a .scss file, converting it to CSS, then using the style-loader to add
that CSS to your React component.

We are also using an autoprefixer so we don't have to worry about those pesky vendor prefixes.
Remember, this is built-in to the latest version of postcss-cssnext . If you are not familiar with vendor
prefixes, they are those annoying extra bits of styling you need to add to make your styles work with
different browsers.

www.learnphoenix.io 36 of 407
e

http://lesscss.org/
http://sass-lang.com/
http://stylus-lang.com/
http://www.w3schools.com/css/
https://github.com/postcss/postcss
http://cssnext.io/
https://github.com/postcss/autoprefixer
https://github.com/webpack/style-loader
https://github.com/gajus/react-css-modules
http://cssnext.io/features/
https://developer.mozilla.org/en-US/docs/Glossary/Vendor_Prefix
https://www.learnphoenix.io

11/3/16

-webkit- (Chrome, newer versions of Opera.)

-moz- (Firefox)
-o- (0ld versions of Opera)
-ms- (Internet Explorer)

These prefixes exist because when a new experimental CSS feature is proposed, browsers will try to
implement that feature differently. The prefix tells the browser how to apply that style in a way that is
compatible with the browser you are using.

The last piece we're going to add is also the most interesting. The react-css-modules configuration
allows you create locally-scoped CSS, so you no longer need to keep a massive dictionary of globally-
scoped CSS! Or as it says in the docs:

A CSS Module is a CSS file in which all class names and animation names are scoped locally
by default. All URLs (url(...)) and @imports are in module request format (./xxx and ../xxx
means relative, xxx and xxx/yyy means in modules folder, i. e. in node_modules).

React CSS Modules is likely to become the new gold-standard of organizing styles, as it is much easier to
create and manage styles in JavaScript than it is in CSS.

Webpack configuration
The first thing to do is to add the necessary dependencies to our package. json file:

$ npm install --save-dev style-loader css-loader \

postcss-loader postcss-cssnext
$ npm install --save react-css-modules

But first, we have to set up the loader to handle CSS files. We're also going to have to do some additional
configuration to get our CSS modules working properly.

/webpack.config.js
commit: coming soon

www.learnphoenix.io 37 of 407
e

https://github.com/css-modules/css-modules
https://www.learnphoenix.io

11/3/16

module: {
loaders: [

test: /\.css$/,

loader: ’'style!css?modules&importlLoaders=1&localIdentName=[local]_[hash:base64:5]!p
include: path.join(__dirname, 'app'),
exclude: /node_modules/

This probably looks confusing because of the way the modules loader works. In the code above, we are
effectively calling in order (recall, it runs from right to left) postcss, css with the modules option, and
then style . The confusing bit is that modules has a bunch of options that you pass into it.

The first option is importLoaders, which you set to 1, which simply means "true".

The second option is localIdentName , which you set to an expression that looks like this:
[local]_l[hash:base64:5] . This will take the name of the local style (for example .column), and add a
randomly generated string of 5 characters at the end of it. So, in the example above, you might end up
with a class of column_3nrwE .

Now we need to configure our postcss loader to use the autoprefixer. Fortunately, this is quite simple.
Within our webpack.config.js file, add the following (make sure you add cssnext at the top of the file):

/webpack.config.js
commit: coming soon

var cssnext = require('postcss-cssnext')
module: {

1

resolve: {

1

postcss: function () {
return [cssnext]

b

Resetting default css and globals

www.learnphoenix.io 38 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

We're almost ready to get started making some components. The last thing we need to do is remove the
default styling provided by our browser. You can do this with a global reset stylesheet (which is what
we're using), or you can use a package like Normalize. It's a matter of preference and it depends on the
level of customization you want.

Within our app directory, create a new directory called styles and create a new file called reset.css:

$ mkdir app/styles

$ touch app/styles/reset.css

Within this directory, we will create all of our shared styles. This will include things like buttons, forms
and inputs, and any other styles that are shared across multiple components.

We are not going to use a frontend framework such as Bootstrap or Foundation. We are going to build all
of our own styles from scratch. If this sounds intimidating, | assure you it is not as much work as you
think. We are going to copy the global reset from meyerweb.com, with a few slight variations. Copy and
paste the following into your reset.css file:

/app/styles/reset.css
commit: coming soon

/* http://meyerweb.com/eric/tools/css/reset/
v2.0 | 20110126
License: none (public domain)

*/

html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, img, ins, kbd, q, s, samp,
small, strike, strong, sub, sup, tt, var,
b, u, i, center,
dl, dt, dd, ol, ul, 1i,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th,
article, aside, canvas, details, embed,
figure, figcaption, footer, header, hgroup,
menu, nav, output, ruby, section, summary,
time, mark, audio, video {

margin: 0;

color: #333;

padding: 0;

border: 0;

font-size: 100%;

font-family: "Roboto”, arial, sans-serif;

www.learnphoenix.io 39 of 407
e

https://necolas.github.io/normalize.css/
http://meyerweb.com/eric/tools/css/reset/
https://www.learnphoenix.io

. 11/3/16
Learn Phoenix by Sam Corcos

box-sizing: border-box;

3
/* HTML5 display-role reset for older browsers x/
article, aside, details, figcaption, figure,
footer, header, hgroup, menu, nav, section {
display: block;
3
body {
line-height: 1;
3
ol, ul {
list-style: none;
3
blockquote, q {
quotes: none;
3
blockquote:before, blockquote:after,
g:before, q:after {
content: '';
content: none;
3
table {
border-collapse: collapse;
border-spacing: 0;

color: #42A5F5;
text-decoration:

And to have this reset take effect, import them to the top of your app/index.js file:

/app/index. js
commit: coming soon

import "./styles/reset.css”

Remember, when you make changes to your webpack configuration, you need to restart your node server
for those changes to take effect.

At this point, you probably understand the sentiment behind JavaScript Fatigue... but at least we're
almost ready to start building our app!

www.learnphoenix.io 40 of 407

https://medium.com/@ericclemmons/javascript-fatigue-48d4011b6fc4#.4cz5j0cgi
https://www.learnphoenix.io

11/3/16

Style a React Component

e (Creating and styling the Sidebar
e CSS best practices

Creating a Sidebar component

Now that we finally a basic Webpack configuration ready, let's create a new Sidebar component and use
our css-modules to style it.

$ mkdir app/components/Sidebar
$ touch app/components/Sidebar/{index.js,style.css}

Within this new component, we need to define our dependencies, create a placeholder component, then
export that component wrapped in our styles.

/app/components/Sidebar/index. js
commit: coming soon

import React from "react”
import cssModules from "react-css-modules”
import style from "./style.css”

export const Sidebar = () => {
return (

This is the sidebar

)
}

export default cssModules(Sidebar, style)

The third and fourth lines import our styles from our styles.css file and the cssModules function which
allows us to export this component with its local styles. You'll see at the bottom of the file that, rather
than simply exporting the Sidebar component, we are wrapping it in the cssModules function and
pairing it with the styles that we imported above.

www.learnphoenix.io 41 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

A note on relative vs. absolute paths: For the most part, we want to use absolute paths. Unfortunately, the
coverage package we're going to use (Istanbul/nyc) does not sufficiently support the use of jsdom in
favor of Karma (to be explained in a future lesson), so we will not be able to run webpack when running
our tests, so for now, we will have to use relative paths.

Maintaining this consistency makes it much easier to move files around since if everything is absolute,
you can merely find and replace. If on the other hand, everything is relative, you have to change the
relative path all over your app, which can be a nightmare. Unfortunately, we do not have a choice at the
moment, so we will use relative paths so we don't have to run our tests through webpack.

We want our Sidebar to look roughly like the image below:
image coming soon

We will use Flexbox for most of our alignment because it is now widely supported and much, much better
than hacking away with tables. It's also the standard for React Native. If you break this Sidebar
component down, you can see that our Sidebar is really a single column of fixed width which contains a
list of contact cards.

image coming soon

We will eventually split these individual components into smaller pieces, but for now, we can just put
them all under the single Sidebar component.

Let's start with something small:

/app/components/Sidebar/index. js
commit: coming soon

export const Sidebar = () => {
return (
<div>
<h3>John Smith</h3>

<p>Last active: {Math.floor((Math.random() * 10) + 1)} minutes ago.</p>
</div>

In order to get this to render, we have to import this component into another component. Since we're
going to want to render the Sidebar on on the root route, we should import it into our Home component.

/app/components/Home/index. js
commit: coming soon

www.learnphoenix.io 42 of 407

https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://www.learnphoenix.io

11/3/16

import { default as Sidebar } from "../Sidebar”

export class extends
render () {
return (
<div>
<Sidebar />
Home component
</div>

Now when you refresh your page, you'll see your Sidebar .

But it hardly looks like a sidebar... So now we need to style it.

Optional formatting for styles

There are several options when it comes to styling with react-css-modules . One is to import your styles
and reference each style as a property of the style object.

.container {
background: red;

by

import React from "react”
import cssModules from "react-css-modules”
import style from "./style.css”

const HelloWorld = () => {
return (
<div className={style.container}>
Hello World!
</div>

Another option is the styleName reference that react-css-modules gives us. This allows us to use a
string rather than an object reference. Because of the way components are wrapped using cssModules,

www.learnphoenix.io 43 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

you'll get better errors (compilation instead of runtime) when you mess up or forget to add a style.

const HelloWorld = () => {
return (
<div styleName="container">
Hello World!

</div>

That said, we're going to use the className with the style object because it's currently the most widely
supported.

A note on using multiple classes for a single element: Don't do it. But if you must, you can set an option
within react-css-modules to allow you to include multiple modules for a single element. Just be aware,
once you start down the road of multiple class names, you start accumulating dead code that is time
consuming and tedious to refactor out of your codebase.

Styling the Sidebar component

The first thing we should do is give our Sidebar afew className attributes so we can reference them in
our style.css file:

/app/components/Sidebar/index.Jjs
commit: coming soon

export const Sidebar = () => {
return (
<div className={style.sidebar}>
<h3>John Smith</h3>

<p>Last active: {Math.floor((Math.random() * 10) + 1)} minutes ago.</p>
</div>

Then within our style.css file, add the classes that we will use to style our Sidebar :

/app/components/Sidebar/style.css
commit: coming soon

www.learnphoenix.io 44 of 407

https://github.com/gajus/react-css-modules#multiple-css-modules
https://www.learnphoenix.io

11/3/16

.sidebar {
position: absolute;
left: 0;
top: O;
height: 100vh;
width: 300px;
background: #eeeeee;
overflow-y: scroll,;
border-right: 1px solid #ccc;

Most of this styling is straightforward. If you are not comfortable with Flexbox, | recommend checking
out Flexbox Froggy, which is a game that will get you up to speed in about 10 minutes.

You may have noticed that our "Home component” text disappeared. That's because it's hidden behind
the absolutely positioned Sidebar . Let's create a wrapper in our Home component that will eventually
contain all of our chat messages.

import React from "react”
import cssModules from "react-css-modules”
import style from "./style.css”

import { default as Sidebar } from "../Sidebar”

export class extends
render() {
return (
<div>
<Sidebar />
<div className={style.chatWrapper}>
Home component
</div>
</div>

export default cssModules(Home, style)

Then let's put 300px of margin on the left so that all of our content displays on the page.

Also note that you cannot use dashes (-) in the names of your styles when using object notation
because JavaScript will interpret them as a mathematical expression. As it turns out, camelCase is
already supported by CSS, so this shouldn't cause any problems over the long-run.

www.learnphoenix.io 45 of 407
e

http://flexboxfroggy.com/
https://www.learnphoenix.io

11/3/16

$ touch app/components/Home/style.css

.chatWrapper {
margin-left: 300px;
3

Additional

A note on nesting: Nesting your styles is generally considered bad practice. It makes refactoring harder
and can lead to a lot of confusion. There are some exceptions.

Some people prefer to nest things like :hover or other pseudo-classes, as they could make it easier to
understand the full functionality of a particular selector. This is also the case with nested @media queries,
since it can be useful to quickly see which element is being affected by a particular media query. It's
mostly a matter of preference, but the larger style guides tend to avoid nesting, so we will also avoid it.

www.learnphoenix.io 46 of 407

https://www.learnphoenix.io

11/3/16

Snippets and Aliases

® Snippets
o Aliases
e vimrc

Sometimes there is no way around writing repetitive code. Every React component needs to have some
of the same boilerplate to make it function, and there are some bash commands that you have to type
over and over again. This is where snippets and aliases come into play. This section is not strictly
necessary for the rest of the series, but it might save you a lot of time down the road.

Snippets

One handy feature you can do in most text editors is create a snippet . If you are using Atom, you can
change the snippets.cson file (.cson is .json but for CoffeeScript) and add a text snippet.

There should already be a file there with instructions on how to create a snippet. These will save you a lot
of time and you can create your own if you find yourself typing out the same boilerplate code, over and
over again. The code below will generate boilerplate for our typical React component.

www.learnphoenix.io 47 of 407
e

https://www.learnphoenix.io

11/3/16

path: ~/.atom/snippets.cson

'.source.js':
'Standard component’:
'prefix’': 'react’
'body': "’
import React from "react”
import cssModules from "react-css-modules’
import style from "./style.css”

!

class extends
constructor(props) {
super (props)
3

render() {
return (
<div>
$1 component
</div>

export default cssModules($1, style)

1

If you are not familiar with CoffeeScript, know that the whitespace matters. Each tab is the same as if you
nested something within curly braces. Multiline strings also start and end with three apostrophes "'’ .

The first line tells Atom that you want to target files that end in . js . Then we name our snippet, in this
case "Standard component", but you can name it whatever you want. The prefix is what you type into
your text editor before hitting the tab key. Again, you can name this whatever you want. Finally, the body
is the code that is written when you press tab after typing the prefix.

A handy thing to note is the $1 keyword. In Atom, after you initiate a snippet, you can specify where you
want the cursor to end up so you can start tying. If you want to get really fancy as we have done above,
you can specify multiple cursors so you can type things like the name of the component in multiple
places as the same time. If you have a second place you want to jump to, you can use $2 and press tab
to jump to it.

The code above will generate your typical React component and will save you a ton of time over the
course of this project. As you find yourself writing certain code over and over again, consider writing your
own snippet.

Another snippet that will come in handy is a basic test for a React component to make sure it renders
properly. The syntax will make sense once we go over testing with enzyme in a future lesson.

www.learnphoenix.io 48 of 407

https://www.learnphoenix.io

11/3/16

'.source.js':
'Standard component’:

'Standard test':
'prefix’': 'test'’
"body': "'’
import React from 'react’
import expect from 'expect'’
import { shallow } from 'enzyme'’

import { $1 } from './'

describe('<$1 />', () => {
it('should render', () => {
const renderedComponent = shallow(
<$1 />
)
expect(renderedComponent.is('div')).toEqual(true)
1))
1))

Aliases

Aliases let you run complex command line tasks with fewer characters. For example, instead of typing
out git add ., you could write an alias that lets you type out something as simple as ga which will
accomplish the same thing.

But this also comes in handy for much more complicated tasks. In this app, we will create a lot of
components, and each component will have an index.js, spec.js, style.css,and a README.md file.
You could type them all out one by one every time, or you could write an alias to make this easier.

If you're on a Mac, your aliases live in ~/.bash_profile . If you do not have this file, you should go ahead
and create it.

$ touch ~/.bash_profile

Here are a few simple git commands that save a couple minutes every day.

www.learnphoenix.io 49 of 407

https://www.learnphoenix.io

11/3/16

alias gs="git status”
alias gd="git diff --stat”
alias ga="git add --all”

vimre

Coming soon!

www.learnphoenix.io 50 of 407
e

https://www.learnphoenix.io

11/3/16

Unit Tests with Enzyme

What is a unit test?

Enzyme and shallow rendering
jsdom and DOM rendering
Istanbul/nyc and test coverage

React makes unit testing extremely simple. Since every component is just a function and since most of
our components are pure functions, it's easy to isolate just the pieces of the component you want to test
without any side effects.

We are going to use Enzyme, which is a testing utility for React that clears up some of the awkward
syntax of React's TestUtils.

One other advantage of testing React components is that you can test them without the need to render
them to a DOM using something called shallow rendering. Shallow rendering is extremely performant and
lets you run through your tests at blazing speed. This is because pulling up a DOM and rendering to it
takes significant time, while simply calling a function is really fast.

What is a unit test?

A unit test is the smallest possible testing unit and should only test one thing. Unit tests are different than
integration tests because integration tests are in place to make sure that our pieces work together. In
short, unit tests make sure our pieces work by themselves, while integration tests make sure our pieces
work together.

An example of a unit tests would be taking a single React component and testing to make sure it does
everything we want it to do. We might want that component to render a particular element to the DOM, or
trigger a specific event. Now, the tricky part about unit tests is that we wouldn't actually care whether or
not that event actually did anything--all we care about was that the event was triggered.

Functions (especially pure functions) are really easy to test because they will always give the same
output given a certain input.

What to test?

We are going to test our Home component, which is just a wrapper. All we really need to tests is that a

www.learnphoenix.io 51 of 407
e

https://github.com/airbnb/enzyme
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

<div> renders.

For more complex components, you want to test to make sure that everything works the way it's
supposed to given certain inputs. You don't want to rely on a database call or on anything outside the
specific component that you are testing.

There is also the question of whether testing is worth the time for a particular component. When it comes
to unit testing in React, it's really easy to go overboard. As a rule of thumb, if the CEO is going to give a
live demo, you want to make sure you have really comprehensive tests for everything he would do in that
demo.

It is also worth considering how you might later refactor a component, and how your tests would ensure
that the component still operates the same way after the refactor. For example, in a Button component,
you'd want to make sure that your component rendered its children and any other properties that are
required for that component to render properly.

Setting up Enzyme

The first thing we need to do is install enzyme and all other dependencies we will need.

$ npm install --save-dev enzyme mocha expect react-addons-test-utils

Because we are using css-modules we will need to pass in an empty object as our style object and
pass ina noop (short for "no operation" and pronounced "no op") for images and other non-JavaScript
files (thanks to Ole Michelson for solving some of this issue). Create a .test-setup.js file and include
the following to accomplish this goal:

We also need to add react-addons-test-utils because it is a dependency of Enzyme.

$ touch .test-setup.js

/.test-setup.js
commit: coming soon

www.learnphoenix.io 52 of 407
e

https://ole.michelsen.dk/blog/testing-reactjs-with-coverage-using-mocha-babel-istanbul.html
https://www.learnphoenix.io

11/3/16

const noop = () => {}
const empty = () = ({})

require.extensions['.css']
require.extensions[’'.ico']
require.extensions['.png']
require.extensions['.jpg']
require.extensions['.svg']

We are also adding mocha so we can run our tests with Mocha using the command line mocha .

Writing a unit test

At this point, our Home component is pretty simple. All we are going to test is that it renders. Create a file
called spec.js within our Home directory and add the following.

$ touch app/components/Home/spec.js

/app/components/Home/spec.js
commit: coming soon

import React from "react”
import expect from "expect”
import { shallow } from "enzyme”

import { Home } from "./"

describe(”<Home />", () => {

it("should render”, () => {
const renderedComponent = shallow(
<Home />

)

expect(renderedComponent.is("div")).toEqual(true)

1
b))

We're going to use expect , which is a simple assertion library that replaces assert, sinon, and chai
for our purposes. Almost all of our assertions are going to come down to whether a certain statement is
true or false . Generally speaking, if you're coming up with complex assertions you're probably over-

complicating things. It also gives us access to spy, which we will go over later.

www.learnphoenix.io 53 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

From enzyme we get shallow, which is a function that lets us shallow render our component without a
DOM. The shallow API is really comprehensive and has good documentation. It would be worth your
time to look over all the functions you have at your disposal here.

The next part is the describe block, where we (not surprisingly) describe the thing that we are testing.
Within that describe block will be a series of it blocks that actually contain the tests we intend to run.
it blocks usually follow the word "should", and that's a good way to think about what the code inthe it
block should do. In this case, it should render the children of our Home component.

The last line is where we make our assertion. If renderedComponent has been shallow rendered properly,
then it will return a truthy value, which expect will pass. If the component is not rendered properly, then
our test will not pass.

This is the only test you'll need for most of your components. Basically, we're just testing that the
component was able to render without exploding.

If you find yourself testing a lot of logic within your component, you should really consider pulling that
logic out into a separate part of your app (likely Redux, which we will go over later). Ideally, you want to
keep your components as dumb as possible, meaning they just render content that is passed into them
and don't execute any logic.

Running our tests

The last piece is actually running the tests. This is going to require a relatively complicated script in our
package. json file.

But since we are not running our tests through webpack, we need to make sure we let Babel transpile our
code. We can use babel-register to transpile our code before passing it on to mocha .

$ npm install --save-dev babel-register

/package. json
commit: coming soon

"scripts"”: {

"test”: "mocha --require babel-register --require .test-setup.js -R spec app/**/spec.]js

IS

What we're doing here is telling mocha to run our tests, but first passing it through Babel (--require

www.learnphoenix.io 54 of 407
e

https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://www.learnphoenix.io

I
. 11/3/16
/ E Learn Phoenix by Sam Corcos

babel-register), then changing out our resolve.extensions with .test-setup.js so we don't have to
use webpack, then recursively looking for all spec.js files within the app directory.

Now you can run it.

$ npm test

You should get an output like the following.

<Home />
should render

1 passing (32ms)

It's important to make your test fail in a predictable way so you know that you set your test up properly.
Sometimes without knowing it, you might set up a test that passes no matter what you give it. We're not
going to do that here for the sake of brevity, but you should make this practice a habit.

Full and static rendering

At a certain point, you'll need to run unit tests that require a DOM. If you want to check to make sure a
certain action happened on componendDidMount , for example, you'll need to fully render the component
so you have access to the lifecycle methods. To accomplish this, you will need Enzyme's Full Render API,
which has a syntax almost identical to the shallow render API.

But before we can get this to work, we need a DOM running. The easiest and most efficient way to do this
is with jsdom, which is a magical JavaScript implementation of the DOM that lets you run your tests
extremely quickly since it's all done in JavaScript.

Setting up jsdom is a lot easier than you might expect. Enzyme provides an explanation of how to set it
up, and we will walk through it here.

We can copy-paste the code from the documentation to the bottom of our existing .test-setup. js file.

/.test-setup.js
commit: coming soon

www.learnphoenix.io 55 of 407
e

https://github.com/airbnb/enzyme/blob/master/docs/api/mount.md
https://github.com/tmpvar/jsdom
https://github.com/airbnb/enzyme/blob/master/docs/guides/jsdom.md
https://www.learnphoenix.io

11/3/16

const noop = () => {}
const empty = () = ({})

require.extensions['.css'] empty
require.extensions[’'.ico'] noop
require.extensions['.png'] = noop
require.extensions['.jpg'] = noop
require.extensions['.svg'] noop

var jsdom = require('jsdom’).jsdom

var exposedProperties = ['window', 'navigator', 'document']

global.document = jsdom('')
global.window = document.defaultView
Object.keys(document.defaultView).forEach((property) => {
if (typeof globall[property] === 'undefined’') {
exposedProperties.push(property)
global[property] = document.defaultView[property]
}
1))

global.navigator = {
userAgent: ’'node.js'’

3

What this code is doing is taking our React code and putting it into the global namespace so it can be
used by jsdom.

Then install jsdom.

$ npm install --save-dev jsdom

And that's all. Now you can run tests with mount and static, as well as shallow as you have before.
The app is too simple to require tests of this sort, so we demonstrate the difference between these types
of tests when it becomes necessary.

Just be sure you are running a more recent version of node. You must be using at least node 4. If you do
not know what version of node you are using, run the following in your terminal.

If you find that your version of node is not at least 4.0, then update it with brew, nvm, or whatever method
you prefer.

www.learnphoenix.io 56 of 407

https://www.learnphoenix.io

11/3/16

$ brew update
$ brew upgrade node

Istanbul and test coverage

Another feature that you see in nearly every production app is test coverage. Test coverage is an
automated way to let you know how much of your app is covered by tests. If you have no tests, your test
coverage is 0%. If you have tests for every function and for every line of code, your test coverage will be
100%. Most companies aim to have tests coverage of 80%-90%, depending on their risk tolerance.

Istanbul is the most popular tool for automated test coverage and it's used by just about every serious
open source project. It's also surprisingly easy to set up. Start by installing it. For whatever reason, they
decided to call the Babel-compatible command line tool for Istanbul nyc .

$ npm install --save-dev nyc

Then we need to change our package.json scripts torun nyc over our existing tests so it can
automatically detect how much of our code is covered by tests. We don't need to run this every time, so
we will make it a separate command. This is going to look a little bit awkward.

/package. json
commit: coming soon

"scripts”: {

"cover”: "nyc -x 'x*x/*xspec.js' -n 'app' -r text -r html -r lcov npm test”,

While this command might look complicated, it's actually pretty reasonable. These commands tell nyc to
exclude (-x) all of our spec.js files from our coverage report (because we don't a report on how well
our tests are tested), include (-n) everything within the app directory, use the text, html, and Icov
reporters (-r) and run npm test, defined within our scripts, to run the tests.

So now, if you run npm run cover, you will see your app with test coverage.

www.learnphoenix.io 57 of 407
e

https://github.com/gotwarlost/istanbul
https://www.learnphoenix.io

11/3/16

% Lines |Uncovered Lines |

|
|
| === I
All files |
Home |
index. js |
Sidebar |
|

|

You should also add the coverage directoryto .gitignore so it doesn't get pushed to your repo.

/.gitignore
commit: coming soon

node_modules
.DS_Store
npm-debug. log

dist
coverage
.nyc_output

If you're looking for something prettier than the terminal output, you can use your browser to open the
index.html file within coverage/lcov-report . This will also give you hints as to where you should write
additional tests to improve your test coverage.

Additional

We will write additional tests as we go along. Testing is an important part of ensuring the long-term
stability of your app. Refactoring is inevitable, and if you have good tests, you can ensure that you don't
break everything when you change around your components.

www.learnphoenix.io 58 of 407
e

https://www.learnphoenix.io

11/3/16

Basics of Elixir and Functional Programming

Functional programming
Elixir basics

e Types

Pattern matching

Now that we finally have our React app mostly set up, we can start building out our Phoenix backend. But
before we jump into Phoenix, we should go into some of the basics of functional programming and Elixir.
This is a long and dense chapter, so you might want to come back to it after a few lessons when you've
had a chance to play around with Phoenix.

Elixir is a functional programming language. We could write an entire course simply going over the
features of the language, but in this lesson we will just go over some of the specifics of the syntax that
you will need to know before moving forward.

Most of what is covered in this lesson are the specifics of Elixir as they relate to Phoenix. The intricacies
of Phoenix will be covered in later lessons as they come up.

Before we dive into Elixir and Phoenix, we'll explore the fundamentals of functional programming.

Basics of functional programming

There are two camps in computer programming: Functional programming (often abbreviated FP) and
Object Oriented Programming (often abbreviated OOP). There is overlap between these camps, but they
differ in their approach to programming.

Most people have experience with OOP, which intentionally mimics objects representing real life things
and interactions. Another big part of object oriented programming is state . State refers to information
stored in an application, object, or variables. Many popular programming languages are object oriented
such as Java, JavaScript, C++, and Ruby to name a few.

For example, one can imagine a real-life object, such as a block of clay. You can then mutate that block
of clay, apply heat, and end up with a vase.

www.learnphoenix.io 59 of 407
e

https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://www.learnphoenix.io

11/3/16

= Clay.new

.shape
.heat
.glaze

In the above example the vase contains information about itself and whether it has been shaped, heated,
or glazed; this is state. Another example of state, using JavaScript, is the += or -= operators which
modify an existing variable rather than return a new one:

var counter = 0;

counter += 5;
counter -= 1;
counter += 2;

console.log(counter); // -> 6

Functional programming is a bit more abstract, and functional programming advocates are more
hardcore about definitions than object oriented folks. You'll hear a lot about "immutable data" and "pure
functions", and a variety of other terms. We will go over the terms that are relevant to working with
Phoenix and Elixir.

One of the core concepts of functional programming is the "pure function”. A pure function is a function
that always yields the same results with the same arguments and has no side effects. You may also hear
them referred to as "idempotent” (pronounced Tdem'pSt(s)nt), which is a fancy way of saying "it has no
side effects".

A side effect is something like writing to a database, or making a change to something that is outside the
scope of a function. They are changes that, if run again, may produce a different outcome. Additionally,
pure functions need everything passed to them as arguments; retrieving values elsewhere could lead to a
different outcome.

Here is an example of an impure function:

var counter = 0;

function O {
counter += 1;

3

addOne ()

Our example has a state, counter, outside the scope of the function that is modified by our function. If

www.learnphoenix.io 60 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

you run it once, the result is 1. If you run the exact same function twice, the resultis 2.

This side effect wouldn't be possible with a pure function. An example of a pure function would be the
following:

function (counter) {
return counter + 1;

}

var counterPlusOne = addOne(2);

In this example, we are passing the counter in as an argument to the function, which then adds one and
returns the new result. No matter how many times you run this function, it will always give you the same
result (3).

Pure functions are important to functional programming because they allow us to chain together
functions, perform multiple transformations to data, and get a predictable result without side-effects.
This lack of side-effects is the foundation of Elixir's fault tolerance and ability to re-try code without fear;
this is something we'll discuss more later. As we will see shortly, Plugs are an important part of Phoenix
and are themselves, by necessity, pure functions.

In functional programming we do not mutate data, instead we create a new copy with our changes. This
may seem like a lot of extra work at first but functional programming languages are designed for this.
This immutable data furthers our ability to ensure predictable outcomes and allows for the more
advanced features of Elixir's concurrency and fault tolerance. Don't worry though, we'll cover all of this in
more depth in later lessons.

If you are interested in learning more about functional programming, there is an edX course that covers a
lot more than we will cover in this course.

Interactive Elixir

Elixir ships with IEx, an interactive shell. With IEx we can evaluate Elixir expressions and test out
functionality before adding it to our code base. The best way to understand IEx is to experience it. In your
terminal, run the iex command.

You'll get an output similar to the one below.

www.learnphoenix.io 61 of 407
e

https://www.edx.org/course/introduction-functional-programming-delftx-fp101x-0
https://www.learnphoenix.io

11/3/16

Erlang/OTP 18 [erts-7.1] [source] [64-bit] [smp:8:8] [async-threads:10] [hipe] [kernel-poll

Interactive Elixir (1.2.0) -press Ctrl+C to exit (type h ENTER for help)
iex>

We are now in an interactive environment where we can explore Elixir and evaluate expressions. Let's
start with trying to run some simple Elixir code. Inside IEx let's add together some numbers. If we type in
2 + 2 and press return, the expression is evaluated and the result is displayed.

iex> 2 + 2
4

iex> 2.5 + 1
3.5

Basic types

As you might expect coming from JavaScript, Ruby, or other major languages Elixir has support for the
basic types you'd expect. With IEx open, let's try working with some integers and floats.

iex> 1 + 2

3

iex> 2.0 + 2.5
4.5

Elixir supports the booleans true and false, they are also represented by the atoms (explained
momentarily) :true and :false . All values in Elixir, with the exception of nil and false, are
considered truthy.

iex> true
true

iex> true ===
true

iex> false

false

iex> if 6, do: "Truthy”
"Truthy"

www.learnphoenix.io 62 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Atoms

If you're familiar with Ruby then atoms won't be foreign to you, they're just like symbols . If you're new to
both, don't worry.

In Elixir an atom is a constant who's name is also its value. They are lowercased and begin with a colon.

:ok and :error are example atoms. What makes Atoms special is how they use memory. When we use
the atom :ok many times the memory is only allocated once. Atoms are great when we need to reuse
the same value many times and wish to conserve memory. Unlike other values though, atoms are not
garbage collected so they should be used sparring; if we always used atoms in place of other values, our
memory would never be freed.

Strings in Elixir

Strings are UTF-8 encoded and use double quotes, let's try the standard "Hello World” :

iex> "Hello World"

"Hello World”

What about single quoted values like 'hello world’ ? In Elixir, single quotes are used to denote char
lists. A char list is nothing more than a list of individual characters:

iex> 'hello world'’

'hello world’

iex> is_list('hello world')
true

Char lists can be tricky in IEx. If characters are outside the ASCII range then a list of character codes will
be displayed instead; these character codes are the numerical value for each character:

iex> 'hetto’

[104, 101, 322, 322, 111]

Collections

Collections are a big part of functional programming. As we'll see, Elixir has a number of different data

www.learnphoenix.io 63 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

structures available to us. The simplest of these collection is the 1list . Lists may contain different types
of values and do not enforce uniqueness, we can store the same value in a list many times.

Let's try creating some simple lists inside IEx:

iex> [1, 2, 2, 3, 3, 3]
1, 2, 2, 3, 3, 3]

ieX> [4], 2’ 3’ llall, ”b”, HCH:]
[1’ 2, 3, ”a”, ”b”, HCH]

If you don't have a background in FP then tuples may seem strange to you but tuples are a common
sight in Elixir. A tuple is similar to a list but is stored in memory contiguously, making accessing them fast
but modification expensive. Tuples are differentiated from lists by using curly braces. Just like 1list our
tuples can contain any type of value and do not enforce uniqueness:

iex> {:ok, "Success"}
{:0k, "Success"}
iex> {10, "ten”, :ten}
{10, "ten", :ten}

You can think of tuples as something like a pair of values that are meant to be stored together. They
aren't there for efficient modification.

If we combine lists, tuples, and atoms together we get keyword lists in Elixir. A keyword listis a
collection of two-element tuples who's first value is an atom, very specific. Keyword lists are frequently
used for options and configuration. A keyword list can contain multiple tuples with the same key.

[age: 30, name: "user"]

: 30, name: "user"]

[{:age, 30}, {:name, "user"}]
: 30, name: "user"]

Maps are the go-to key-value store in Elixir. We can use any value as a key in our maps. To definea map
we use the %{} syntax:

iex> map = %{"hello” => :world, :ok => 200}
%{:0k => "okay", "hello" => "world"}
iex> mapl[:ok]

200
iex> map["hello"]
:world

www.learnphoenix.io 64 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Keys in a map are unique, if we add a new value with the same key it will replace the original.

iex> %{"hello” => "world”, "hello” => "universe”}

%{"hello" => "universe"}

Pattern Matching

If you haven't used functional programming before then pattern matching may seem a bit strange at
first, but it is arguably one of the best features of Elixir. When we use pattern matching we not only
compare values but structure as well.

Through pattern matching we are also able to extract values from a match into a variable, this is known
as variable capture. In a moment we'll try some examples which should help clear things up, but first we
need to discuss the match operator.

Unlike other languages Elixir does not use the = operator for value assignment, instead it is use as our
match operator.

Confused yet? When we make a successful match, the matched value will be returned. If the match fails,
it will raise an error. In IEx, let's start with a few simple pattern matches to get our feet wet.

iex(24)> "hello” = "hello”
"hello”
iex> [1, 2]

[1, 2]
iex> [1, 21 = {1, 2}
*% (MatchError) no match of right hand side value: {1, 2}

In our next example we'll introduce variable capture. In it's simplest form variable capture does resemble
an assignment (like the "=" in JavaScript) but it's important to remember they're different. To better
visualize the difference, and to demonstrate the power of variable capture, let's try some examples.

Start with the simple a = 1 match. In this instance the value of 1 is captured in the variable a.
Although it may look like an assignment, it's important to remember it is not. To better illustrate the
difference, and power of variable captures, let's try matching [1, b] to [1, 2] . Our match will be
successful and if we look at the variable b, we should get 2.

www.learnphoenix.io 65 of 407
e

https://www.learnphoenix.io

11/3/16

Be aware that variable capture works right to left. Variables included on the right side of the match are
evaluated and their values used. With our previous example as a starting point, use [a, b] on the right
side of a match to demonstrate how the values are used.

iex> [1, 2] = [a, b]
*% (CompileError) iex:1: undefined function a/

What if we need to use a variable's value in a match but don't want to reassign the value of that variable?
To accomplish this, we can use variable pinning, available to us through the pin operator: *. Let's try
some examples with the pin operator.

To begin let's capture a value into a variable, something like a = 1 will work. Next we'll use our variable
and pin operator, “a, as part of a match. To demonstrate a successful match, let's try to match [*a, 2]
to [1, 2].If we change the right sideto [2, 2] we should get a match error.

iex> a = 1
1
iex> [*a, 2] [1, 2]

(1, 21
iex> [*a, 2] = [2, 2]
*% (MatchError) no match of right hand side value: [2, 2]

You may not find yourself using variable pinning much but it's an important piece to be aware of.

Additional

We're going to go into functions and modules in the next lesson as well as some of the basics of Phoenix
and the Model-View-Controller.

www.learnphoenix.io 66 of 407
e

https://www.learnphoenix.io

11/3/16

More Basics of Elixir and Phoenix

¢ Functions and modules
¢ Notes for Ruby developers
e Basics of Phoenix and MVC

Control Structures

Elixir supports if and unless like other modern languages such as Ruby and CoffeeScript. If you aren't
familiar with unless, don't worry it's just syntactic sugar for: if !value.

iex> if true do
L> "truth”
..> else

L> "false”
..> end
"truth”

If we replace if with unless, we should get the opposite.

iex> unless true do
L> "true”
..> else
L> "false”
..> end
"false"

Elixir doesn't stop with just if and unless, it includes two addition control structures: case and cond .
The case structure is similarto a switch statement in other languages but it relies heavily on pattern
matching. The best way to understand the case statementis to try it in IEx.

iex> case {:0k, "Success"} do
..> {:ok, value} -> value

L> _ —=> "No match”
..> end
"Success”

www.learnphoenix.io 67 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

You may have noticed an underscore (_) above. An underscore is a placeholder that accepts any value.
So in the example above, if the case does not match {:ok, value},then it will passto _ which will
match with anything else and return "No match".

Last but not leastis cond . We can use cond when we want to match conditions and not values or
patterns. The cond structure is similarto else if in other languages. An example will help us better
understand it's usage.

iex> val = 4
4
iex> cond do

..> val + 2 <4 —> "val < 2"
..> val + 2 >= 4 -> "val >= 2"
..> end

"val >= 2"

Pipes

One of the nicest syntactic features of Elixir is the pipe operator, |>, which allows you to "pipe" a value
from one function to another function. This is very similar to the unix pipeline) | if you've ever used that.
In its simplest form, the |> takes the left value and passes it to the right side as the first argument.

This is particularly useful because Elixir is just collections of functions, piping them together makes the
code expressive and easy to understand at a glance. For example, if were were to make a cake using
functions, we could write.

ingredients
|> measure

[> mix
|> bake
|> decorate

Each step takes the result of the previous function and applies a transformation to it. Thisis a
surprisingly powerful abstraction that makes it very easy to understand the flow of your app and makes
for highly-maintainable code.

Functions

Functions in Elixir, and other functional programming languages, are considered first class citizens. That
means that all operations available to other types are available to them, they can be passed as

www.learnphoenix.io 68 of 407
e

https://en.wikipedia.org/wiki/Pipeline_(Unix
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

arguments to other functions, assigned to variables, and returned from other functions.

In Elixir there are a couple types of functions, but for this section we'll focus on anonymous functions. As
the name suggests, anonymous functions have no name. If not captured in a variable, an anonymous
function would otherwise not exist. To define an anonymous function we'll use the fn (arg) -> body
end syntax. To call an anonymous function we use the .() syntax on our variable, which is similar to
what you find in other languages.

Let's start with an example function to add two numbers together and then try using it.

iex> add = fn (a, b) -=> a + b end
#Function<12.54118792/2 in :erl_eval.expr/5>

iex> add. (1, 2)
3

Elixir also includes a helpful shorthand syntax for anonymous functions. This shorthand makes use of the
& operator. With the shorthand syntax our arguments are referred to as &1, &2, and so on. We can try
our previous example using the shorthand syntax.

iex> add = &(&1 + &2)
&:erlang.+/2

iex> add. (1, 2)

3

We learned about pattern matching using the match operator (=) but we can also use it when specifying
function signatures. Let's expand on our prior example. Let's update the function to return the string
"zero" if someone triesto add @ and @ together:

iex> add = fn

Lo (0, 0) -> "zero"
L (a, b) >a+b
> end

#Function<12.54118792/2 in :erl_eval.expr/5>
iex> add. (1, 2)

2

iex> add. (0, @)

"zero"

That's just the start of functions in Elixir. In the next section, and later lessons, we'll cover other function
types and how they all fit together.

www.learnphoenix.io 69 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Modules

At their most basic, modules are collections of functions. With defmodule we can create a new module,
add functions to it, and then re-use it elsewhere in our application. We'll learn more about modules in
later lessons, but for now we'll focus on the basics.

We've already covered anonymous functions so let's take a look at functions with regards to modules. In
our anonymous functions we used the fn -> ... end syntax, but named functions (or functions in
modules) use def and a lowercase name.

Let's create a simple example module that can add two numbers together. We can start by using
defmodule Example to define our module. Then we'll need to use def add(a, b) to define our function,
implementing the functionality should be easy. Once we've defined everything we can use it by calling
Example.add(1, 2) . If we put it all together we should get something like this:

iex> defmodule Example do
> def (a, b) do
L a+t+b
..> end
..> end

{:module, Example,

<70, 79, 82, 49, o, 0, 4, 248, 66, 69, 65, 77, 69, 120, 68, 99, @, 0, @, 157, 131, 104, 2
{:add, 2}}

iex> Example.add(1, 2)

3

You might be confused by all the numbers that Elixir has outputted for us. For now, don't worry about it
because we won't be using that information any time soon. But if you insist on jumping ahead, you can
check out Elixir binaries.

That's the tip of the iceberg for modules. In the next lessons we'll learn more about composing our
modules and connecting the pieces.

Structs

When we need a named key-value store with known keys, we turn to structs . Structs share the name of
the module they're defined in and use a syntax similar to our maps. We define them with defstruct and
a keyword list of fields and default values. For our example, let's create a simple module and struct to
present a person:

www.learnphoenix.io 70 of 407
e

http://elixir-lang.org/getting-started/binaries-strings-and-char-lists.html#binaries-and-bitstrings
https://www.learnphoenix.io

11/3/16

iex> defmodule do
..> defstruct name: nil, age: 0, location: nil

..> end

{:module, Person,

<70, 79, 82, 49, o, 0, 5, 32, 66, 69, 65, 77, 69, 120, 68, 99, @, @, 0, 133, 131, 104, 2,
%Person{age: 0, location: nil, name: nil}}

Now that we have our struct created, it's time to use it. As we already learned, structs and maps share a
similar syntax. In fact, structs are just maps with a few extra features. Create a new struct containing
your information and try to access the fields:

iex> sean = %Person{name: "Sean"”, age: 31, location: "US"}
%Person{age: 31, location: "US", name: "Sean"}

iex> sean.age
31

Notes for Ruby Developers

It's no coincidence that Elixir and Ruby share many similarities; Jose, the creator of Elixir, was a
contributor to Ruby and Rails.

[TODO)] insert handy chart here

Model-View-Controller

Phoenix is the framework we'll be using with Elixir. If you've used an MVC framework such as Rails or
SailsJS, a lot these topics will be familiar to you.

Phoenix uses the standard Model-View-Controller (MVC) architecture that we have come to expect while
building web apps. In general, anything related to the web application can be found in the web directory.
In there we will find out models, views, templates, and controllers . For those unfamiliar with MVC,
we'll do high level overview.

The appeal of the MVC pattern is the separation of concerns. As you probably guessed there are three
components to the MVC pattern: models, views, and controllers. Another way of saying that is: data, user
interface, decisions. In a MVC application the model is responsible for managing data and business
rules. Our view handles the user interface be it HTML, XML, or JSON. Finally, our controller handles
most of the work orchestrating inputs to models and finally views.

Most of the logic of how the user interacts with the app will be handled by the controller. You will see this

www.learnphoenix.io 71 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ ? Learn Phoenix by sam Corcos

in practice in short order, so there is no reason to go into detail here.

Additional

We will cover Phoenix and Elixir in more detail as the concepts become relevant in the rest of the tutorial.
In Phoenix, most files are named with _ underscores. For example, user_controller.ex .

When debugging, most people use I0.puts to log some particular output to the terminal. For example,
I0.puts "Running!” will simply return a string if it is called.

www.learnphoenix.io 72 of 407

https://www.learnphoenix.io

11/3/16

User Accounts and Signup: Part 1

Account creation
JSON web token (JWT)
Migrations
CORS

This is the first lesson in which we will make significant changes to our Phoenix backend. Just about
every app has user accounts, often with varying degrees of complexity. For our app, we will use a
standard email-password combination.

In this lesson, we create the User model and add API endpoints so our frontend can create and update
an account. We're also going to create and run a migration to update our database.

Creating our user

The first thing we need to do is create a user model and controller, which we cover in more detail shortly.
Creating these components is a standard part of most Phoenix applications so there are helpers
available to generate the boilerplate.

To view a list of the generators, and other mix tasks available to us, run mix -h:

$ mix -h

mix

mix
mix
mix
mix
mix
mix
mix
mix
mix
mix

new

phoenix.
phoenix.
phoenix.
phoenix.
phoenix.

phoenix.

phoenix.
phoenix.
phoenix.

digest
gen.channel
gen.html
gen. json
gen.model
gen.secret
QR

routes
server

H OH HF HF HF OH OH H HF HF

Runs the default task (current: "mix run')

Creates a new Elixir project

Digests and compress static files

Generates a Phoenix channel

Generates controller, model and views for an HTML based resource
Generates a controller and model for a JSON based resource
Generates an Ecto model

Generates a secret

Create a new Phoenix v1.1.3 application

Prints all routes

Starts applications and their servers

There are many tasks but for now we'll focus only on the Phoenix ones. Since we're building a JSON API,

www.learnphoenix.io

73 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

let's try the phoenix.gen.json generator. This will cause an error but the errors in Phoenix are quite
helpful and will tell you what you're missing.

$ mix phoenix.gen.json

*% (Mix) mix phoenix.gen.json expects both singular and plural names

of the generated resource followed by any number of attributes:

mix phoenix.gen.json User users name:string

Let's try it again but this time for a user with an email, encrypted password, and a username:

mix phoenix.gen.json User users email:string encrypted_password:string \
username:string

You will get output similar to the following.

creating web/controllers/user_controller.ex

creating web/views/user_view.ex

creating test/controllers/user_controller_test.exs

creating web/views/changeset_view.ex

creating priv/repo/migrations/20160406190555_create_user.exs
creating web/models/user.ex

creating test/models/user_test.exs

Add the resource to your api scope in web/router.ex:

resources "/users", UserController, except: [:new, :edit]

Remember to update your repository by running migrations:

$ mix ecto.migrate

This generates a number of different files and instructions for setting up our user. We'll take this
opportunity to discuss some of the files and their purpose within our project.

The Controller

In the output from our generator the very first file is web/controllers/user_controller.ex .

Controllers are responsible for doing most of the work for a given request. When our application receives
a request it will use the router to direct the request to a controller and a specific function. For example,

www.learnphoenix.io 74 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

when someone arrives at your website, you need to determine whether or not that person is a logged-in
user. The controller is where your app will check with the database to determine how to handle the
current connection.

If you come from a Rails background, the concept of a controller should be familiar.

Controllers are a big topic and will be used frequently so if you do not understand them now, you will after
we use them a little more.

The View

The second file created is web/views/user_view.ex, our view. If you're familiar with other frameworks,
you might be expecting the view to be HTML files but that's not necessarily the case. In Phoenix, our view
is a module containing functions for rendering data into a consumable format which can be either JSON
or HTML. Since we're building a JSON API, it will respond with JSON.

Our layout and other HTML assets are referred to as templates in Phoenix. These templates can be used
by our views to generate the final HTML or JSON.

By default our generated boilerplate includes our password in the JSON response. Open the user view
and update the render/3 function by removing the encrypted_password reference:

web/views/user view.ex
commit: coming soon

def render("user.json"”, %{user: user}) do
%{id: user.id,

email: user.email,
username: user.username}

end

The Migration

A migration is a set of changes we want applied to our database schema, such as adding new tables and
columns or updating existing ones. When we look at the generated migration we'll see it is creates a new
database table for "users” and add a number of column for each of the three fields we supplied the
generator. The migration that was generated for us can be found at
priv/repo/migrations/20160406190555_create_user.exs ; it's important to note that your file will almost
certainly be different since migrations rely on timestamps at the beginning of the file for uniqueness.

www.learnphoenix.io 75 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Let's open our migration make a few changes. For starters we want to make sure that users enter a valid
username and email for an account to be created. We also want to make sure that email addresses are
unique.

/priv/repo/migrations/2016... create user.exs
commit: coming soon

defmodule PhoenixChat.Repo.Migrations.CreateUser do
use Ecto.Migration

def change do
create table(:users) do
add :username, :string, null: false
add :email, :string, null: false
add :encrypted_password, :string

timestamps
end

create unique_index(:users, [:emaill)
create unique_index(:users, [:usernamel])
end
end

The first change we made was to add null: false to both :username and :email, this tells the
database that null values are not to be accepted. In other words, a value is required. The second
change we made was to add create unique_index/2 . A unique index is to make sure a username and
email is only used once.

The Model

Next up is our model, found in web/models/user.ex . In Phoenix, models are modules containing
functions for working with our data's schema and the struct that contains its values. We're already
familiar with structs and if you've worked in another framework, you're probably already familiar with a
schema, but in case you aren't, a schema is describes the different fields of our table and it is defined
within the schema block. You can think of it as a way to enforce a particular structure.

Let's open our model and add support for the unique index we added into our migration.

/web/models/user.ex
commit: coming soon

www.learnphoenix.io 76 of 407
e

https://www.learnphoenix.io

11/3/16

defmodule .User do
use PhoenixChat.Web, :model

schema "users” do
field :email, :string
field :encrypted_password, :string
field :username, :string

timestamps
end

@required_fields ~w(email encrypted_password username)

@optional_fields ~w()

def (model, params \\ :empty) do
model
|> cast(params, @required_fields, @optional_fields)
|> validate_format(:email, ~r/@/)
|> validate_length(:username, min: 1, max: 20)
|> update_change(:email, &String.downcase/1)
|> unique_constraint(:email)
|> update_change(:username, &String.downcase/1)
|> unique_constraint(:username)
end

We've made some changes to our changeset/2 function. A changeset is a function that validates and
transforms data into a format the database is expecting. For now we'll focus on a single changeset
function but it's possible, and common, to use different functions for different situations. You will see
some of these later on.

Let's look at the individual changeset changes we made. With validate_format(:email, ~r/@/) we
check the email field using a regular expression to ensure it contains an @ . The second change we
introduced is validate_length(:username, min: 1, max: 20) to ensure a username is at least one
character and at most 20.

Finally, the last change ties in with the index we added to our migration: unique_constraint(:email) .
With the unique_constraint/3 function we can ensure the email is not already in use, thanks to our
unique_index . We also do the same for :username .

The Router

The last piece to our puzzle is the router, found in web/router.ex . The output from our generator
directed us to make a change, open the router and update it accordingly.

www.learnphoenix.io 77 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

When our frontend makes a request to our API, the first place it hits is the router . This router sends that
request to the right place so the request can be handled properly.

/web/router.ex
commit: coming soon

defmodule .Router do
use PhoenixChat.Web, :router

pipeline :browser do

plug :accepts, ["html"]

plug :fetch_session

plug :fetch_flash

plug :protect_from_forgery

plug :put_secure_browser_headers
end

pipeline :api do
plug :accepts, ["json"]
end

scope "/", PhoenixChat do
pipe_through :browser # Use the default browser stack

get "/", PageController, :index
end

scope "/api", PhoenixChat do
pipe_through :api

resources "/users”, UserController, except: [:show, :index, :new, :edit]
end
end

With this change we are telling Phoenix that any requests to /users, except :new and :edit should be
sent to our UserController . We're also removing :index and :show since we don't want random users
to be able to see our list of users, but for some apps, you'd want this behavior.

There are a few things to notice in this file. There are two pipeline functions and two scope functions.
Since we are creating an APl we won't be using the :browser pipeline, but you can see that it accepts
HTML and has a series of plugs that apply useful transformations to your connection. For our application
we'll focus on the :api pipeline.

Within the code we just wrote, you see that any connection that hits the /users route is "piped through”
the :api pipeline. Be wary of adding plugs to the API pipeline, because if you do, that transformation will
be applied to every incoming connection. This is a very powerful tool and should be used with discretion.

www.learnphoenix.io 78 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

The scope allow us group different routes together under a common base path. In our case, we want to
direct anyone hitting the /api/users route to the UserController .

Finally, we see the resources/4 function which takes our path, controller, and options. Within the
Phoenix router, resources/4,is a handy function that takes care of generating all of the standard routes
for us. We can see a list of the routes resources/4 has created by running mix phoenix.routes in our

command line;

$ mix phoenix.routes

If you run the above command you should see something like this (if you do not see these, make sure
your app has been compiled):

page_path GET / PhoenixChat.PageController :index
user_path POST /api/users PhoenixChat.UserController :create
user_path PATCH /api/users/:id PhoenixChat.UserController :update

PUT /api/users/:id PhoenixChat.UserController :update
user_path DELETE /api/users/:id PhoenixChat.UserController :delete

In later sections we'll explore creating individual routes without the resources/4 helper.

Once we've updated our migration we should create the database and run the migration. Running our
migration will apply the changes to our database:

$ mix ecto.create

$ mix ecto.migrate

If this isn't your first time through the tutorial, you might need to run mix ecto.drop firstto drop the old
database.

www.learnphoenix.io 79 of 407

https://www.learnphoenix.io

11/3/16

User Accounts and Signup: Part 2

e Signup
e CORS

In this lesson, we add the ability to create a new user with a secure, hashed password. Then we set up
our endpoint to handle incoming messages from our frontend so we can connect and create new users.

Sign-up

Before we can sign-in, we need to sign-up. We have our user boilerplate done so now we can look at how
to register new accounts.

In a important part of registering a new account is picking a strong password. An even more important
part of the process is securely storing that password. For this, we're going to rely on the library
[Comeonin][comeonin]. Before we can use it, we need to include it as a dependency in our mix.exs file;
mix.exs is much like to NPM's package.json and Bunder's Gemfile.

Make sure your version of phoenix is at least 1.2 and that your version of phoenix_ecto is at least 3.0.
Several features of this app will not work if you are not on the current version.

/mix.exs
commit: coming soon

do

:comeonin, "~> 2.3"},

:cowboy, "~> 1.0"},

:gettext, "~> 0.11"},

:phoenix, "~> 1.2.0"},

:phoenix_pubsub, "~> 1.0"},

:phoenix_ecto, "~> 3.0"},

:phoenix_html, "~> 2.6"},
:phoenix_live_reload, "~> 1.0", only: :dev},
:postgrex, ">= 0.0.0"}

{
{
{
{
{
{
{
{
{

www.learnphoenix.io 80 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

In addition to deps/@ we need to update applications/0 . This is a little bit different than you might be
used to, but it's still intuitive. In Phoenix/Elixir, some modules can be managed independently and need to
be started along with your app. Many dependencies you add will need to be added here.

The primary exceptions are libraries that rely on an existing application that you've already started. For
example, some modules will use [HTTPoison][httpoison] and don't need to be started independently. We
will cover that in more detail when it becomes relevant. We will cover these applications in a later lesson
but for now we only need to add :comeonin:

/mix.exs
commit: coming soon

def do
[mod: {PhoenixChat, []},
applications: [
:comeonin,
:cowboy,
:gettext,
:logger,

:phoenix,
:phoenix_ecto,
:phoenix_html,
:phoenix_pubsub,
:postgrex

Now you should run mix deps.get to getinstall our dependencies:

$ mix deps.get

Next, we'll revisit our model and changesets.

Registration changeset

During the registration process there are some things we need to do then and only then, like validating
password length and hashing our password with [Comeonin][comeonin]. For these reasons we'll create a
new changeset just for registrations. The first challenge we have to over come is where to store the
unhashed password, thankfully we can use a virtual field in our schema.

Virtual fields are part of the schema and struct but their values are not persisted (saved) to our
database. Using a virtual field allows us to store both the hashed and unhashed versions of the password

www.learnphoenix.io 81 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

in the same struct, making our work with changesets easier.

Let's begin by updating our model in web/models/user.ex . We will start by including the virtual password
field:

/web/models/user.ex
commit: coming soon

schema "users” do
field :email, :string
field :encrypted_password, :string

field :username, :string
field :password, :string, virtual: true

timestamps
end

Let's update our original changeset/2 function to ignore the password:

/web/models/user.ex
commit: coming soon

@required_fields ~w(email username)

@optional_fields ~w()

Now we can create our new registration_changeset/2 function. For this changeset we want to require
our virtual password field, validate the password length, and finally hash it using Comeonin. If you're not
familiar with hashing, you can think of it as turning a plain-text string into a (pseudo) random string that
can only be decoded if you have the right key. Let's make those changes now:

/web/models/user.ex
commit: coming soon

www.learnphoenix.io 82 of 407
e

https://hexdocs.pm/comeonin/api-reference.html
https://www.learnphoenix.io

11/3/16

(model, params) do
model
|> changeset(params)
|> cast(params, ~w(password), [1)
|> validate_length(:password, min: 6, max: 100)
|> put_encrypted_pw
end

defp (changeset) do
case changeset do
%Ecto.Changeset{valid?: true, changes: %{password: pass}} ->
put_change(changeset, :encrypted_password, Comeonin.Bcrypt.hashpwsalt(pass))
->
changeset

end
end

In addition to our registration_changeset/2 function we've also created put_encrypted_pw/1, this
private function will hash our password when a changeset is valid.

Before we go too much further, let's look at why we need a separate changeset for registration. The
primary reason for separate changeset is so we can validate and hash passwords only when necessary.
Password hashing is an expensive operation in which a complex algorithm is used to convert our
password into a non-reversible random string of characters and numbers. When we hash passwords we
are able to safely store them in our database.

Storing passwords unhashed is a major no-no. Without hashing, our passwords would be available in
clear text to anyone with access to the database, like employees or a malicious attacker. Hashing
passwords ensures your user's data is just that much safer.

Controller updates

With our registration changeset complete, we can update our user controller in
controllers/user_controller.ex to use it. Updating our controller is easy thanks to changesets. All we
need to do is update our create/2 functionto use registration_changeset/2 in place of changeset/2.

/web/controllers/user_controller.ex
commit: coming soon

www.learnphoenix.io 83 of 407
e

https://www.learnphoenix.io

11/3/16

def create(conn, %{"user"” => user_params}) do
changeset = User.registration_changeset(%User{}, user_params)

case Repo.insert(changeset) do

{:0k, user} ->
conn
|> put_status(:created)
|> render("show. json"”, user: user)

{:error, changeset} ->
conn
|> put_status(:unprocessable_entity)
|> render (PhoenixChat.ChangesetView, "error.json”, changeset: changeset)

We can also delete the show/2 and index/2 functions since we aren't going to call them from our
frontend.

Our registration APl is now ready for use. With a valid email, password, and username our controller will
create a new record in the database and return the user as JSON.

Cross-Origin Resource Sharing (CORS)

If you've heard of CORS before then reading this section title may have cause you to wince; don't worry
we'll only be covering CORS at a high level.

Cross-origin resource sharing, or CORS, is a mechanism for limiting which domains and applications can
access our APIl. CORS isn't usually an issue, since we often times serve the front-end application on the
same host as the backend (as in, both the backend and the frontend are run from the same server, like
with Rails, Meteor, etc).

In our application however, we've separated the front-end from the back-end and hosting them in two
totally separate places. While running locally, our APl is on localhost:4000 , while our frontend is running
on localhost:3000 . Because of this, we need to add support for CORS to our project, otherwise, our API
would only accept requests originating from localhost:4000 and would ignore any requests that
originate from localhost: 3000 .

You can think of CORS as a doorman that checks to make sure that the person requesting entrance is on
the list. If your APl is only supposed to be used by your frontend, then you can limit the incoming requests
to that domain. You can also set CORS to accept all incoming traffic from any domain.

www.learnphoenix.io 84 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

WITHOUT CORS

WITH CORS
\\\\\1//// \\\\\1////
[0 000 0 o~ [0 000 0 o]-
—lo o|— —lo o|—
~|o|YourR AP/ |~ ~ |9 Your APT| S| -
—|lo 0 00 0o

S / | ‘
YOU'RE NOT ON THE LIST

N
\ N\

To faciliate supporting CORS, we're going to include the Corsica library. We need to start by updating our

dependencies in mix.exs, we won't need to add Corsica as an application though. When we're done,
don't forget to run mix deps.get :

/mix.exs
commit: coming soon

defp do
L
{:comeonin, "~> 2.3"},
{:corsica, "~> 0.4"},

$ mix deps.get

Now that we have Corsica in our project we need to configure it. Lucky for us there is only one file we

need to change: lib/phoenix_chat/endpoint.ex . Open the endpoint file and add this changes at the
bottom:

/lib/phoenix chat/endpoint.ex
commit: coming soon

www.learnphoenix.io

85 of 407
e

https://github.com/whatyouhide/corsica
https://www.learnphoenix.io

11/3/16

defmodule PhoenixChat.Endpoint do

plug Corsica, allow_headers: ~w(Accept Content-Type Authorization)
plug PhoenixChat.Router
end

Don't worry if you don't understand all of this yet, we'll discuss Plugs more shortly. Just know that any
request we receive will pass through Corsica before it hits our Router .

We are instructing Corsica to allow data with headers Accept, Content-Type, and Authorization . This
will make more sense when we implement an API call from the frontend.

The last thing to do is to start your Phoenix server so we can start making requests. You do this by
running mix phoenix.server , which will default to localhost:4000 .

$ mix phoenix.server

You will want to keep this open and running so we can make requests to our backend from our React
frontend.

www.learnphoenix.io 86 of 407

https://www.learnphoenix.io

11/3/16

Create a Reusable Button Component

e (CSSvariables
e Buttons
e Unit tests

Before we get too far, we're going to need buttons. Buttons are a simple component that we can easily
make reusable, so rather than use a global style and use a class like button-primary as you would with a
framework like Bootstrap, we're going to create a component that we can reuse. We're going to have at
least three types of buttons and we will use props to tell the button what to display.

$ mkdir app/components/Button
$ touch app/components/Button/{README.md, spec. js,index.js,style.css?}

Our buttons will take in two properties, type and onClick . The type will determine the style, and
onClick will take in a function that tell the button what to do when it's clicked. We will also pass in the
text of the button as props.children . We are going to create our button as an efficient stateless
functional component.

/app/components/Button/index.Jjs
commit: coming soon

import React from "react”
import cssModules from "react-css-modules”
import style from "./style.css”

export const Button = props => {
return (

style={props.style}
onClick={props.onClick}
className={style[props.typel}
{props.children}

export default cssModules(Button, style)

The code above should all look familiar. We can style these components with the same technique we

www.learnphoenix.io 87 of 407
e

https://facebook.github.io/react/blog/2015/10/07/react-v0.14.html#stateless-functional-components
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

used previously, but since different button types will share a lot of styling, we should look into ways of
composing these to keep our CSS as DRY as possible.

Style the buttons

Now back to our Button component, within our style.css file, add the following, which will compose
our buttons without repeating code (explained below).

/app/components/Button/style.css
commit: coming soon

.button {
color: white;
border-radius: 5px;
border: 1px;
padding: 0.8rem 2rem;
cursor: pointer;
font-size: Tlem;
align-self: center;
outline: none;

.primary {
composes: button;
background: rgb(239, 95, 78);
3
.primary:hover {
background: color(rghb(239, 95, 78) lightness(+7%));
3

.flat {
composes: button;
background: white;
color: rgh(239, 95, 78);
border: 1px solid rgh(239, 95, 78);
}
.flat:hover {
color: color(rghb(239, 95, 78) lightness(+15%));
3

.accentPrimary {
composes: button;
background: rgb(58, 155, 207);
color: white;

by

.accentPrimary:hover {
background: color(rgb(58, 155, 207) lightness(+10%));

www.learnphoenix.io 88 of 407
e

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://www.learnphoenix.io

11/3/16

.accentFlat {
composes: button;
background: white;
color: rgb(58, 155, 207);
border: 1px solid rgb(58, 155, 207);

}

.accentFlat:hover {
color: color(rgh(58, 155, 207) lightness(+15%));

by

.disabled {
composes: button;
cursor: not-allowed;

by

First, we're creating the button class, which will contain all of the styles that are shared between the
other buttons.

Then we compose using composes , which we get from CSS Modules, a flat,a primary, and a
disabled button from the shared characteristics of the button, as well as an alternative color ("accent").

Alternatively, we could use the next-version syntax for applying styles to multiple classes. You can do this
by assigning a variable to :root, then using @apply to add the styles to other classes. For more on this,
see the (docs). The downside is that this will repeat code in your stylesheet.

Because we're using CSSNext, we can use the new color function (docs), which replace a lot of the
useful functions that we get with a preprocessor. In this case, we are taking a color and making it lighter
by a certain percentage. You can also make it darker by changing the + toa -.

We should also define our PropTypes since we'll be using this button a lot and it will be good to know if
we are accidentally causing an error.

/app/components/Button/index.Jjs
commit: coming soon

Button.propTypes = {
style: React.PropTypes.object,

onClick: React.PropTypes.func,
type: React.PropTypes.string.isRequired,
children: React.PropTypes.node.isRequired

by

If you're not familiar with PropTypes, you can think of them as a way to warn you in advance if you are not

www.learnphoenix.io 89 of 407

http://cssnext.io/features/#custom-properties-set-apply
https://github.com/postcss/postcss-color-function
https://www.learnphoenix.io

. 11/3/16
/ ? Learn Phoenix by sam Corcos

sending a necessary piece of data to a particular component. In the case of our Button, if we do not
send type or children to our Button, it won't render properly, so we require that both of those props are
passed in.

We are setting onClick as an optional parameter since we may not necessarily want the button to do
anything if we click on it-sometimes the action will be handled by the wrapper outside of the button.

Unit tests

Now we should write our unit tests for our Button component. We know that we want our button to 1.
Render its children, 2. Take in primary, flat,and disabled as type, 3. Handle click events, and 4.
Render as a button.

Go ahead and add all the following tests. These should all look very familiar as they are almost identical
to the tests we wrote for our Modal component. The only difference here is that we are passing in the
style as type and checking to make sure that component rendered with the right style.

/app/components/Button/spec.js
commit: coming soon

www.learnphoenix.io 90 of 407
e

https://www.learnphoenix.io

11/3/16

import React from "react”
import expect from "expect”
import { shallow } from "enzyme"

import { Button } from "./"

const props = {
type: "primary",
onClick: () => {3}

describe("<Button />", () => {
it("should render its children”, () => {
const children = (<p>foo</p>)
const renderedComponent = shallow(
<Button {...props}>
{ children }
</Button>

)

expect(renderedComponent.contains(children))
)
it("should render a <button> element”, () => {
const renderedComponent = shallow(
<Button {...props}>
Test
</Button>

)
expect(renderedComponent.is("button”)).toEqual(true)

1))
it("should handle click events”, () => {
const onClickSpy = expect.createSpy()
const renderedComponent = shallow(
<Button {...props} onClick={onClickSpy}>
Test
</Button>
)
renderedComponent. find("button”).simulate("click");
expect(onClickSpy) .toHaveBeenCalled();
1))
1))

And now to use your new Button component, all you have to do is import it and pass in the type and
children at a minimum.

www.learnphoenix.io 91 of 407
e

https://www.learnphoenix.io

Login and Signup Forms

11/3/16

¢ Form components
¢ Login and signup views

It is notoriously difficult to create reusable Form components. That's because there is so much variation
in the inputs and what you end up doing with them. Since we will only have a few forms, we are going to
make each one separately. If we end up creating lots of forms with identical characteristics, we can

refactor them out later.

Go ahead and create Signup and Login directories and populate them with the standard files.

$ mkdir app/components/{Signup,Login}

$ touch app/components/Signup/{README.md, index. js,style.css,spec.js} \
app/components/Login/{README.md, index. js,style.css,spec.js}

Then we should create the Signup component in our index.js file.

/app/components/Signup/index.js
commit: coming soon

import React from "react”
import cssModules from "react-css-modules”
import style from "./style.css”

import { default as Button } from "../Button”

export class extends
render() {
return (
<div className={style.wrapper}>
<div className={style.form}>
<div className={style.inputGroup}>
<input
placeholder="Username"”
className={style.input}
type="text"
id="signup-username” />
</div>
<div className={style.inputGroup}>
<input
placeholder="Email"

www.learnphoenix.io

92 of 407

https://www.learnphoenix.io

11/3/16

className={style.1nput
type="text"
id="signup-email” />
</div>
<div className={style.inputGroup}>
<input
placeholder="Password”
className={style.input}
type="password”
id="signup-password” />
</div>
<div className={style.inputGroup}>
<input
placeholder="Verify Password”
className={style.input}
type="password”
id="signup-verify-password” />
</div>
<Button
style={{ width: "100%" }}
type="primary">
Submit
</Button>
</div>
</div>

export default cssModules(Signup, style)

There are many ways to style inputs. If you have a preference for another input style, by all means, use
that. For now, we're just going to implement some basic styling to make our form more usable. Within
style.css, add the following:

/app/components/Signup/style.css
commit: coming soon

www.learnphoenix.io 93 of 407
e

https://www.learnphoenix.io

11/3/16

.wrapper {
display: flex;
flex-flow: column nowrap;
justify-content: center;
padding-bottom: 2rem;
width: 400px;

.form {
display: flex;
flex-direction: column;
justify-content: center;
padding: 2rem;
width: 400px;

.input {
padding: Trem Trem;
border-radius: 3px;
border: 1px solid #ccc;
font-size: 1.71em;
outline: none;

.inputGroup {
display: flex;
flex-flow: column nowrap;
padding: 10px 0;

3

To get this to render, let's quickly change our Home component to the code below.

/app/components/Home/index. js
commit: coming soon

www.learnphoenix.io 94 of 407
e

https://www.learnphoenix.io

11/3/16

import React from "react”
import cssModules from "react-css-modules”
import style from "./style.css”

n

import { default as Signup } from "../Signup”
export class extends
render() {
return (
<div>
<Signup />
</div>

export default cssModules(Home, style)

We should also create the Login, which will be almost identical but with fewer fields.

/app/components/Login/index. Jjs
commit: coming soon

www.learnphoenix.io 95 of 407

https://www.learnphoenix.io

11/3/16

import React from "react”
import cssModules from "react-css-modules”
import style from "./style.css”

import { default as Button } from "../Button”

export class extends
render() {
return (
<div className={style.wrapper}>
<div className={style.form}>
<div className={style.inputGroup}>
<input
placeholder="Email"”
className={style.input}
type="text"
id="signup-email” />
</div>
<div className={style.inputGroup}>
<input
placeholder="Password”
className={style.input}
type="password”
id="signup-password"” />
</div>
<Button
style={{ width: "100%" }}
type="primary">
Submit
</Button>
</div>
</div>

export default cssModules(Login, style)

Also add the same styles to the style.css file. At some point in the future, we can write code that is
more DRY with shared CSS, but for now, let's do it the easy way and just copy-paste.

We will eventually want to submit our form, so let's create a submit function that we will attach to our
button.

In each of our forms, add a function and update our submit button to handle a click event.

/app/components/Signup/index.Jjs
commit: coming soon

www.learnphoenix.io 96 of 407

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://www.learnphoenix.io

11/3/16

export class extends
constructor(props) {

super (props)
this.submit = this.submit.bind(this)

submit(e) {
console.log("Submit button clicked")
}

render() {
return (

<div className={style.wrapper}>

<Button
onClick={this.submit}
style={{ width: "100%" }}
type="primary">
Submit
</Button>
</div>

Add the same submit function and onClick eventto our Login component. Be sure to bind the submit
function in the constructor as well.

Note: Whenever you write a function that needs access to the this context, you need to bind it-usually in
the constructor. For example, a component that simply returns some jsx does not need to be bound, while
a function that takes in a value from an event triggered by another element does need to be bound.

Now when click on the button, we see a log in our console that says "Submit button clicked". We will
eventually use this button to submit the form, but for now, we are just going to use it to write our tests.

Unit tests

There's not a lot that we need to worry about as far as unit tests go at this point. We need to make sure
that 1. The form renders, 2. The form has a submit function, and 3. The submit button calls the submit
function.

www.learnphoenix.io 97 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Remember, since our components are just classes, we can instantiate them by simply calling new
<Component> and immediately have access to all their functions to test.

/app/components/Login/spec.js
commit: coming soon

import React from "react”
import expect from "expect”
import { shallow } from "enzyme"

import { Signup } from './'

describe('<Signup />', () => {
it('should render’, () => {
const renderedComponent = shallow(
<Signup />
)
expect (renderedComponent.is('div')).toEqual (true)
b))
it('should have a submit function’, () => {
const component = new Signup()
expect (component.submit).toExist()
1)
// TODO need update
// it('should call submit function when button is clicked', () => {
// const renderedComponent = shallow(
// <Signup />
/)
// const spy = expect.spyOn(renderedComponent.instance(), 'submit')
// renderedComponent.find('button’).simulate(’'click’)
// expect(spy) . toHaveBeenCalled()

The first new test is really simple. Since our components are just JavaScript classes, we can don't
actually have to render them to test certain parts. We're checking to make sure there is a submit
function, and all we need to do to run this test is instantiate the class using new, then checking that the
submit function exists on that class. This is just plain-old JavaScript.

You probably noticed the use of a spy in the last test. It would behoove you to learn more about spies for
the purpose of writing better tests. A good place to start is the expect documentation to see a few use

cases.

Now that we have our form in place, we need to submit it. We will cover that in the next lesson.

Styling the homepage

www.learnphoenix.io 98 of 407
e

https://github.com/mjackson/expect#spies
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

The last thing we should do is add some basic styling to our Home as well as our Login component in
the event the user already has an account. We're also going to add an image that we can absolutely
position behind our input.

/app/components/Home/index.js
commit: coming soon

n 1

import { default as Signup } from
import { default as Login } from

../Signup’
"../Login”
export class extends
constructor(props) {
super (props)
this.state = {
formState: "signup”

render() {
return (
<div className={style.leader}>
<h1 className={style.title}>Phoenix Chat</h1>
{this.state.formState === "signup"” ? <Signup /> : null}
{this.state.formState === "login"” ? <Login /> : null}
<img
role="presentation”
className={style.circles}
src="https://s3.amazonaws.com/learnphoenix-static-assets/images/circles-full.png’
</div>

1

export default cssModules(Home, style)

You may have also noticed the role="presentation”, which is a replacement for the alt text for
images where it does not make sense to add alt text. In this case, since this image is just going to be a
background image, we don't need alt text.

And we should center the content to make it look nicer:

/app/components/Home/style.css
commit: coming soon

www.learnphoenix.io 99 of 407
e

https://www.learnphoenix.io

11/3/16

.leader {
height: 100vh;
display: flex;
position: relative;
align-items: center;
justify-content: center;
flex-flow: column nowrap;
overflow: hidden;
z-index: 100;
background: white;

.title {

font-size: 1.8em;

color: rgh(239, 95, 78);
3

.changelLink {
cursor: pointer;
color: #42A5F5;

3

.circles {
position: absolute;
right: 0;
left: 0;
top: 0;
margin: auto;
height: 650px;
opacity: 0.05;
z-index: -T1;
transform: scale(3);

The only tricky piece here is how we're handling the image. We're reducing the opacity and scaling it up by
an order of 3. Then we're positioning it in the center and putting the z-index at-1 so it stays behind our
form.

It's not good practice to have random z-index numbers all over the place, but in this instance, it doesn't
matter. A common way to do this is to have something like 10 built-in z-index values at 100, 200, ...,
1000 and use whichever makes the most sense for the current element.

For now, if you want to access the Login component, you can change the hard-coded formState to
"login". In the future, this will be handled programmatically.

www.learnphoenix.io 100 of 407
e

https://www.learnphoenix.io

11/3/16

Connect the API

e Making an API call with fetch
e Creating users from the frontend

We now have a functional backend that can take POST requests and create a user. That user can't sign in
yet, but we can at least create one and check the Phoenix logs to make sure it worked. We're going to use
the Signup component to create a user and send that user to our Phoenix API.

We have not yet implemented Redux, so we are just going to make the API call locally from within our
component. This is not how we are going to make these calls in the long-run, but it is the simplest way to
make these calls and demonstrate that our frontend and backend are talking to each other.

We're also going to create a Chat component that we will use extensively in later lessons as our admin
panel.

Making HTTP calls

The first thing we should do is add an HTTP client. There are a lot of options, but we're going to use fetch,
which is a polyfill for the soon-to-be native promise-based fetch API. Many browsers already support
fetch without a polyfill.

What fetch will allow us to do is make an HTTP call to get a resource from a server--in our case, the
Phoenix API.

$ npm install --save-dev whatwg-fetch

Since we only have signup working on our server, we only need to worry about sending a request to create
a user. If you go back to the Phoenix backend and run mix phoenix.routes, you'll see a route that looks
like the following.

$ mix phoenix.routes

user_path POST /api/users Firestorm.UserController :create

www.learnphoenix.io 101 of 407
e

https://github.com/github/fetch
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

This is telling us that we need to send a POST requestto localhost:4000/api/users to create a new
user. Let's head over to Signup to add fetch and get our form ready to make a call to our backend.

New browsers have fetch as a native function, but some do not. In order to accommodate those older
browsers, we need to add fetch to our webpack configuration. We're going to add it as an entry point, so
all our requests get routed through the whatwg-fetch polyfill before bundling.

/webpack.config.js
commit: coming soon

module.exports = {
devtool: "eval”,
entry: [

"whatwg-fetch”,
"webpack-dev-server/client?http://localhost:3000",
"./app/index”

1

Remember you must now restart your server. Any time you make a change to your webpack
configuration, you must restart your server.

Then we can use fetch globally without worrying about old browsers. Let's update our submit function
touse fetch to make a request to our APl endpoint (explanation below the code).

/app/components/Signup/index. js
commit: coming soon

www.learnphoenix.io 102 of 407
e

https://www.learnphoenix.io

11/3/16

submit() {
fetch("http://localhost:4000/api/users”, {
method: "POST",
headers: {
Accept: "application/json",
"Content-Type": "application/json”
o
body: JSON.stringify({ test: "not going to work"” 3})
)
.then((res) => { return res.json() })
.then((res) => {
console.log(res);
D)
.catch((err) => {
console.warn(err);
1))
}

What we're doing in the code above is setting our Button to call the submit function when it's clicked.
Then we call fetch with a POST method to our APl endpoint with an object that won't work.

Because fetch is promise-based, we have access to .then and .catch.Anything withina .then
function is run if the HTTP call was successful and anything within .catch is run if the call was a failure.
Since we're sending a bad request, we should expect our console.log withinthe .catch to run.

One thing worth noting is that we are chaining our promises to include a step that pulls out the JSON that
we receive from our server (return res.json()). Many HTTP clients do this for you, but fetch does
not.

We are also sending with headers that tell our backend that we are sending json and that we are
expecting json in return. But we can't just send raw json, so we need to use JSON.stringify() to turn
our object into a string so we can pass that string to our server.

Go ahead and open the signup modal and click the submit button.

Now check your browser console and you should see an error with the value POST
http://localhost:4000/api/users 400 (Bad Request) . Great! That's what we wanted.

You should also check your Phoenix terminal, where you should see output along the lines of the
following.

www.learnphoenix.io 103 of 407
e

https://www.learnphoenix.io

11/3/16

[debug] Simple CORS request from Origin 'http://localhost:3000' is allowed
[debug] Processing by PhoenixChat.UserController.create/2

Parameters: %{"test” => "not going to work”"}

Pipelines: [:apil]

That's exactly the error we wanted to see. Phoenix was expecting the user key, but got test instead.

So now let's connect our submission with the form and submit a user to Phoenix. Remember, we will
eventually use controlled components, but since we just want to get something up and running as quickly
as possible, we're just going to pull the values straight from the inputs.

We can do that by changing our submit function to the following.

/app/components/Signup/index. js
commit: coming soon

submit() {
const user = {
username: document.getElementById("signup-username”).value,
email: document.getElementById("signup-email"”).value,
password: document.getElementById("signup-password”).value
3
fetch("http://localhost:4000/api/users”, {
method: "POST",
headers: {
Accept: "application/json",
"Content-Type": "application/json"
P
body: JSON.stringify({ user })
1)
.then((res) => { return res.json() })
.then((res) => {
console.log(res);
1))
.catch((err) => {
console.warn(err);

b))

We're going to find the elements with the id that we want and extract the value. We put all those values
into a new user object, and then pass that object into our post call as a parameter.

Recall that in ES6, if the value in an object is the same as the key, you can simply pass a single variable.

www.learnphoenix.io 104 of 407

https://facebook.github.io/react/docs/forms.html#controlled-components
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

So in the example above, we are passing user instead of user: user.
Go ahead and fill out the form and press the button.

In your browser console, you should see status: 201 and statusText: "Created” . And if you check
your Phoenix output, you'll see it was successful there as well.

Response {type: "cors"”, url: "http://localhost:4000/api/users”, status: 201, ok: true, stat

And if you check your browser console, you should see an object with the key data that contains the
email, id, and username of the username you just created.

And that's all there is to it. Now we have to go back to Phoenix to give our users the ability to log in. But
before we do that, let's create a new Chat component that will sit behind our user authentication, as well
as a bit more styling.

Chat component
Let's create a new Chat component that will function as our admin interface for our app.

$ mkdir app/components/Chat

$ touch app/components/Chat/{index.js,spec.js,style.css,README.md}

Then within Chat/index.js, add the following:

/app/components/Chat/index.js
commit: coming soon

www.learnphoenix.io 105 of 407
e

https://www.learnphoenix.io

11/3/16

import React from "react”
import cssModules from "react-css-modules”
import style from "./style.css”

import { default as Sidebar } from "../Sidebar”

export class extends
render() {
return (
<div>
<Sidebar />
<div className={style.chatWrapper}>
chat me
</div>
{this.props.children}
</div>

export default cssModules(Chat, style)

And add the wrapper to the style.css file.

/app/components/Chat/style.css
commit: coming soon

.chatWrapper {

margin-left: 300px;

3

And add a simple test to make sure it renders properly.

/app/components/Chat/spec.js
commit: coming soon

www.learnphoenix.io 106 of 407
e

https://www.learnphoenix.io

11/3/16

import React from 'react’
import expect from 'expect'’
import { shallow } from 'enzyme'

import { Chat } from './'
const props = {}

describe('<Chat />', () => {
it('should render’, () => {
const renderedComponent = shallow(
<Chat {...props} />
)
expect(renderedComponent.is('div')).toEqual(true)
1))
1))

So now we have the ability to create users, but they can't sign in. We're also handling our API calls in our
local component, which is bad practice, so it's about time we introduce Redux.

www.learnphoenix.io 107 of 407

https://www.learnphoenix.io

11/3/16

Basics of Redux

e Redux and Flux

® actions, reducers, and store

The next step is to log a user in after signup. We're going to handle this with Redux, so now is a good time
to go over the basics. If you are not already familiar with Redux, | highly recommend checkout out these
30 free videos sponsored by egghead.io. If you are familiar with Redux, skip ahead to the "Connecting
Redux" section.

What is Redux?

To really understand Redux, you must first understand state . Think of state as the current status of
your app. Imagine you're Facebook. You are currently logged in, you have two chat windows open, and
you have just launched a modal to upload a new picture.

To generalize, the state of your app could be:

currentUser: "username”,
chat: [
{ with: "friend1"},

{ with: "friend2"}
1,
modal: true,
imageUrl: false

If you wanted to replicate the exact status of this page at this point in time, all you have to do is set your
state to all of the necessary conditions. This is extremely powerful, especially when used in conjunction
with Redux.

Redux consists of actions, reducers,and a store. The concepts around actions and store are
easy to understand--the reducers are a little bit more complicated, but still not especially difficult, and it
will become much more clear once we start implementing them.

The basic concept is that Redux keeps your state at the highest level of your app, and that every
component within your app gets its state from that high-level container, whereas a normal React app will
have local state.

www.learnphoenix.io 108 of 407
e

https://egghead.io/series/getting-started-with-redux
http://egghead.io
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Basics of Flux

Before we go into Redux, we should really discuss Flux. Flux is one of the major innovations behind React,
and it enforces uni-directional data flow.

Rather than go into detail here, check out this video where Facebook explains the origins of Flux and how
it works.

Back in the old days of the internet, we used something jQuery to trigger events that would directly
manipulate the DOM. For example, we might have a button in one part of our app that appends a new
item to a list, or toggle a class on a particular DOM element.

These events were not tied together in any meaningful way, and any data these components received
came from sporadic sources. Tracking down the origin of certain events and data was notoriously
difficult.

Flux is an attempt at solving that problem. Rather than allowing your models to send data to many views,
Flux enforces hierarchy so your views cannot directly make changes to your data.

ACTION

ACTION DISPATCHER STORE |— VIEW

We will be using Redux, which is a library that is an implementation of Flux.

Working with data

Every interaction our app will have with our server will be through Redux, and all of our data is passed in
to our components through Redux, so this is a good time to talk about how to handle data more generally.

A major long-term problem with web APIs, and one not solved by Redux or Flux, is "over-fetching". Twitter
is an example of this, because their API returns a deeply-nested object which always contains more data
than your app needs.

GraphQL and Falcor are different approaches of solving this problem. They are more efficient, but require
more boilerplate to set up.

www.learnphoenix.io 109 of 407
e

https://facebook.github.io/flux/
https://www.youtube.com/embed/nYkdrAPrdcw?list=PLb0IAmt7-GS188xDYE-u1ShQmFFGbrk0v
https://facebook.github.io/graphql/
http://netflix.github.io/falcor/
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

GraphQL allow you to tell the server specifically what you want and return only that. It is also much more
declarative and the server figures out the most efficient way to prepare your data. It also takes more
boilerplate code and is only really necessary for apps that have such scale that they need to use it.

At this point in our app, GraphQL is overkill, and we'll just stick to a simple JSON API. Refactoring to use
GraphQL and Relay is very doable and we can cross that bridge if it becomes necessary.

With a JSON API, you send a request to a server at a specific url with the parameters that the API needs
to complete the request. An example request might look like the code below, where we are simply
requesting data from http://github.com/data. json .

fetch("http://github.com/data. json"”, {
method: "GET"
}) .then(function(res) {

// Response here
}) .catch(function(err) {
// If error, error here

1

You've probably heard a lot about "REST" APIs. People will argue endlessly about the real definition of
what it means to be "RESTful", and that's because REST does not have an official definition—it's a
description of an architecture style, not a protocol.

But the important part is that REST APIs are stateless, so you pass the state to the API as parameters. For
example, if you want to create a new user with a REST API, you pass the user details as the parameters to
the endpoint. Most of the APIs you've dealt with are REST APIs, so the concept should be at least
implicitly familiar.

fetch("http://learnphoenix.io/create”, {
method: "POST",
body: "first=Alan&last=Turing&password=badpasswordl”
}) . then(function(res) {

// Response here
}) .catch(function(err) {
// If error, error here

b))

Our Phoenix backend is a REST API, and we will use Phoenix to handle requests that we send from our
frontend, as we have already demonstrated when creating a user.

Basics of Redux

www.learnphoenix.io 110 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Redux is Flux-ish, with some additional features. The code behind Redux is surprisingly small, and it's
really just a well-thought-out design pattern. The main principle of Redux is that you don't keep local state
in your components--all of your state is held in one place at the highest-possible level of your app and
passed down.

The way you use it is to wrap your entire app in a Redux Provider (explained in the next lesson) so that
you can later connect each of your React components to this global data source (called a store).

The store is dumb. It's just an object that holds your state.

In order to process the data and make any changes to your data, you need to pass it through a series of
reducers . These reducers are actually quite simple and reduce is an important function in functional
programming.

If you are not familiar with what a reducer does, think of it as taking a long list of information and
applying some transformation to each item in order. For example, say you have a list of numbers:

If you wanted to combine all of these values into a single value by adding them you could write a for
loop to go over each of them, but that would not be very efficient. Instead, you can write a reducer that
takes in the previous and current values as parameters and combines them within the reduce
function.

var list = [3, 1, -3, 5, 1]

var output = list.reduce(function(previous, current) {
return previous + current

1))
console.log(output) // -> 7

Now, think of this in terms of Redux. Let's say we have a list of actions:

www.learnphoenix.io 111 of 407
e

https://www.learnphoenix.io

11/3/16

modal: open 3},
modal: close },
modal: open 3},
chat: {
name: "Eric”,
isOpen: true
3
o
{ chat: {
name: "Eric”,
isOpen: false
3
o
{ chat: {
name: "John",
isOpen: true
3
3

What is the current status of this app? Is the modal open or closed? Who has an active chat window? As
you will see when we start building our reducers, we can reduce a list of actions to the current state of
the application.

Reducers listen to actions and mutates some piece of state based on the action.

For example, in a "todo" app, the action might be something like "create a new list item" or "mark as
completed". The action passes any relevant data to the reducer, which changes the current state of the
app to reflect the change that the action wanted made. "Mark as completed", for example, would change
the specific item in your state and change the completed keyto true.

Whenever the old state does not equal the new state, Redux will fire all of the event listeners and update
all of the data in your app that was listening for something that got changed. This means that if you
changed something in the todo list, your profile page would not necessarily need to be updated because it
does not contain any data related to the todo list.

action is a way to trigger those reducers. They are, by default, synchronous. Since much of what you will
be doing in a web app is asynchronous, you will quickly need some additional plugins, such as thunk
and potentially other middleware.

Actions allow you to be more declarative. If you are not familiar with the difference between declarative
and imperative, declarative means saying what you want, while imperative means describing how
you will do it. For example, a declarative approach to data fetching would be something like GraphQL, in
which you tell your backend what data you want and GraphQL sorts out the details of how to get that data
for you.

www.learnphoenix.io 112 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Setting up Redux

The first thing we need to do is add redux as a dependency, as well as several other Redux-related
dependencies.

$ npm install --save redux react-redux react-router-redux

The react-redux module binds Redux to React and is necessary to get Redux working with React. The
redux module contains all of the core functionality that we need. The react-router-redux wraps our
react-router so we can keep track of the state of our routes--without this, our routes are considered a

side-effect.

We're going to keep all of our Redux-related files in a new app/redux directory. Eventually we will have
too many actions and reducers to fit in a single file, but that is easy to refactor and we can do that when it
becomes necessary.

$ mkdir app/redux

Within this directory, we will have three files: actions. js, reducers.js,and store.js.

$ touch app/redux/{actions,reducers,store}.js

We will go over each of these in more detail in the next section.

www.learnphoenix.io 113 of 407

https://www.learnphoenix.io

11/3/16

Actions, Reducers, and Store

e Proof of concept
e Connectto API

In this section, we create our actions, reducers, and our store. From there, we use our action to make a
call to our APl and use our reducer to pass that data to our connected components.

The action

The easiest place to start is to create an action. Since we already have the functionality to create and log
in users, we will create two actions that we will use to handle our users. We will go over the syntax of the
actions below the code.

/app/redux/actions.js
commit: coming soon

const Actions = {}

Actions.userNew = function (user) {
return {
type: "USER_NEW",
payload: {
user

Actions.userLogin = function
return {
type: "USER_LOGIN",
payload: {
user

export default Actions

First we are declaring an Actions object in which we will add all of our actions. This allows us to export

www.learnphoenix.io 114 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

a single object that contains all of our actions, so we can later call these actions with something like
Actions.userNew after an import statement import Actions from './redux/actions’ .

Then we define our first action. Every action must have a type . That is the only required field. The next
field passes in our data. It is common to call this something like payload, but you can use whatever term
you want. | would avoid using the keyword data because our Phoenix server responds with data, unless
you want to end up accessing your data by calling something like data.data.data.user .

Within our payload, we are passing in a user object that we get from the component that dispatched
this action (probably a form of some sort). This value gets passed to our reducer which uses it to
change the state of our app.

For now, we are just doing a proof of concept, so we aren't going to make an API call to register and log in
our user. We will just use our action to set the state of our user in our global Redux store .

You will see in the docs for Redux that people declare their actions as string constants, like the code
below.

const USER_LOGIN = "USER_LOGIN"

This is not necessary and we will not be doing this because it's more effort than it's worth at this point in
our app. That said, if you're building a huge app, there are perfectly legitimate reasons why you would
want to put in this extra work.

If you have a variable called userNew but you called newUser somewhere in your app, it will fail, but it will
fail silently. This is because your app will compile properly and run up until you try to dispatch that action,
at which point it will cause a run-time error.

If you used a constant, you would get a compile-time error rather than a run-time error because you'd be
calling an undeclared variable, so your code wouldn't work unless you used the right variable. This would
prevent you from deploying bad code.

The reducer

The reducer is what takes in our actions and turns those into the current state of the app. Reducers
should only make calculations and should never have side effects. When you make an API call, you must
do this from your action, not your reducer.

We are going to use the native Object.assign to make our immutable data changes, but you can use a
library if you prefer. An example would be lodash. What these functions do is make a copy of our state
object in order to keep our data immutable. More on this later.

Now we need to create our reducer. The name of the reducer function is the variable name we will use

www.learnphoenix.io 115 of 407
e

https://lodash.com/docs
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

when we want to access the value in the store. We are going to store all user-related values in a valiable
called user, so we will name our reducer user .

/app/redux/reducers.js
commit: coming soon

import { combineReducers } from "redux”

function user(state = {}, action) {
switch (action.type) {
case "USER_NEW":
return state
case "USER_LOGIN":
return Object.assign({}, state, {
email: action.payload.user.email

1

default: return state

const reducers = combineReducers({
user

b))

export default reducers

Our user reducer takes in two values: state and action. state is the previous state of the app before
going through the reducer, and action is the action it receives from the action we dispatched.

We are going to use an ES6 feature that allows us to set default values to our parameters. We are setting
our default value of state to an empty object ({}), so if user has not been given any values before, we
will start it off with an empty object.

Next we write a switch statement that checks the action.type . Recall from the actions we created that
each one has a type . If the type matches the action we passed, we tell the reducer what to do. In the
example above, the USER_NEW simply passes along state without any changes, while USER_LOGIN
assigns the key email to the value that we passed in our action's payload .

It is important to add a default case that passes the state unchanged if there are no other matches. If
you do not do this, your app will break if nothing matches, and since we will have multiple reducers, it is
inevitable that you will pass actions that don't match one of your reducers.

The combineReducers function allows us to declare all of our reducers in separate functions and
combine them before we export.

www.learnphoenix.io 116 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

The store

Now we need to configure our store to take in that reducer. Within redux/store. js, add the following.

/app/redux/store.js
commit: coming soon

import { createStore } from "redux”
import reducers from "./reducers”

const store = createStore(reducers)

export default store

The last thing we need to do to set up Redux is tie our store into our router. Within app/index. js, we
need to wrap our entire app in a Provider that passes our store down to each child component. It does
this somewhat magically, and all we need to do is import our store and pass it into the Provider
component.

/app/index. js
commit: coming soon

import { Provider } from "react-redux”
import store from "./redux/store”

ReactDOM. render (
<Provider store={store}>
<Router history={hashHistory}>
<Route path="/" component={App}>
<IndexRoute component={Home} />
<Route path="settings"” component={Settings} />
</Route>
</Router>
</Provider>,
document.getElementById("root")

)

A note on capitalization: One thing to note is that our Provider is capitalized. Because it is a component
that we are using in jsx, if you do not capitalize it, your app will break. Capital letters are more than a
convention: they are the rule.

www.learnphoenix.io 117 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Proof of concept

The last thing we will do is prove that this all works. This is not how we will implement Redux in the final
product, but it will show how the pieces all fit together.

Within our Login component, let's connect our store to our component. We do this with the connect
function that react-redux gives us. At the top of our component, import connect and at the bottom we
have to create a new function, described below the codeblock.

Recall that, for now, to see the Login form, you have to change the formState in our Home component
to "login".

/app/components/Login/index.Jjs
commit: coming soon

import { connect } from "react-redux”

const mapStateToProps = state => ({
user: state.user

1

export default connect(mapStateToProps) (cssModules(Login, style))

Recall that with one-line ES2015 arrow functions implicitly return the value after the arrow. So these two
are equivalent:

const mapStateToProps state => {
return {
user: state.user

const mapStateToProps state => ({
user: state.user

b))

The mapStateToProps function takes the state of the app from your store (recall we set the default
value of user in our reducer to an empty object {3}) and maps that over to the props of your current
component. In this case, we are taking state.user from our global store and assigning
this.props.user of our current component to that same value. A more accurate name for this might be

www.learnphoenix.io 118 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

mapStateOfStoreToPropsOfComponent , but that's perhaps a bit too verbose.

To show that this is working, let's add a console.log within our render function before we return our
component.

render() {
console.log(this.props.user)

return (

Now, if you change the state of formState in your Home component to "login", you'll see an empty object
in your console. This is because we are currently receiving the default, empty object from our reducer.

The next step is to dispatch an action with the values from the form that will allow us to change the
value of this.props.user.

We do this by importing our Actions and using the dispatch function that we get when we connect our
Login component using react-redux .

/app/components/Login/index. js
commit: coming soon

www.learnphoenix.io 119 of 407
e

https://www.learnphoenix.io

11/3/16

import Actions from "../../redux/actions”

export class extends
constructor(props) {
super (props)
this.submit = this.submit.bind(this)

submit() {
const user = {
email: document.getElementById("signup-email”).value,
password: document.getElementById("signup-password”).value

}

this.props.dispatch(Actions.userLogin(user))

3

render() {

return (
<div className={style.wrapper}>
<div className={style.form}>

<Button
onClick={this.submit}
style={{ width: "100%" }}
type="primary">
Submit

</Button>

</div>
</div>

Now go ahead and fill out the login form and submit it. You'll see a new log to your console that has the
email address you submitted.

Object {email: "alan@turing.com”, password: "badpasswordl"}

This worked by taking the values from the inputs, dispatching those values as the userLogin action,
which hits our user reducer, which triggers the USER_LOGIN type, which assigns user to { email:

action.payload.user.email }.

You may recall that when props are updated, your component automatically updates. In this case, since

www.learnphoenix.io 120 of 407

https://www.learnphoenix.io

. 11/3/16
/ ? Learn Phoenix by sam Corcos

Login is connected to this.props.user, which was mapped from state.user, our console.log was
called again with the updated value.

If that seems like a roundabout way of updating data, you're not alone, but the long-term benefits of
keeping your data flow uni-directional far out-weight the upfront cost of setting up some extra code.

www.learnphoenix.io 121 of 407
e

https://www.learnphoenix.io

11/3/16

Login and Authentication: Part 1

e Signin
e Ueberauth and Guardian
e Plugs

In this section, we go over Elixir plugs and add user authentication with Ueberauth and Guardian. We also
set up an authentication controller (AuthController) to handle requests that need authorization.

Account login

Now that we can register for an account, we'll want to sign in. But what does it mean to "log in"? The
question is more complex than most people realize. There are many ways of approaching this problem,
but we are going to use a JSON web token (JWT) for user authentication.

A JSON web token is a random string that our server generates after a user passes in valid credentials
(username and password). A JSON web token looks something like this:

b125jQggWD1BFWECAbQyxe4KXVB18Sgi Tu2MgCciljCCsIG

When a user passes valid credentials to our server, our server will respond with a JSON web token that
we can store in our browser either in cookies or localStorage . For a user to be considered "logged in",
we send that JSON web token in a request to our server asking, "Is this JSON web token still valid?" If the
response is in the affirmative, then the user is logged in. If the response is negative, then the user is not
logged in.

When a user logs out, we remove the JSON web token from localStorage and send a request to our
server to invalidate the token to ensure it cannot be used again. This prevents what is called a replay
attack where someone uses an old JSON web token to gain access to your account.

The basic strategy we're going to use follows the flow chart below.

www.learnphoenix.io 122 of 407
e

https://en.wikipedia.org/wiki/Replay_attack
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

IS THERE A JWT IN
LOCAL STORAGE?

YES NO

o /2

SEND (T TO THE
SERVER FOR NOT LOGGED IN

AUTHENTICATION

L

J

IS THE TOKEN
VALID?

YES NO

N %

NOT LOGGED IN

USER IS
LOGGED IN

For more information on how JSON web tokens work, check out jwt.io.

For authentication we'll work with Uberauth (often spelled Ueberauth, without the u-umlaut - this is how
we will refer to it going forward). Ueberauth is an authentication framework that allows us to use many
different strategies to authenticate users. For now we'll use Ueberauth Identity to implement our email-
password authentication but later we can use Ueberauth Twitter, Ueberauth Facebook, and several
others.

In addition to Ueberauth and Ueberauth Identity, we'll use Guardian to generate our JSON web tokens. If
you're not familiar with JSON web tokens, we will cover them in greater detail later.

If you're interested to see how Ueberauth works with multiple strategies, take a look at the Ueberauth
Example project provided by the Ueberauth team.

www.learnphoenix.io 123 of 407

https://jwt.io
https://github.com/ueberauth
https://en.wikipedia.org/wiki/%C3%9C
https://github.com/ueberauth/ueberauth_identity
https://github.com/ueberauth/ueberauth_twitter
https://github.com/ueberauth/ueberauth_facebook
https://github.com/ueberauth/guardian
https://github.com/ueberauth/ueberauth_example
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Let's go ahead and add ueberauth, ueberauth_identity, and guardian to our project's dependecies in

mix.exs:

/mix.exs
commit: coming soon

do

{:comeonin, "~> 2.3"},

{:ueberauth, "~> 0.2"},
{:ueberauth_identity, "~> 0.2"},
{:guardian, "~> 0.10"}

We need to add both ueberauth and ueberauth_identity to our project's applications:

/mix.exs
commit: coming soon

def do
[mod: {PhoenixChat, []},
applications: [
:comeonin,

:ueberauth,
:ueberauth_identity

1]

Let'srun mix deps.get and get our new dependencies:

$ mix deps.get

Configuring Ueberauth

The next thing to do is configure Ueberauth. Within config/config.exs, add the following:

/config/config.exs
commit: coming soon

www.learnphoenix.io 124 of 407
e

https://www.learnphoenix.io

11/3/16

config :ueberauth, Ueberauth,
providers: [
identity: {

Ueberauth.Strategy.Identity,
[callback_methods: ["POST"1]

This is taken straight from the docs, but what it is doing is telling Ueberauth that we are using the
identity strategy to log in users with a username-password combination. At some point later on, we
can add Twitter and Facebook login to the providers list.

Configuring Guardian

While we're in config/config.exs let's add our Guardian configuration:

/config/config.exs
commit: coming soon

config :guardian, Guardian,
issuer: "PhoenixChat",
ttl: {30, :days},
secret_key: "uw/27wdrIquPn2fktwfJg9tg8g0l5ysTPCFjISw1TCCalLlfWgRUAealSuWcfERZzX",
serializer: PhoenixChat.GuardianSerializer,
permissions: %{default: [:read, :writel}

Before we go any further, let's generate a new secret_key (it's not very secret otherwise). We can either
come up with a random string or we can use the handy generator provided by Phoenix:

$ mix phoenix.gen.secret

Copy and paste the output into the secret_key value above and we're done. For now storing the
secret_key in the file is fine but later we will move this into a system environment variable; relying on
our system's environment lets us remove passwords and secret keys from our code and source control,
limiting its exposure.

The last step of our Guardian configuration is to create the PhoenixChat.GuardianSerializer we
specified. We'll put this file in a new directory within the web directory:

www.learnphoenix.io 125 of 407
e

https://www.learnphoenix.io

11/3/16

$ mkdir web/auth
$ touch web/auth/guardian_serializer.ex

Let's open the serializer at web/auth/guardian_serializer.ex and update the file to look like this:

/web/auth/guardian serializer.ex
commit: coming soon

defmodule PhoenixChat.GuardianSerializer do
@behaviour Guardian.Serializer

alias PhoenixChat.{Repo, User}

def (%User{id: id}), do: {:0k, "User: "3}
def (_), do: {:error, "Unknown resource type"}

def ("User:" <> id), do: {:o0k, Repo.get(User, id)}
def (_), do: {:error, "Unknown resource type”}
end

We don't need to dig into this too much as this is verbatim from the Guardian documentation. Once we
start using our authentication system, we can come back to this and it will make more sense. The
serializer is what ties Guardian in with our user systems. Guardian relies on the for_token/1 function to
convert a given %User{} into atoken. The from_token/1 function does the opposite, retrieving our user
from a given token.

A quick thing to note is @behaviour . Elixir is built on Erlang, which uses the British version of some
English words. Just keep that in mind going forward.

The next few steps require a deeper dive into Phoenix.

Plugs

In many ways, every app is just a series of functions. React has popularized this approach on the
frontend, each function either transforms data or triggers a side-effect like rendering to the DOM or a
change to the database.

Plug is a library that takes a connection and returns a modified version of the connection. With plugs you
can authenticate users, validate requests, send HTTP responses, sanitize inputs, and trigger background
work. Throughout this course, we'll cover these and many other uses for plugs.

Since plugs are so flexible it's no surprise that our Phoenix app is nothing more than a series of plugs.

www.learnphoenix.io 126 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Creating our AuthController

For this controller we're not going to use a generator. Instead, we're going to create it manually so we can
take a closer look at the different components.

The way the Phoenix directory structure is set up everything web-related lives within the web directory.
Since we are building a web API, most of what we are doing will be within this directory.

Let's create our auth controller:

$ touch web/controllers/auth_controller.ex

Now update the new file to look like this:

/web/controller/auth controller.ex
commit: coming soon

defmodule .AuthController do
use PhoenixChat.Web, :controller

plug Ueberauth

end

Here we define our new module and include some helper methods from the PhoenixChat.Web module for
controllers. We've also included a plug for Ueberauth in our controller. When requests come into our
controller, they will be routed through the Ueberauth plug. We'll revisit the Ueberauth plug shortly.

Note on debugging in Elixir: In Elixir, you can log to the terminal with I0.puts or Logger.debug after
adding require Logger . This is one of the primary means by which you can debug your apps. It's
identical to console.log() if you're a JavaScript developer or puts if you're a Ruby developer.

In fact, we will keep this controller mostly empty for the time being and just add a log to show that it was
hit. This will cause an error, but it will show that the request was hit. Change your AuthController to the
following:

/web/controller/auth controller.ex
commit: coming soon

www.learnphoenix.io 127 of 407
e

https://www.learnphoenix.io

11/3/16

defmodule .AuthController do
use PhoenixChat.Web, :controller

def (conn, _params) do
I0.puts "AuthController called!”
conn
end
end

Open web/router.ex and make the following changes:

/web/router.ex
commit: coming soon

scope "/api", PhoenixChat do
pipe_through :api

get "/auth”, AuthController, :test
resources "/users”, UserController, except: [:new, :edit]
end

For now we want to direct anyone who runs a GET requestto /api/auth to be routed to the
AuthController andthe test/2 function we created.

To try out our new route, start your server:

$ mix phoenix.server

Generated PhoenixChat app
[info] Running PhoenixChat.Endpoint with Cowboy using http on port 4000

Open up a browser and visit localhost:4000/api/auth . We won't see anything in the browser because
we aren't telling Phoenix to render any HTML, but if you head over to your terminal (the one in which you
ran mix pheonix.server), you should see the output "AuthController called!" just before the error.

www.learnphoenix.io 128 of 407
e

https://www.learnphoenix.io

[info]l GET /api/auth
AuthController called!

[debug] Processing by PhoenixChat.AuthController.test/2
Parameters: %{}

Pipelines: [:apil]

This is a contrived example, but you can see the following happen:

connection
|> router

|> api_pipeline
|> AuthController.test

The connection was sent through a series of functions and transformations before finally being returned
to the user.

www.learnphoenix.io

129 of 407

11/3/16

https://www.learnphoenix.io

11/3/16

Login and Authentication: Part 2

e Authentication
e Automatic login on signup

Now that we have the concept, it's time to implement this for our user login. In this section, we add an

authentication pipeline for routes that need authentication and we add an endpoint that allows our
frontend to login.

Adding authentication

Let's make our AuthController a bit more useful and finish setting up Ueberauth and Guardian.
Following along with their documentation, let's update our router:

/web/router.ex
commit: coming soon

www.learnphoenix.io 130 of 407

https://www.learnphoenix.io

11/3/16

defmodule .Router do
use PhoenixChat.Web, :router

pipeline :api do
plug :accepts, ["json"]
end

pipeline :api_auth do
plug Guardian.Plug.VerifyHeader, realm: "Bearer"
plug Guardian.Plug.LoadResource

end

scope "/api", PhoenixChat do
pipe_through :api

resources "/users”, UserController, except: [:show, :index,
end

scope "/auth”, PhoenixChat do
pipe_through [:api, :api_auth]

post "/:identity/callback”, AuthController, :callback
end
end

In addition to creating an "/auth" scope, we created a new pipeline . Our new pipeline takes care to verify
our Authorization header and load the resource using our serializer. We learned about the serializer
when we configured Guardian, so let's discuss the authorization header.

Under-the-hood Guardian relies on an HTTP header, Authorization,to passthe JSON web token
between the frontend and the backend. If you don't know what an authorization header is, it will become
abundantly clear later on when we head back over to the frontend to make a call with an authorization
header.

Now we need to implement the callback function we specified. Open up our AuthController and change
it to include our callback/2 function. We can also get rid of the test function.

/web/controller/auth_controller.ex
commit: coming soon

www.learnphoenix.io 131 of 407
e

https://www.learnphoenix.io

11/3/16

defmodule PhoenixChat.AuthController do
use PhoenixChat.Web, :controller

alias PhoenixChat.{ErrorView, UserView, User, AuthController}

plug Ueberauth

def callback(%{assigns: %{ueberauth_auth: auth}} = conn, _params) do
result = with {:ok, user} <- user_from_auth(auth),

:ok <- validate_pass(user.encrypted_password, auth.credentials.other.pass]
do: signin_user(conn, user)

case result do
{:0k, user, token} ->
conn
|> put_status(:created)
|> render(UserView, "show.json”, user: user, token: token)
{:error, reason} ->
conn
|> put_status(:bad_request)
|> render(ErrorView, "error.json"”, error: reason)
end
end
end

If we read down the function, what we're doing is: get the user from Ueberauth, validate the password,
and sign in the user. If it's successful we'll render the user view along with our JSON web token. In the
event of an error, we'll show the error view instead.

Let's implement the individual functions that make up our callback, we'll start with user_from_auth/1 .
For this function we need to lookup a user by the email address provided by Ueberauth. Add the following
function to web/controller/auth_controller.ex, below the callback.

/web/controller/auth_controller.ex
commit: coming soon

defp (auth) do
result = Repo.get_by(User, email: auth.info.email)
case result do

nil -> {:error, %{"email” => ["invalid email”]}}
user —> {:ok, user}
end
end

The next step in our authentication process is validating the password. We'll use pattern matching in our

www.learnphoenix.io 132 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

validate_pass/2 function to handle missing or blank passwords and Comeonin to compare the clear
text password and the one stored in the database. To handle the comparison we'll rely on Comeonin and
the Becrypt module.

Bcerypt is the hashing algorithm we used in our registration_changeset/2 to compute our hashed
password. The code below is what we should end up with.

/web/controller/auth_controller.ex
commit: coming soon

defp (_encrypted, password) when password in [nil,
{:error, "password required”}
end

defp (encrypted, password) do

if Comeonin.Bcrypt.checkpw(password, encrypted) do
:ok
else
{:error, "invalid password”}
end
end

Lastly, we need to sign in so we can retrieve the user and JSON web token:

/web/controller/auth _controller.ex
commit: coming soon

defp (conn, user) do
token = conn

|> Guardian.Plug.api_sign_in(user)
|> Guardian.Plug.current_token
{:0k, user, token}
end

That's it for the controller but there's still one step left: updating our user view to support the JSON web
token. We can start by creating a new function similar to "user. json” but including our token. Then we
can use pattern matching in "show.json” to render the JSON with or without the JWT token.

With all the pieces together, this is how our view should appear:

/web/views/user view.ex
commit: coming soon

www.learnphoenix.io 133 of 407
e

https://www.learnphoenix.io

11/3/16

defmodule PhoenixChat.UserView do
use PhoenixChat.Web, :view

alias PhoenixChat.{UserView}

def render("index.json", %{users: users}) do
%{data: render_many(users, UserView, "user.json”)}
end

def render("show. json", %{user: user, token: token}) do
%{data: render_one(user, UserView, "user_token.json", token:
end

def render("show. json", %{user: user}) do
%{data: render_one(user, UserView, "user.json”)}
end

def render("user.json"”, %{user: user}) do
%{email: user.email,
id: user.id,
username: user.username}

end

def render("user_token. json", %{user: user, token: token}) do
%{email: user.email,
id: user.id,
token: token,
username: user.username}
end
end

One thing our frontend application will need to know, is who current user is. To facilate this, let's build an
endpoint to return the user given a JSON web token. This will be our "/me" endpoint, let's go ahead and
add the endpoint to the router:

/web/router.ex
commit: coming soon

www.learnphoenix.io 134 of 407
e

https://www.learnphoenix.io

11/3/16

scope "/auth”, PhoenixChat do
pipe_through [:api, :api_auth]

get "/me"”, AuthController, :me
post "/:identity/callback”, AuthController, :callback
delete "/signout"”, AuthController, :delete

end

Now we can go back to our AuthController and implement our me function. For now all we want our
endpoint to do is retrieve the currently logged in user and return their info to us. If they're not logged in, an
HTTP error code will do. To do this, we're going to introduce a new Guardian plug: EnsureAuthenicated .

With EnsureAuthenticated, Guardian will check to see whether our incoming HTTP request contains our
Authentication header. In the event that it does not, Guardian will take care of returning the appropriate
error code and won't run any other functions in the module. The first step is to add the plug to the top of
our controller:

/web/controllers/auth_controller.ex
commit: coming soon

defmodule .AuthController do
use PhoenixChat.Web, :controller

alias PhoenixChat.{ErrorView, UserView, User, AuthController}

plug Ueberauth
plug Guardian.Plug.EnsureAuthenticated, [handler: AuthController] when action in [:delete

By now we should be somewhat familiar with what this does but just in case, let's go over it. Here we are
adding a new plug to our request pipeline, EnsureAuthentication, passing a set of options (namely the
error handler), and lastly we use a guard to apply the plug only for requests to our /me or /signout
routes. This is because (obviously) we don't want to ensure a user is authenticated before that user can
login.

To get everything working we only need to implement our me function now. Since we know
EnsureAuthenticated will take care of logged out users, our method is pretty simple. We need to retrieve
the current user and return them using the UserView . Add the following to our auth_controller .

www.learnphoenix.io 135 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

/web/controllers/auth_controller.ex
commit: coming soon

def me(conn, _params) do
user = Guardian.Plug.current_resource(conn)

render(conn, UserView, "show.json", user: user)
end

We're not quite done. According to the Guardian docs for EnsureAuthenticated, we will need to add
another function in the event a user is not authenticated. From the docs:

Looks for a previously verified token. If one is found, continues, otherwise it will call the
:unauthenticated function of your handler.

While we're at it, let's also add an :unauthorized function in case we want to use the
EnsurePermissions plug in the future.

/web/controllers/auth_controller.ex
commit: coming soon

def unauthenticated(conn, _params) do

conn

|> put_status(:unauthorized)

|> render(ErrorView, "error.json", errors: %{"account” => ["insufficient privilege"1})
end

def unauthorized(conn, _params) do

conn

|> put_status(:forbidden)

|> render(ErrorView, "error.json"”, error: %{"account” => ["unauthorized"]})
end

It's probably worthwhile to at least skim the rest of the Guardian docs so you know about some of the
functionality. Knowing what is available and what is required will help a lot when debugging.

Automatic login on signup

Now that we can sign a user up and login independently, let's automatically log a user in upon signup.

www.learnphoenix.io 136 of 407
e

https://github.com/ueberauth/guardian#guardianplugensureauthenticated
https://github.com/ueberauth/guardian
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

This is actually really simple. Since "login" really just means returning a valid token to a user, we can

generate a token after an account has successfully been created and pass that along to the user. We only
have to change two lines of code.

/web/controllers/user_controller.ex
commit: coming soon

def (conn, %{"user" => user_params}) do
changeset = User.registration_changeset(%User{}, user_params)

case Repo.insert(changeset) do
{:0k, user} —>

{:0k, token, _claims} = Guardian.encode_and_sign(user, :token)

conn

|> put_status(:created)

|> render(”show. json"”, user: user, token: token)
:error, changeset} ->

conn

|> put_status(:unprocessable_entity)

|> render (PhoenixChat.ChangesetView, "error.json”, changeset: changeset)

Now we have everything we need to register for an account and sign-in. Let's head back to the frontend to
connect it.

www.learnphoenix.io

137 of 407

https://www.learnphoenix.io

11/3/16

Move Logic to Redux

e Asynchronous actions
e Updating the user

So now that we understand some of the concepts of Redux and have our store connected to our app,
we can start building our app for real. The first thing we should connect is our user.

We want to be able to:

e create a new user

e |ogthat userin

¢ authenticate that user
¢ log that user out.

Since the user is something that we will want to have access to in our entire app, it makes sense to hold
this value in the highest-order component we have and pass that value down to all children, which in this
case is our App component. But since we're using Redux, we can keep that value in our global store
and pull it out using connect .

Asynchronous actions

Before we get much further, configure our app to work properly with Redux. The first thing we should
reconfigure is our Signup component and the associated action. We want to move our asynchronous
request out of our component and into our action, and we want to connect our component to Redux.

But Redux doesn't support asynchronous calls without middleware. That's where we need something like
thunk comes in. From the docs:

A thunk is a function that wraps an expression to delay its evaluation.

It's a handy way for us to make asynchronous calls within our actions.

And in order to apply that middleware, we need to add some additional configuration to our store .
Within store.js we need to import a few more functions and add thunk to an applyMiddleware call.
We are also using compose , which allows us to create a wrapper function that composes of other

www.learnphoenix.io 138 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

functions in order.

/app/redux/store.js
commit: coming soon

import { createStore, compose, applyMiddleware } from "redux”
import thunk from "redux-thunk”
import reducers from "./reducers”

const middlewares = [thunk]

const createStoreWrapper = compose(
applyMiddleware(...middlewares)

)(createStore)

const store = createStoreWrapper(reducers)

export default store

Now that we've applied our thunk middleware, we can start running asynchronous actions from our
Actions . The first one we want to change is userNew .

/app/redux/actions.js
commit: coming soon

www.learnphoenix.io 139 of 407

https://www.learnphoenix.io

11/3/16

Actions.userNew = function userNew(user) {
return dispatch => fetch("http://localhost:4000/api/users”, {
method: "POST",
headers: {
Accept: "application/json”,
"Content-Type": "application/json"
o
body: JSON.stringify({ user })
1)
.then((res) => {
return res.json()
1))
.then((res) => {
// TODO: More on this later
console.log(res)
1))
.catch((err) => {
console.warn(err)

b))

Here we are returning a function that takes in dispatch as a parameter (used by thunk) and makes an
asynchronous call to our server. If there is an error, we log the error.

We should also change the userLogin action to make a call to our backend. If you go to your Phoenix
backend and check mix phoenix.routes you'll see the route for login (/auth/identity/callback).

You'll notice a few things different about this action. For one, we are taking the token we receive from the
server and saving it to localStorage . If you don't know what localStorage is, you can think of it as the
better version of cookies, which are pieces of information you can store on the browser that can only be
accessed by the website that sets them. In fact, localStorage is supposed to be the replacement for
cookies.

After we set the token to localStorage, we dispatch an action to our reducer . Recall that our reducer
is already set up to handle a USER_LOGIN action.

/app/redux/actions.js
commit: coming soon

www.learnphoenix.io 140 of 407
e

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://www.learnphoenix.io

11/3/16

Actions.userlLogin = function
return dispatch => fetch("http://localhost:4000/auth/identity/callback”, {
method: "POST",
headers: {
Accept: "application/json",
"Content-Type": "application/json'
}s
body: JSON.stringify({
email: user.email,
password: user.password

b))
b))

.then((res) => { return res.json() })
.then((res) => {
/* If success, log the user in */
localStorage.token = res.data.token
/* Then send action to reducer */
dispatch({
type: "USER_LOGIN”,
payload: {
user: res.data

]

}
1))
1))
.catch((err) => {
console.warn(err)
9]
3

If you're a security nut, you can be extra careful and store your token in a session cookie with an
httponly flag. This will prevent XSS attacks and side channel (BREACH) attacks. That said,
localStorage is more common and perfectly fine for our purposes.

Now within our user reducer, we want to set the value of our user to the value returned by the server.
While we're at it, let's add some default values for our user so we don't run into errors later when we
assign these values to DOM elements via props and also destructure our payload for easier reading.

/app/redux/reducers. js
commit: coming soon

www.learnphoenix.io 141 of 407
e

https://www.learnphoenix.io

11/3/16

function user(state =

nn

email: ,
username: "",
id: """
}, action) {
switch (action.type) {
case "USER_NEW":
return Object.assign({}, state, {
email: action.payload.user.email,
username: action.payload.user.username,
id: action.payload.user.id
)
case "USER_LOGIN":
return Object.assign({}, state, {
email: action.payload.user.email,
username: action.payload.user.username,
id: action.payload.user.id
1))

default: return state

Let's also update our userNew function to handle the response from our server.

/app/redux/actions.js
commit: coming soon

www.learnphoenix.io 142 of 407
e

https://www.learnphoenix.io

11/3/16

Actions.userNew = function (user) {
return dispatch => fetch("http://localhost:4000/api/users”, {
method: "POST",
headers: {
Accept: "application/json",
"Content-Type": "application/json"
P
body: JSON.stringify({ user })
1))
.then((res) => {
return res.json()
1))
.then((res) => {
/* If success, log the user in */
localStorage.token = res.data.token
/* Then send action to reducer */
dispatch({
type: "USER_NEW”,
payload: {
user: res.data
}
1))
D)
.catch((err) => {
console.warn(err)
1)
3

Connecting the login form

Now that we have everything in place on the backend to handle user login, let's send off the request.
Recall that we already set up our Login component to send the request via redux—-we just previously
hadn't sent the http request.

Go ahead and login with valid credentials (the account you created earlier, or a new one) and you'll see
the returned username and email from the server.

What's more, if you check localStorage.token in your browser console, you'll see your current, valid
JSON web token that we will later use for authentication.

Connecting the signup form

www.learnphoenix.io 143 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Since login is working with Redux, we should change our Signup to use the Redux action as well. First
import connect and Actions from Redux, then we need to replace the fetch call with a dispatched
Redux action and connect our component in our export.

/app/components/Signup/index. js
commit: coming soon

import React from "react”

import cssModules from "react-css-modules”
import { connect } from "react-redux”
import style from "./style.css”

import Actions from

n

../../redux/actions”

export class extends
constructor(props) {
super (props)
this.submit = this.submit.bind(this)

submit() {
const user = {
username: document.getElementById("signup-username”).value,
email: document.getElementById("signup-email"”).value,
password: document.getElementById("signup-password”).value

b

this.props.dispatch(Actions.userNew(user))

}

export default connect() (cssModules(Signup, style))

Now when you submit your form, you're dispatching the action through Redux instead of through the form
component. If you try it with a new username and email, you should see the same successful output in
your browser console.

> Fetch complete: POST "http://localhost:4000/api/users”.

> Object {data: Object}

Toggling between signup/login forms

www.learnphoenix.io 144 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Now is a good time to refactor our Home component to allow us to easily toggle between login and
signup forms. First, let's create a new function that allows us to toggle the state.

/app/components/Home/index.js
commit: coming soon

export class extends
constructor(props) {
super (props)
this.state = {
formState: "login”

}
this.setFormState = this.setFormState.bind(this)

setFormState(formState) {
this.setState({ formState })

}

Then let's create a function that determines the content below our form that when clicked will change the
state of our form.

/app/components/Home/index. js
commit: coming soon

www.learnphoenix.io 145 of 407
e

https://www.learnphoenix.io

11/3/16

export class extends
constructor(props) {
super (props)
this.state = {
formState: "login”

}
this.setFormState = this.setFormState.bind(this)

renderToggleContent() {
switch (this.state.formState) {
case "login":
return (
<div
className={style.changelLink}
onClick={() => this.setFormState("signup"”)}>
Need an account? Signup.
</div>
)
case "signup”:
return (
<div
className={style.changelLink}
onClick={() => this.setFormState("login")}>
Have an account? Login.
</div>
)

default: return null

render() {
return (
<div className={style.leader}>
<h1 className={style.title}>Phoenix Chat</h1>
{ this.state.formState === "signup"” ? <Signhup /> : null }
{ this.state.formState === "login" ? <Login /> : null }
{ this.renderToggleContent() }
<img
role="presentation”
className={style.circles}
src="https://s3.amazonaws.com/learnphoenix-static-assets/images/circles-full.png"
</div>

www.learnphoenix.io 146 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

One thing that you will often see in React code is the use of bind to pass a value to your function using
JSX. Now that we have ES2015, we can use arrow functions, which automatically bind to the context
this . So for example, the two onClick functions below are the same:

onClick={() => this.setFormState("login")}>

onClick={this.setFormState.bind(this, "login")}

Also note that if you need access to the event, you will need to pass it as a parameter if you use ES2015
syntax.

onClick={e => this.setFormState("login", e)}

And now, when you click on the link, it toggles the form. Granted, it's not styled, but we can do that later.

www.learnphoenix.io 147 of 407

https://www.learnphoenix.io

11/3/16

Check Login Status

® auth/me

e Grant special access

At this point, we have the ability to create an account, log a user in, and get a valid JSON web token. So
now we need to check with our server that the token is valid to determine whether or not the user has
access to certain views and data.

Setting up userAuth action

The way we do this is by sending a request to the auth/me route we set up in our Phoenix server. If you
recall, the auth/me route takes the token from the Authorization header and checks to make sure it's
valid. If it is, it returns the data we requested (in this case, username and email).

This should look familiar, with the exception of the Authorization header line. The standard syntax for
sending an Authorization header is in the syntax: Bearer <token>, as you can see if you search for the
word bearer in this handy introduction to jwt. If there is no token, it passes an empty string.

/app/redux/actions.js
commit: coming soon

www.learnphoenix.io 148 of 407
e

https://jwt.io/introduction/
https://www.learnphoenix.io

11/3/16

Actions.userAuth = function userAuth() {
return dispatch => fetch("http://localhost:4000/auth/me”, {
method: "GET",
headers: {
Accept: "application/json",
"Content-Type": "application/json",
Authorization: ‘Bearer ${localStorage.token}' || ""
3
1))
.then((res) => { return res.json() })
.then((res) => {
dispatch({
type: "USER_AUTH",
payload: {
user: res.data
}
b))
1))
.catch((err) => {
console.warn(err)

b))

Then we have to add our USER_AUTH action as a case to our user reducer.

/app/redux/reducers.js
commit: coming soon

case "USER_AUTH":
return Object.assign({}, state, {
email: action.payload.user.email,
username: action.payload.user.username,
id: action.payload.user.id

b))

Automatic authentication

There are a few times in which we would like to automatically check to see if a user is logged in. The first
is when the app initially renders, as the user might have come from another session and still has a valid
token. The other times we want to automatically log a user in are when we have a change in user status,
such as after we run userNew or userLogin .

www.learnphoenix.io 149 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Since we want to do this for the whole app, we should run this when the App component renders. So the
first thing we should do is refactor our App component into it's own directory so we can access its
componentDidMount function and un-muddle our app/index.js file.

$ mkdir app/components/App

$ touch app/components/App/{index.js,spec.js,style.css,README.md}

Then create our component and dispatch our userAuth action within componentDidMount .

/app/components/Apps/index.js
commit: coming soon

import React from "react”
import { connect } from "react-redux”
import Actions from "../../redux/actions”

export class extends
componentDidMount() {
this.props.dispatch(Actions.userAuth())

b

render() {
return (
<div>
{this.props.children}
</div>

export default connect() (App)

And lets add that functionality to both of our actions as well, since we want to authenticate the user
immediately after login and account creation. Remember, when we create an account or login, all we're
doing is adding a web token to localStorage . We have to use auth/me to actually validate that user.

/app/redux/actions.js
commit: coming soon

www.learnphoenix.io 150 of 407
e

https://www.learnphoenix.io

11/3/16

Actions.userNew = function userNew(user) {

.then((res) => {

/* If success, log the user in */
localStorage.token = res.data.token
/* Then send action to reducer */
dispatch({

type: "USER_NEW",

payload: {

user: res.data

}
1))
dispatch(Actions.userAuth())

b))

Actions.userlLogin = function userLogin(user) {

.then((res) => {

/* If success, log the user in */
localStorage.token = res.data.token
/* Then send action to reducer x/
dispatch({

type: "USER_LOGIN",

payload: {

user: res.data

}

1)
dispatch(Actions.userAuth())

b))

While we're at it, let's write a few tests for this component. We want to make sure that the component:

¢ renders
e dispatches on componentbidMount
L4 diSpatCheS.Actions.userAuth() ON componentDidMount

We will need to import our Actions in order to run these tests and make ample use of our spy . More
details about each test below the codeblock.

/app/components/App/spec.js
commit: coming soon

www.learnphoenix.io 151 of 407

https://www.learnphoenix.io

11/3/16

import React from 'react’
import expect from 'expect'’
import { shallow, mount } from 'enzyme'’

'

import Actions from '../../redux/actions’

import { App } from './'
const props = {}

describe('<App />', () => {
it('should render’, () => {
const renderedComponent = shallow(
<App {...props} />
)
expect (renderedComponent.is('div')).toEqual(true)
1))
it('calls dispatch on componentDidMount’, () => {
const spy = expect.createSpy()
const renderedComponent = mount(
<App dispatch={spy} />
)
expect(spy) .toHaveBeenCalled()
1))
it('calls dispatch with Actions.userAuth’, () => {
const spy = expect.createSpy()
const renderedComponent = mount(
<App dispatch={spy} />
)
expect(spy).toHaveBeenCalledWith(Actions.userAuth())
D
b))

The first test is simple and it's something you've seen before.

The second test is a little bit more complicated. The first difference is that we're rendering the component
with mount rather than shallow. This takes longer, but it's necessary since a shallow render does not
give you access to the lifecycle methods such as componentDidMount . Then we're passing in our spy as
this.props.dispatch, so when componentDidMount is triggered, it calls our spy rather than what would
have ordinarily been passed in as the dispatch function from redux.

The third test is similar to the second test, but we are making a different assertion. In this case, we are
checking to make sure that componentDidMount attempted to call our dispatch function with the right
parameter. If it called it with Actions.userAuth() , then the test will pass.

In theory, we could also test that componentDidMount was called, but at that point we'd be testing that
React itself is working, and that's outside the scope of our unit tests. It's safe to assume that anything
implicit in React will work properly.

www.learnphoenix.io 152 of 407
e

https://facebook.github.io/react/docs/component-specs.html
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

So now we need to change our app/index.js file to take in the new App component. All we have to do is
import our new App component and delete the old one.

/app/index.js
commit: coming soon

import { default as App } from "./components/App"

And that's that. Your user is now being authenticated automatically when the page renders. You can
check this by using console.log on your props to a connected component, such as the Login
component (for now).

Authenticated pages

So now that we can determine whether a user is logged in, we can give that user access to pages that
only logged in users would have.

In this case, if a user is logged in, we want them to see the Chat component rather than the login/signup
screen when they get to the Home page.

The first step is to connect our Home component to redux so it knows whether or not the user is signed in.

/app/components/Home/index.js
commit: coming soon

import { connect } from "react-redux”

const mapStateToProps = state => ({
user: state.user

1

export default connect(mapStateToProps) (cssModules(Home, style))

Then import our Chat component and have it render if the user is currently logged in.

/app/components/Home/index. js
commit: coming soon

www.learnphoenix.io 153 of 407
e

https://www.learnphoenix.io

11/3/16

import { default as Chat } from "../Chat”

render () {
if (this.props.user.email) {
return (<Chat />)
3
return (
<div className={style.leader}>

And since we're already logged in, when you refresh the page, you should see our Chat component
instead of the login screen.

At this point, we effectively have the outline of what will become our interface for a company
representative. This is the primary means by which an administrator can communicate with an
anonymous customer visiting the site.

A Note on Frontend Security

You might be thinking, "But is it really safe to determine the authentication status based on props.user ?"
If you were, kudos.

Security does not happen on the client. The best you can do on the client is give the appearance of
security by disabling links and guiding the user to the proper view. Someone can always jump into the
console and do whatever they want on the client since our entire app is available in our bundle. js file.

That said, an app with this architecture is still secure because our data is secure and comes from our

server. Sure, someone can spend a lot of time figuring out how to get access to the Chat component

even though they're not supposed to have access, but what can they do with it? They can only get the

data to populate that component if they have a valid token and pass that to the server, which only then
will respond with the data.

So keep in mind that whatever you put in a view, you cannot hide from your users. Take this tutorial
series, for example. You could, in theory, change the links on the course list into something valid and
potentially be able to click on it. But since the data does not live on the client, but in markdown files on
the server, the page will be empty when you get there and you have no way to get access to the data
without a valid token, which you can only get if you are authorized by the server.

www.learnphoenix.io 154 of 407
e

https://www.learnphoenix.io

y? . 11/3/16
/ Learn Phoenix by Sam Corcos

In short, that's a long-winded way of saying that security is on the server not the client.
www.learnphoenix.io 155 of 407

https://www.learnphoenix.io

11/3/16

NPM Package for a React Component: Part 1

e (Create the chat component
e Publish to NPM

So now that we have the ability to sign up and login, as well as a basic interface for chat, we need to
create the interface for the anonymous customer.

The primary use-case of this app is as an NPM installation on an existing project to add chat
functionality. Fortunately, this is really easy for us to do because of React's modular nature.

This piece of the app is gives us the chat functionality that you can easily install on any client and it's the
medium through which our potential customers will contact the company representatives. When it's
finished, it will look like the images below.

Installing dependencies

The first thing we need to is create a new directory and initialize a new NPM package. This is the same as
the last time we initialized NPM. Do not create this directory within the existing phoenix-chat-frontend
directory; this is a separate project. So the directory structure will look roughly like the following, with three
separate directories:

phoenix-chat
| -- node_modules
|-- dist
|-- src

phoenix-chat-frontend

phoenix-chat-api

$ mkdir phoenix-chat
$ cd phoenix-chat && npm init

Then we're going install babel which will allow us to use React with jsx and ES2015 syntax.

www.learnphoenix.io 156 of 407
e

https://www.learnphoenix.io

11/3/16

$ npm install --save-dev babel-cli babel-preset-react \
babel-preset-es2015 babel-preset-stage-0

Then, just as we did with our frontend app, we need to add Babel presets to package.json.

/package. json
commit: coming soon

"devDependencies”: {

1+
"babel"”: {

"presets”: [
"es2015",
"react”,
"stage-0"

]

Creating the PhoenixChat component

Now we need to create our PhoenixChat component. We will start with the fixed-position chat bubble in
the bottom right, then build out the chat interface.

To start, we need a jsx file and a style.js file that will contain out style object. You may recall from
an earlier section that there are many ways to import styles in React. For this project, we are going to use
inline-styling.

$ mkdir src dist

$ touch src/{PhoenixChat.jsx,style.js,README.md} README.md

And since placeholder content is boring, lets add a chat image. At some point, you should upload your
own image to S3 and use that URL for static asset hosting, but for now, we'll just use Github and a filter to
turn the image white.

Then let's create the chat bubble component.

/src/PhoenixChat. jsx
commit: coming soon

www.learnphoenix.io 157 of 407
e

https://www.learnphoenix.io

11/3/16

import React from 'react’
import style from './style.js'

export class extends
constructor(props) {
super (props)

by

render() {
return (
<div
style={style.chatButton}>
<img
src="https://github.com/LearnPhoenix/graphics/blob/master/phoenix-chat-icon.png?r
style={style.chatImage} />
</div>

export default PhoenixChat

Then we need to add styling to this component within our style.js file. We're just going to use pure
JavaScript styling, both because it's worth knowing how to do and because it's quick and easy.

/src/style.js
commit: coming soon

www.learnphoenix.io 158 of 407
e

https://www.learnphoenix.io

11/3/16

export const style = {
chatButton: {
position: "fixed",
right: "20px",
bottom: "20px",
background: "rgb(58, 155, 207)",
color: "white",
zIndex: "1000",
height: "60px",
width: "60px",
border: "1px solid #ccc”,
borderRadius: "50%",
display: "flex",
justifyContent: "center”,
alignlItems: "center”,
cursor: "pointer”,
boxShadow: "2px 4px 2px -2px rgha(0,0,0,0.3)"
o
chatImage: {
display: "block”,
height: "40px",
width: "4@px",
filter: "invert(100%)",
WebkitFilter: "invert(100%)",
MozFilter: "invert(100%)"

export default style

Connecting in development

Before we can check to make sure this works properly, we have to change around a few things in our
package. json file and link this package to our existing frontend (at least temporarily).

We're going to add two scripts to package. json, and change the main import file. The first, watch, will
watch for changes and automatically compile your code as you go. This is what you'll have running while
in development. build will prepare the app for production, and version prepares the next version for
deployment.

We are also changing the import file to dist/phoenix-chat.js, which is where our babel command line
tool will output the resulting file.

/package. json

commit: coming soon

www.learnphoenix.io 159 of 407
e

https://www.learnphoenix.io

11/3/16

"./dist/PhoenixChat. js",
"scripts”: {

"test”: "echo \"Error: no test specified\” && exit 1",
"watch"”: "babel src --watch --out-dir dist”,
"build”: "babel src --out-dir dist”

1+

Now that we have our package ready, it's time to link it to our phoenix-chat-frontend . We can use npm
link to create a globally-installed symbolic link that you can use to locally install the package in a
different app. First let's build the package.

$ npm run build

Then we're going to create an npm link between our package and our node_modules for our phoenix-
chat-frontend . Do this by running npm link within the phoenix-chat directory to create the global
module, then running npm link phoenix-chat from within phoenix-chat-frontend to link the module.

$ npm link
$ cd ../phoenix-chat-frontend
$ npm link phoenix-chat

Unfortunately with the current version of npm this will not work, because two copies of React will end up
being installed and you won't be able to use refs (see this specific issue if you are interested).
According to the docs, this is intentional, but it's an easy fix with webpack. Within phoenix-chat-
frontend, add the following to your webpack configuration:

resolve: {
extensions: ["', '.js' 1,
fallback: path.join(__dirname, "node_modules")

’

1+

resolvelLoader: {
fallback: path.join(__dirname, "node_modules™)

1+

Now if you look in your node_modules directory within your frontend app, you should see a phoenix-chat
module installed. Keep in mind that if you npm prune or re-download this repo, you will have to re-link this
package since it wont be downloaded from an npm install .

www.learnphoenix.io 160 of 407
e

https://gist.github.com/jimfb/4faa6cbfb1ef476bd105
http://webpack.github.io/docs/troubleshooting.html#npm-linked-modules-doesn-t-find-their-dependencies
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Now we're going to run the phoenix-chat-frontend and add this component to our Home component.

/app/components/Home/index.js
commit: coming soon

import PhoenixChat from "phoenix-chat”

export class extends

render() {
if (this.props.user.email) {
return (
<Chat>
<PhoenixChat />
</Chat>

)
}

return (
<div className={style.leader}>
<h1 className={style.title}>Phoenix Chat</h1>
{ this.state.formState === "signup"” ? <Signhup /> : null }
{ this.state.formState === "login" ? <Login /> : null }
{ this.renderToggleContent() }
<img
role="presentation”
className={style.circles}
src="https://s3.amazonaws.com/learnphoenix-static-assets/images/circles-full.png’
<PhoenixChat />
</div>

i

Obviously, in the long-run, there is no reason to have an anonymous chat window on the same screen as
the administrator, since he would be anonymously messaging himself, but this makes testing a lot easier.

Now you should see the chat bubble appear in the bottom right.

From here, we can continue working on our npm module while watching our changes take effect in
realtime. Within the phoenix-chat directory, runthe watch command to keep your project updated as
you make changes.

$ npm run watch

www.learnphoenix.io 161 of 407
e

https://www.learnphoenix.io

11/3/16

/ E Learn Phoenix by Sam Corcos

But this component isn't really all that useful, since it's just a button that doesn't do anything. In the next
lesson, we'll add some more functionality.

www.learnphoenix.io 162 of 407
e

https://www.learnphoenix.io

11/3/16

NPM Package for a React Component: Part 2

e Build the chat interface

At this point, our npm package is not especially functional-it's just a button that hovers over the bottom-
right of your app. So in order to make it useful, we need to add a chat interface where users can input a
message and (eventually) send it to our administrator.

Chat interface

The first thing we need to do is break the button out into its own component called PhoenixChatButton,
then create the PhoenixChatSidebar component, and finally tie them together based on user actions.

So first, let's refactor the PhoenixChat component so it knows it's state (whether the chat is open or
closed) and create a function that toggles the state of the component.

/src/PhoenixChat. jsx
commit: coming soon

www.learnphoenix.io 163 of 407
e

https://www.learnphoenix.io

11/3/16

export class
constructor(props) {
super (props)
this.state = {
isOpen: false
3
this.toggleChat = this.toggleChat.bind(this)

}

toggleChat() {
this.setState({ isOpen: !this.state.isOpen })

b

render() {
return (
<div>
{ this.state.isOpen
? <PhoenixChatSidebar toggleChat={this.toggleChat} />
: <PhoenixChatButton toggleChat={this.toggleChat} /> }
</div>

Now we should create the PhoenixChatButton based on the component we made previously, but with an
onClick that toggles the chat sidebar when a user clicks on it. We're going to add this to the same file to
keep things simple, but you can create a new file and import this into src/PhoenixChat. jsx if you prefer.

/src/PhoenixChat. jsx
commit: coming soon

export class
render() {
return (
<div
onClick={this.props.toggleChat}
style={style.chatButton}>
<img
src="https://github.com/LearnPhoenix/graphics/blob/master/phoenix-chat-icon.png?r
style={style.chatImage} />
</div>

And finally, we should create the PhoenixChatSidebar component. We're going to include some hard-

www.learnphoenix.io 164 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ 2 Learn Phoenix by sam Corcos

coded data in the state of this component that we will eventually swap out.

The only thing that might look new is the map under the render function that maps over the dummy data
in this.state.chat and creates an array of components. What we're doing is checking which name is
present and assigning a particular style based on that name (either right or left aligned). Other than that,
everything is fairly straightforward with a column of elements.

We're also adding an index as a key. If you get to a point where you have a lot of messages and this
causes performance issues, you'll need to assign a unique id to each message and assign the key to that
id. But in this case, since we can only add messages and can't remove them, an index is fine.

/src/PhoenixChat. jsx
commit: coming soon

www.learnphoenix.io 165 of 407
e

https://www.learnphoenix.io

11/3/16

export class extends
constructor (props) {
super (props)
this.closeChat = this.closeChat.bind(this)
this.state = {
messages: [
{from: "Client"”, body: "Test"},
{from: "John", body: "Foo"},
{from: "Client"”, body: "Bar"}

closeChat() {
this.props.toggleChat()

3

render() {
const list = !this.state.messages ? null : this.state.messages.map((bubble, i) => {
const right = bubble.from === "Client"
return (
<div style={{...style.messageWrapper, justifyContent: right ? "flex-end” : "flex-st
<div
key={i}
style={ right ? style.chatRight : style.chatLeft }>
{ bubble.body }
</div>
</div>
)
1))

return (

And then in the final return, under our list, add the following jsx:

www.learnphoenix.io 166 of 407
e

https://www.learnphoenix.io

11/3/16

export class PhoenixChatSidebar extends React.Component {

render() {

return (
<div style={style.client}>
<div style={style.header}>
<div style={style.logo}>
<img
style={{ height: "40px"”, paddingRight: "5px"” }}
alt="1learnphoenix logo"
src="https://s3.amazonaws.com/learnphoenix-static-assets/favicons/favicon-96x
PhoenixChat.io
</div>
<div
style={style.close}
onClick={this.closeChat}>
Close
</div>
</div>
<div style={style.chatContainer}>
{ list }
</div>
<div style={style.inputContainer}>
<input
type="text"
style={style.inputBox} />
<div>
100% free by PhoenixChat
</div>
</div>
</div>

The last thing we need is styling for this new component. Within style. js, add the following (explained
below the code):

/src/style.js
commit: coming soon

export const style = {

www.learnphoenix.io 167 of 407
e

https://www.learnphoenix.io

11/3/16

messageWrapper: {
display: "flex",
flexFlow: "row nowrap”
e
chatRight: {
color: "#666666",
margin: "@.5rem 0",
padding: "Trem”,
borderRadius: "5px",
background: "rgbh(230, 230, 234)"
o
chatlLeft: {
color: "white”,
margin: "@.5rem 0",
padding: "Trem”,
borderRadius: "5px",
background: "rgb(58, 155, 207)"
}s
client: {
width: "350px",
position: "fixed”,
zIndex: "1000",
right: "0",
top: "0",
bottom: "0",
background: "rgb(247, 247, 248)",
borderLeft: "1px solid #ccc”
e
header: {
height: "50px",
background: "white”,
borderBottom: "1px solid #ccc”,
width: "100%",
boxShadow: "@ 2px 2px -1px rgba(0,0,0,0.1)",
display: "flex",
justifyContent: "space-around”,
alignItems: "center”
P
logo: {
display: "flex",
flexFlow: "row nowrap”,
alignItems: "center”
o
close: {
cursor: "pointer”
s
chatContainer: {
padding: "Trem”,
overflowY: "auto",
height: "calc(100vh - 130px)"

1+

www.learnphoenix.io 168 of 407
e

https://www.learnphoenix.io

11/3/16

position: "absolute”,
bottom: "0",
left: "0",
width: "100%",
display: "flex",
flexFlow: "column nowrap”,
alignlItems: "center”,
justifyContent: "space-around”,
height: "80px"

o

inputBox: {
width: "90%",
height: "40px",
borderRadius: "5px",
fontSize: "14px",
border: "1px solid #ccc”,
paddinglLeft: "1@px",
outline: "none”

Most of these styles serve to fix the position of the chat element on the right of the screen with everything
either fixed or absolutely positioned.

Auto-scroll

At this point, you have an interface that performs almost as you would expect. You can add messages
and they show up on a list. Unfortunately, this list does not know that the bottom is what we want to keep
track of. In order to fix this, we need to auto-scroll to the bottom.

Although this seems like something you should be able to do with CSS, you have to use JavaScript to add
this functionality. We're going to create a new function and introduce another React feature called refs
(docs). We are going to use refs to create a unique identifier for each of our messages so we can auto-
scroll to the end of the list.

Think of refs as a way of creating a reference to a particular React element. This is generally what you
would use in place of something like document.getElementById() to find elements.

The ref that we are adding to each message takes in the index (i) from the map over our
this.state.messages list and assigns that to the name of the reference. That way, when we need to later
reference the last item, we can find its relative position in our current messages list (the oldest message
will have an index of @, the newest will have index of this.state.length - 1).

We're also going to add a ref to our chat container (the div that contains all of our messages) so we can
select it and change the scroll position.

www.learnphoenix.io 169 of 407
e

https://facebook.github.io/react/docs/more-about-refs.html
https://www.learnphoenix.io

. 11/3/16
/ z Learn Phoenix by sam Corcos

Also, make sure you bind the map function to the current this context or you will get an error because
map has its own context. An alternate approach to using bind is to use the self = this approach.

Note: You will often see refs used as strings, but this is now deprecated in favor of functions.

www.learnphoenix.io 170 of 407
e

https://www.learnphoenix.io

11/3/16

export class extends

render() {
const list = !this.state.messages ? null :

const right = from === "Client”

this.state.messages.map(({ body, id, from },

return (
<div
ref={ ref => { this['chatMessage:${i}'] = ref }}

key={i}
style={{...style.messageWrapper, justifyContent: right ? "flex-end” : "flex-start

<div
style={right ? style.chatRight : style.chatlLeft}>
{ body }
</div>
</div>
)
1))
return (
<div style={style.client}>
<div style={style.header}>
<div style={style.logo}>
<img
style={{ height: "40px", paddingRight: "5px” }}
alt="1learnphoenix logo"
src="https://s3.amazonaws.com/learnphoenix-static-assets/favicons/favicon-96x

PhoenixChat.io
</div>
<div
style={style.close}
onClick={this.closeChat}>
Close
</div>
</div>
<div
ref={ref => this.chatContainer = ref}
style={style.chatContainer}>
{ list }
</div>

So now we have two refs set up. The first will create a new ref for each message and the second will

www.learnphoenix.io 171 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

keep a reference to our message list.

From here, we can reference those nodes and set the scroll position. To do that, we need to hook in to our
lifecycle method after render and after the DOM is updated because we need the actual DOM values,
which we can do with componentDidUpdate .

We will start by selecting the last message by finding the ref to message with the index of
this.state.messages.length - 1,then we set the chat container's scrollTop to the last element in the
list's offsetTop, which sets the scroll position of our list container to the bottom of our last message.
Theoretically, this will push our scroll position past the bottom of the container, but it will actually just
stop at the bottom of the list container.

export class

componentDidUpdate() {
if (this.props.messages.length > 0) {
const lastMessage = this['chatMessage:${this.props.messages.length - 1}']
this.chatContainer.scrollTop = lastMessage.offsetTop

Please note: since our input is not currently connected, this will not do anything. But when we connect
this component to our channel in a couple lessons and send messages, we will have the auto-scrolling
chat component that we expect.

And since you're likely tracking all of this with git, you should create a .gitignore .

$ touch .gitignore

Include your dist directory and your node_modules, because both of these will be generated
dynamically.

dist

node_modules

peerDependencies

For the sake of good housekeeping, let's add React as a peer dependency, so when the package is

www.learnphoenix.io 172 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

installed it will note that it requires React in order to work.

"dependencies”: {

1+

"peerDependencies”: {
"react”: "*15.0.0"

}

And finally, if you'd like to publish this package to npm, it's as simple as followingthese instructions.

If you choose to go this route, be aware of a few things that might trip you up. Npm will automatically
generate a .npmignore file if you do not include one, and by default, this copies your .gitignore . So, if
you include dist inyour .gitignore,your dist will be ignored by npm and your package won't work.
The solution to this is to create an .npmignore file with just the things that npm should ignore:

$ touch .npmignore

This will be basically the same as our .gitignore except we want to make sure that our dist is not

ignored.

node_modules

And that's a wrap. We won't touch this again until we connect it to our Phoenix channel.

www.learnphoenix.io 173 of 407

https://docs.npmjs.com/getting-started/publishing-npm-packages
https://www.learnphoenix.io

11/3/16

Set up Phoenix Channels

e Setting up a room channel
e Extracting authorization

Now that we have a user interface in place to send and receive messages, we should start putting
together our backend to actually handle these messages. This is where Phoenix really shines.

If you're familiar with a socket , you'll pick up channels fairly quickly. If you're not familiar with the
concept of websockets, it's best to think of the internet as split between two types of connections: 1)
request-response, and 2) sockets.

Request-response is how we're handling our JSON web token. Each time you send a request, the
connection (conn) is essentially a new struct that goes through your pipeline and then disappears. A
real-world analogy would be sending and receiving letters in the mail; once you write the letter and drop it
off (request), you have to wait until you get a response.

Using sockets/channels is more like starting an ongoing conversation with someone standing next to
you. The line of communication is always open and feedback is immediate.

What's more, a channel can be stateful, meaning when we connect to a channel we don't have to worry
about storing data and keeping track of our conversations. When you start a connection, the socket stays
alive and is transformed until the connection is broken.

If this sounds complicated or magical, it should make more sense when we start to implement it.

Setting up a room channel

Based on the way our app works, we're going to create a new room for each of our anonymous
customers and list them in the Sidebar . When we click on one of the active chats, we want access to the
chat history between the company representative and the anonymous customer.

We're going to use the built-in generator to create our room channel. Remember, you can run mix --help
to see all the built-in functions you can run with mix .

Then (as it says in the console output), we want to add that channel to our user_socket.ex file. As it

www.learnphoenix.io 174 of 407
e

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

turns out, this is already a default option, so you can just un-comment the code that already exists.

We're also going to use the assign function to store data about the user in the socket so we can more
easily identify the user (the reason for this will become more clearer when we connect to the frontend).
You can think of assign as a way to pass values to other parts of the app on the socket struct/object.

/web/channels/user_socket.ex
commit: coming soon

defmodule .UserSocket do
use Phoenix.Socket

Channels
channel "room:*", PhoenixChat.RoomChannel

def (params, socket) do

socket = socket
|> assign(:user_id, params["id"])
|> assign(:username, params["username”])
|> assign(:email, params["email”])
|> assign(:uuid, params["uuid"])
{:0k, socket}
end

Then we need to handle incoming messages, so within room_channel.ex, add the following (with
explanation below the code).

/web/channels/room channel.ex
commit: coming soon

www.learnphoenix.io 175 of 407
e

http://www.phoenixframework.org/docs/channels#section-socket-assigns
https://www.learnphoenix.io

11/3/16

defmodule PhoenixChat.RoomChannel do
use PhoenixChat.Web, :channel
require Logger

def ("room:" <> _uid, payload, socket) do
if authorized?(payload) do
{:0k, socket}
else
{:error, %{reason: "unauthorized"}}
end
end

def ("message”, payload, socket) do

n n

Logger.debug
broadcast socket, "message”, payload
{:noreply, socket}

end

First, we're adding a join function that tells Phoenix what to do when a frontend attempts to join the
socket. In this case, we are using pattern matching to determine what to join. So if an incoming join
request starts with the pattern room: with anything following (other than room:1lobby from the
boilerplate code), the join that we defined will get called.

If we get a pattern that matches, we check to see if the user is authorized. The current authorized?
function simply returns true, but this is where we can add authorization later on. If the user is authorized,
it returns the socket allowing us to connect to it.

Note: in Elixir, question marks (?) are valid characters in function names.

The next function we're adding is handle_in, which is one of the built-in functions that Phoenix looks for
when the socket receives an incoming request. In our case, we want to listen for a request that matches
the pattern message (which is an arbitrary title; you could name it whatever you want) then broadcast
that message to everything on the frontend that is currently listening to this socket. Or, directly from the
docs:

After a client has successfully joined a channel, incoming events from the client are routed
through the channel's handle_in/3 callbacks. Within these callbacks, you can perform any
action. Typically you'll either forward a message to all listeners with broadcast!/3, or push a
message directly down the socket with push/3 . Incoming callbacks must return the socket
to maintain ephemeral state.

We're also going to temporarily include a Logger.debug to log our output. Note that we're using inspect,
which allows us to log data that is more complex than a string (tuples, etc). For more on built-in
protocols, check the docs.

www.learnphoenix.io 176 of 407

https://github.com/phoenixframework/phoenix/blob/master/lib/phoenix/channel.ex
http://elixir-lang.org/getting-started/protocols.html#built-in-protocols
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

And believe it or not, that's all we need for a functioning channel. Phoenix makes it really easy to set up
channels . If this has you confused, it will make more sense when we implement the frontend code to
connect to the socket.

Extracting authorization

We're going to create a ChannelHelpers module and separate out the authorization logic because we're
going to need to use the same logic in multiple channels. We will likely implement additional utility
functions in the future, so in order to keep our code DRY and consistent we're going to keep all these
functions in one place.

We're also going to introduce some inline documentation using @moduledoc and @doc . Both accept
markdown and are used to automatically generate documentation. If you've ever wondered how Elixir,
Phoenix, Ecto, and every other hex package has such awesome documentation, it's because people use
the inline documentation to describe their functions.

The two terms are pretty self-explanatory: @moduledoc is for describing the module, while @doc is for
describing a function. You should definitely look over some existing packages to see how functions are
documented.

$ touch web/channels/channel_helpers.ex

/web/channels/channel helpers.ex
commit: coming soon

www.learnphoenix.io 177 of 407
e

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://daringfireball.net/projects/markdown/
http://elixir-lang.org/docs/stable/elixir/Kernel.html
https://hexdocs.pm/phoenix/Phoenix.html
https://hexdocs.pm/ecto/Ecto.html
https://hexdocs.pm/voodoo_mfg/api-reference.html
https://hexdocs.pm/stripity_stripe/extra-api-reference.html
https://www.learnphoenix.io

11/3/16

defmodule PhoenixChat.ChannelHelpers do
@moduledoc """
Convenience functions imported in all Channels

nnn

@doc nnn
Convenience function for authorization

nnn

def authorize(payload, fun, custom_authorize \\ nil) do
check_authorization = custom_authorize || &authorized?/1
if check_authorization. (payload) do

fun. O
else
{:error, %{reason: "unauthorized"}}
end
end

@doc nnn
Function that determines authorization logic. If ‘true', all users will be authorized.
def authorized?(_payload) do
true
end
end

The authorize/2 function takes in the payload and an anonymous function. If the user passes the
authorized?/1 function, run the function. If it's not clear what this function does, it will become clear
when we implement it in our RoomChannel . If it fails the authorized? tests, then we return an :error
with unauthorized.

We've also set up authorize/3, which takes in three arguments. If we so choose, we can pass in a
custom_authorize override that will override the authorization we set up in authorized? . This is useful if
you have a request that has an unusual authorization method.

Recall that anonymous functions are called with an additional ., such as function. () ratherthan
simply function() . We are noting this again because it regularly causes confusion for people new to
Elixir. For a more detailed explanation as to why Elixir has different syntax for named functions and
anonymous functions, check out this StackOverflow answer by Elixir creator Jose Valim.

Then, since we're going to want to access these helpers in all of our channels, we're going to import them
into every channel. Within web/web.ex , you can add modules to every function of a particular type (such
as channel, model, controller, etc). This should be done sparingly because every function you add
here is imported into each struct and can significantly slow down your app if you're not careful.

/web/web.ex
commit: coming soon

www.learnphoenix.io 178 of 407
e

http://stackoverflow.com/questions/18011784/why-are-there-two-kinds-of-functions-in-elixir
https://www.learnphoenix.io

11/3/16

def channel do
quote do
use Phoenix.Channel

alias PhoenixChat.Repo
import Ecto
import Ecto.Query, only: [from: 1, from:
import PhoenixChat.Gettext
import PhoenixChat.ChannelHelpers
end

Then we should update our RoomChannel to use these helper functions, so we'll remove the
authorized?/1 function and replace the authorization conditional within our join/3 function.

/web/channels/room channel.ex
commit: coming soon

defmodule .RoomChannel do
use PhoenixChat.Web, :channel
require Logger
def "room:" <> _uid, payload, socket) do
authorize(payload, fn ->
{:0k, socket}
end)
end

def ("message”, payload, socket) do
Logger.debug " "
broadcast socket, "message”, payload
{:noreply, socket}
end
end

We've changed the join function to take in both a payload and an anonymous function that returns the
same thing our previous authorized?/1 function returned, whichis {:ok, socket}.

www.learnphoenix.io 179 of 407

https://www.learnphoenix.io

11/3/16

Connect React to Channels

¢ Channels with local state
e Anonymous user channels

As it turns out, it's also not especially difficult to connect React to a Phoenix channel. We're going to
connect to the channel , then pass our data in through Redux and render our messages to the page.

We're going to start with our phoenix-chat npm component and handle state locally. Then we'll switch
to our phoenix-chat-frontend and handle our state with Redux to show how the approaches differ.

Adding Phoenix.js

Phoenix has recently been added to npm, which makes things a lot easier. Previously, this required
copying a file and keeping it in a /vendor directory. We don't have to worry about that anymore.

Configuring your channel

We want access to our socket from the entire PhoenixChat component so we can push messages when
a user has the PhoenixChatSidebar closed, so we'll connect to the socket on componentDidMount . We'll
also want to create a configureChannels function to pass in all the configuration options we need. Keep
in mind that sockets are lightweight and connecting and disconnecting is not an expensive operation.

You'll notice we're hard-coding localhost:4000 into our component. When we actually deploy this, we're
going to change this out for our actual server.

First we need to get rid of our hard-coded messages from our PhoenixChatSidebar .

/src/PhoenixChat. jsx
commit: coming soon

www.learnphoenix.io 180 of 407
e

https://www.learnphoenix.io

11/3/16

import { Socket } from "phoenix”

export class
constructor(props) {
super (props)
this.closeChat = this.closeChat.bind(this)

Then we need to configure our channel, which we'll do in a configureChannels function (explanation
below the code).

export class
constructor(props) {
super (props)
this.state = {
isOpen: false,
input: "",
messages: []
}
this.toggleChat = this.toggleChat.bind(this)
this.configureChannels = this.configureChannels.bind(this)

}

componentDidMount() {
this.socket = new Socket("ws://localhost:4000/socket")
this.socket.connect()
this.configureChannels("foo")

}

configureChannels(room) {
this.channel = this.socket.channel (' room:${room}")
this.channel. join()

.receive(”ok”, ({ messages }) => {
console.log(' Succesfully joined the ${room} chat room. ")
this.setState({

messages: messages || []

D)
b))

.receive("error”, () =>{
console.log('Unable to join the ${room} chat room.")

www.learnphoenix.io 181 of 407

https://www.learnphoenix.io

11/3/16

this.setState({
messages: this.state.messages.concat([payload])
)
1))
}

toggleChat() {
this.setState({ isOpen: !this.state.isOpen 3})
}

render() {

return (
<div>
{ this.state.isOpen
? <PhoenixChatSidebar
input={this.state.input}
messages={this.state.messages}
toggleChat={this. toggleChat} />
: <PhoenixChatButton toggleChat={this.toggleChat} /> }
</div>

When the component mounts, we're going to initialize the socket and assign itto this.socket, then call
configureChannels and pass in a string foo to connect us to room:foo . Obviously, this is jsut a
temporary value; soon, we will pass a unique ID.

Within configureChannels, we take the room that we got from componentDidMount and we initiated the
channel with socket.channel . Then we joined the channel with channel.join . If we receive an ok
response, we log success and update our state to include any previous messages, otherwise log the
failure.

The second part is a listener for whenever our channel receives a message , which is an arbitrary name
that we are using to label this kind of action. When a message is received (as you will see later in a
handleMessageSubmit function), we want to add the object to this.state.messages . The last thing we
need to do is to add the current channel to this.channel so we can manipulate it later.

We also changed our render function to handle an empty messages array; if you try to map over an empty
array, you get an error.

Now when you check your browser console, you should see the following.

Succesfully joined the foo chat room.

Our channel is now configured.

www.learnphoenix.io 182 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Anonymous users

Now that we have the ability to connect to the channel, we're going to need to set this up to handle
anonymous users. We're going to use the uuid package to create a universally unique identifier for each
of our anonymous users.

$ npm install --save uuid

Then we just need to change our componentDidMount function to assign a universally unique id (uuid) or
find one that already exists. We're going to store this uuid in localStorage . If one already exists, then
we're going to connect to the room with that id. Otherwise, we're going to generate a new id, set that to
localStorage and connectto a new room.

/src/PhoenixChat. jsx
commit: coming soon

import uuid from 'uuid’

export class extends

componentDidMount () {
if (!localStorage.phoenix_chat_uuid) {
localStorage.phoenix_chat_uuid = uuid.v4()

}

this.uuid = localStorage.phoenix_chat_uuid

const params = { uuid: this.uuid }

this.socket = new Socket("ws://localhost:4000/socket”, { params })
this.socket.connect()

this.configureChannels(this.uuid)

And that's all we need to do to handle anonymous users. Refresh and check your browser console and
you'll see that you're now connected to a different room.

www.learnphoenix.io 183 of 407
e

https://www.npmjs.com/package/uuid
https://www.learnphoenix.io

. 11/3/16
/ 2 Learn Phoenix by sam Corcos

Submitting messages

Now we need to change our messages.map to handle our current anonymous user and handle messages
sent to our input .

You might notice we've added a from field, which we do not currently have in our messages. We're going
to add this and other fields in the lesson on message persistence. For now, let's just use them as
placeholders. So keep in mind, this app will not work until we update our model.

We're also changing the values from this.state to this.props, since we're going to pass in all the data
from the parent (PhoenixChat) component, which is connected to the socket.

/src/PhoenixChat. jsx
commit: coming soon

www.learnphoenix.io 184 of 407

https://www.learnphoenix.io

11/3/16

export class extends

render() {
const list = !this.props.messages ? null : this.props.messages.map(({ body, id, from },
const right = from === localStorage.phoenix_chat_uuid

return (
<div
ref={ref => this[‘'chatMessage:${i}'] = ref}
key={i}
style={{ ...style.messageWrapper, justifyContent: right ? "flex-end” :
<div
style={right ? style.chatRight : style.chatlLeft}>
{ body }
</div>
</div>
)
1))

return (
<div style={style.client}>

<div style={style.inputContainer}>
<input
onKeyDown={this.props.handleMessageSubmit}
onChange={this.props.handleChange}
value={this.props.input}
type="text"
style={style.inputBox} />

</div>
</div>

In order to handle our inputs, we're going to need two additional functions: handleMessageSubmit and
handleChange .

handleMessageSubmit will listen for onKeyDown events (if you don't know all the React events you have at
your disposal, you should peruse the docs) and when the key is the "return” key (which has keyCode
number 13), it will send our input to our channel and clear the input. We're also checking to make sure the
input value isn't empty.

www.learnphoenix.io 185 of 407
e

https://facebook.github.io/react/docs/events.html
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

handleChange listens to changes in our input and changes the value of that input accordingly. This is
useful if we decide to implement any sort of validation or text formatting (such as markdown) later on.

/src/PhoenixChat. jsx
commit: coming soon

export class
constructor(props) {
super (props)
this.handleMessageSubmit = this.handleMessageSubmit.bind(this)
this.handleChange = this.handleChange.bind(this)

handleMessageSubmit(e) {
if (e.keyCode === 13 && this.state.input !== "") {
this.channel.push('message’, {
room: localStorage.phoenix_chat_uuid,
body: this.state.input,
timestamp: new Date().getTime()
1))
this.setState({ input: "" })
}
}

handleChange(e) {
this.setState({ input: e.target.value })

}

render() {
return (
<div>
{ this.state.isOpen
? <PhoenixChatSidebar
handleChange={this.handleChange}
handleMessageSubmit={this.handleMessageSubmit}
input={this.state.input}
messages={this.state.messages?}
toggleChat={this.toggleChat} />
: <PhoenixChatButton toggleChat={this.toggleChat} /> }
</div>

www.learnphoenix.io 186 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Let's also add a componentWillUnmount functionto our PhoenixChat component to disconnect from our
socket when we close the window.

/src/PhoenixChat. jsx
commit: coming soon

componentWillUnmount() {

this.channel.leave()

}

And now you have (half) a functional anonymous chat client set up. You can send messages and see
them log in your Phoenix backend.

The next thing we need to do is give our admin the ability to join this channel so she can respond. This will
be done in phoenix-chat-frontend . In order to do this, we will have to create a new channel just for our
administrator.

www.learnphoenix.io 187 of 407
e

https://www.learnphoenix.io

11/3/16

Use Presence to List Active Users

e Creating an adminChannel

e Using presence

Now that we have the ability to send messages to our backend, we need to give our administrator the
ability to respond to these messages. We're going to accomplish this by listing all of our active chats in
the sidebar on the left within our phoenix-chat-frontend app.

This sidebar will connect to a new channel called admin, which will have the topic active_users, which
we will use to keep track of the presence of all active sockets.

Basics of Phoenix Presence

Presence is an awesome feature in Phoenix. It gives you the ability to easily discover which users are
currently connected to a particular socket. For example, if you wanted to list all users that are currently
active in a chatroom, you could use Presence to easily list them all rather than manipulating a list of
users when people join or leave the chatroom. In other frameworks, this is a difficult problem to solve, but
in Phoenix, we get it for free.

Make sure you are running at least Phoenix 1.2.0 {:phoenix, "~> 1.2.0"} within your mix.exs file. If
you are not, you will get a compilation error.

Then create a Presence module in 1lib/phoenix_chat/presence.ex .

$ touch lib/phoenix_chat/presence.ex

/lib/phoenix_chat/presence.ex
commit: coming soon

defmodule .Presence do
use Phoenix.Presence, otp_app: :phoenix_chat,

pubsub_server: PhoenixChat.PubSub

end

And finally add Presence to your supervision tree within 1ib/phoenix_chat.ex:

www.learnphoenix.io 188 of 407

https://dockyard.com/blog/2016/03/25/what-makes-phoenix-presence-special-sneak-peek
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

/lib/phoenix chat.ex
commit: coming soon

def (_type, _args) do
import Supervisor.Spec

children = [
Start the endpoint when the application starts
supervisor (PhoenixChat.Endpoint, []),
Start the Ecto repository
supervisor (PhoenixChat.Repo, [1),
supervisor(PhoenixChat.Presence, [1])

Presence is now set up and ready for action.

Creating the AdminChannel

The first thing we need is the AdminChannel , which we will use to give the administrator access to the list
of active users. An explanation of each function is below the code block.

$ touch web/channels/admin_channel.ex

/web/channels/admin_channel.ex
commit: coming soon

www.learnphoenix.io 189 of 407
e

https://www.learnphoenix.io

11/3/16

defmodule PhoenixChat.AdminChannel do
@moduledoc """
The channel used to give the administrator access to all users.

nnn

use PhoenixChat.Web, :channel
require Logger

alias PhoenixChat.{Presence}

@doc nnn
The ‘admin:active_users' topic is how we identify all users currently using the app.

nnn

def join("admin:active_users"”, payload, socket) do
authorize(payload, fn ->
send(self, :after_join)
{:0k, socket}
end)
end

@doc nnn
This handles the ‘:after_join' event and tracks the presence of the socket that has subsc

nnn

def handle_info(:after_join, socket) do
push socket, "presence_state”, Presence.list(socket)
Logger.debug "Presence for socket: #{inspect socket}"
id = socket.assigns.user_id || socket.assigns.uuid
{:0k, _} = Presence.track(socket, id, %{
online_at: inspect(System.system_time(:seconds))

1)
{:noreply, socket}
end

Our join/3 function should look familiar, as it's mostly the same as our join/3 function in our room
channel. The difference here is that we've included a new function: send(self, :after_join).

This send/2 function (docs) sends a message to a process, in our case back to the AdminChannel
('self). We want this to happen when a user joins for the first time. It calls the send/2 function with an
arbitrary atom used for pattern matching. Since we want to run an action after user joins for the first time,
we'll call our message :after_join.

Then we use the handle_info/2 function (docs) to pattern match against messages sent by send/2 . If
the message matches the pattern :after_join, we runthe handle_info function above. This function is
a little bit complicated, so we'll go over it line-by-line.

The first line is push socket, "presence_state”, Presence.list(socket) , which triggers a
presence_state eventin the client. presence_state is an arbitrary name that we are giving this event

www.learnphoenix.io 190 of 407
e

http://elixir-lang.org/docs/master/elixir/Kernel.html#send/2
https://hexdocs.pm/phoenix/Phoenix.Channel.html#c:handle_info/2
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

and we will use it later when we connect this to our phoenix-chat-frontend app.
The next line simply logs the socket for debugging purposes.

The third line sets id to either the user_id, if the user is an admin (and therefore has a user_id in the
database), or sets it to the uuid of the anonymous user (which we are not storing in the database).

Then we use pattern matching to make sure that Presence.track is working properly. If the response is
:ok , we tell Presence to track (docs) the socket, using the id as the identifier and a map that
contains the online_at metadata letting Presence know when the user joined the socket.

Otherwise, we send :noreply and return the socket unchanged.

Let's also add this channel to our UserSocket .

/web/channels/user_ socket.ex
commit: coming soon

Channels

channel "room:*", PhoenixChat.RoomChannel
channel "admin:*", PhoenixChat.AdminChannel

And that's all we need to do to set up Presence . The next step is to handle incoming messages and
persist them to the database.

www.learnphoenix.io 191 of 407
e

https://hexdocs.pm/phoenix/Phoenix.Presence.html#c:track/3
https://www.learnphoenix.io

11/3/16

Persist Messages to the Database

Creating a Message model
Querying database

Persist messages to database
Unix timestamp to DateTime

To keep our app simple with the functionality most people expect, we're going to persist all messages to
our Postgres database. In order to do this, we need to create a Message model so our database knows
what kind of data it's receiving.

Later on, we may decide that we don't need to store these messages in a database or we may need to
cache our messages in memory for better performance. If we later decide to go that route, we can use
ETS. No need for premature optimization.

Creating the Message model

We're going to use the built-in mix generator to create the boilerplate for a new migration.

This will create three new files, the names of which should have logged in your terminal.

The first thing we should check out is our migration file to update our database with the new data type.
This file should already have all the relevant fields we are interested in and we don't have to change
anything.

The last thing we're going to do before we persist our messages to the database is add a function that
gives us the ability to limit the number of messages we receive from the database (with a default of 10).

Ecto allows us to define our queries as functions using from/2, which is a really nice feature, so we're
going to create a new function called latest_room_messages that finds all messages from a particular
room, then orders them by the most recent, and limits the number of messages.

/web/models/message.ex
commit: coming soon

www.learnphoenix.io 192 of 407
e

http://elixir-lang.org/getting-started/mix-otp/ets.html
https://hexdocs.pm/ecto/Ecto.Query.html#from/2
https://www.learnphoenix.io

11/3/16

defmodule PhoenixChat.Message do
use PhoenixChat.Web, :model

schema "messages” do
field :body, :string
field :timestamp, Ecto.DateTime
field :room, :string
field :from, :string
belongs_to :user, PhoenixChat.User

timestamps
end

@required_fields ~w(body timestamp room)
@optional_fields ~w(user_id from)

@doc """
Creates a changeset based on the ‘model® and ‘params'.
If no params are provided, an invalid changeset is returned
with no validation performed.
def changeset(model, params \\ :empty) do
model
|> cast(params, @required_fields, @optional_fields)
end

@doc nnn
An ‘Ecto.Query' that returns the last 10 message records for a given room.

nnn

def latest_room_messages(room, number \\ 10) do
from m in __MODULE__,
where: m.room == “room,
order_by: [desc: :timestamp],
limit: “number

At this point, you should run your migration.

$ mix ecto.migrate

Updating our RoomChannel

Now we need to update our RoomChannel to start using our new model.

www.learnphoenix.io 193 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ ? Learn Phoenix by sam Corcos

The first thing to change is our join/3 function. Rather than simply checking the authorization status
and returning the socket, we're going to reply with a payload of message records. This way, when a client
joins the channel, she automatically receives the message history.

We start this function with the room_id and pass it into the Message.latest_room_messages/2 function
we created earlier. This creates an Ecto query based on the room_id, which we can them pass to
Repo.all, which finds all of our data that matches the query.

Then we use Enum.map to format our messages in the way our client expects to receive them (explained
in greater detail below the code block). Then we reverse the order to show the newest results first.

Finally, we return the messages that we just created along with our socket. join/3 expects one of three
things as its return value: {:ok, Phoenix.Socket.t}, {:ok, map, Phoenix.Socket.t},or {:error,
map} We were previously sending the first value, but now that we have a map to send along, we're
sending the second value.

We also created a private function called message_payload, which takes the message and formats it
before returning it.

/web/channels/room_channel.ex
commit: coming soon

www.learnphoenix.io 194 of 407

https://hexdocs.pm/phoenix/Phoenix.Channel.html#c:join/3
https://www.learnphoenix.io

11/3/16

defmodule .RoomChannel do
use PhoenixChat.Web, :channel
require Logger

alias PhoenixChat.{Message, Repo}
def ("room:" <> room_id, payload, socket) do
authorize(payload, fn ->
messages = room_id
|> Message.latest_room_messages
|> Repo.all
|> Enum.map(&message_payload/1)
|> Enum.reverse
{:0k, %{messages: messages}, socket}
end)
end

defp (message) do
from = message.user_id || message.from
%{body: message.body,
timestamp: message.timestamp,
room: message.room,
from: from,
id: message.id}

Note the syntax used to call message_payload . Using an ampersand (&) along with the arity (number of
arguments) is a shorthand way of writing anonymous functions. The two functions below are equivalent.

|> Enum.map(&message_payload/1)

|> Enum.map(fn x -> message_payload(x) end)

You will see this syntax a lot in Elixir. For more, see the docs.

The last thing we should do before actually writing these to our database is check if the id passed to
UserSocket is an administrator id or an anonymous user id.

We first pull the id out of the params passed to connect/2 . Then, if that value exists and we can find
that user in the database, then we assign that to the value user .

www.learnphoenix.io 195 of 407

http://elixir-lang.org/crash-course.html#partials-and-function-captures-in-elixir
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Then we assign values to socket depending on whether or not user passed the two criteria above
(exists and is in the database). If the user does exist, we assign the user_id, username, and email to
the socket . If user does not have a value, we assign the user_id to nil and give it the uuid for the
anonymous user.

/web/channels/user_ socket.ex
commit: coming soon

alias PhoenixChat.{Repo, User}

def (params, socket) do
user_id = params["id"]
user = user_id && Repo.get(User, user_id)

socket = if user do
socket
|> assign(:user_id, user_id)
|> assign(:username, user.username)
|> assign(:email, user.email)
else
socket
|> assign(:user_id, nil)
|> assign(:uuid, params["uuid"])
end

{:0k, socket}
end

Now we can persist our messages to the database. The most logical place to do this is within our
handle_in function in the RoomChannel, since this is where we handle incoming messages. Rather than
simply broadcast the message as we did previously, we're going to add the message to the database,
then broadcast it.

Updating handle_in
Once we receive an incoming connection, we add two parameters to our payload from socket.assigns
using Map.put , which adds the named key-value pair to a map: user_id and from.

Then we create a changeset with the %Message{} model and the payload we just updated in preparation
for our database update.

Then we use a case statement to check if Repo.insert accepts our changeset . If it does, it will return
{:0k, message} and we should format our message with message_payload and broadcast as we we did

www.learnphoenix.io 196 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

before. In the event of an error, it returns an error.

The message payload sent to all client subscribers to the "message” event and includes a from field.
This from is used to identify who sent the message and is either a user_id ora uuid. Ifa uuid, then
user is anonymous; if a user_id, the user is an admin.

/web/channels/room channel.ex

commit: coming soon

def ("message”, payload, socket) do
payload = payload
|> Map.put("user_id", socket.assigns.user_id)
|> Map.put(”from”, socket.assigns[:uuid])
changeset = Message.changeset(%Message{}, payload)

case Repo.insert(changeset) do
{:0k, message} ->
payload = message_payload(message)
broadcast! socket, "message"”, payload
{:reply, :ok, socket}
{:error, changeset} ->
{:reply, {:error, %{errors: changeset}}, socket}
end
end

Unix timestamp to DateTime

Since we're receiving all of our timestamps from JavaScript, the time is going to be in milliseconds since
January 1, 1970, which is a different format than Ecto.DateTime expects. Because of this disparity, we're

going to create a small module to handle this for us.

$ touch lib/phoenix_chat/date_time.ex

/lib/phoenix chat/date time.ex
commit: coming soon

www.learnphoenix.io 197 of 407

https://www.learnphoenix.io

11/3/16

defmodule PhoenixChat.DateTime do
@behaviour Ecto.Type

def (), do: :datetime

def (milliseconds) when is_integer(milliseconds) do
with {:ok, datetime} <- DateTime.from_unix(milliseconds, :milliseconds),
{:0k, ecto_datetime} <- Ecto.DateTime.cast(datetime),
do: {:0k, ecto_datetime}
end

def (value) do
Ecto.DateTime.cast(value)
end

def (value) do
Ecto.DateTime.load(value)
end

def (value) do
Ecto.DateTime.dump(value)
end
end

Then we need to change our Message model to use our PhoenixChat.DateTime module in message.ex .

/web/models/message.ex
commit: coming soon

schema "messages” do
field :body, :string
field :timestamp, PhoenixChat.DateTime
field :room, :string
field :from, :string
belongs_to :user, PhoenixChat.User

timestamps
end

And now we have message persistence to our Postgres database. You'll also notice that when write
messages in your phoenix-chat component, the messages will appear on the correct side. That's
because we're now passing in the from field, which our component is using to determine on which side
the messages displays.

www.learnphoenix.io 198 of 407

https://www.learnphoenix.io

11/3/16

Create Anonymous User Model

e Create anonymous users with fake data
¢ Create and update models

At this point in our app, we have a functioning chat component and a backend that can handle
messages. The next step is to add our anonymous users to a list and add them to our admin dashboard
so our admin can start interacting with them.

But before we do that, we should give our anonymous users some fake information. Since it's hard to
remember users based on uuids, we're going to give our users fake names and avatars for easier
reference (if it's not clear to you why were are doing this, you'll see in a few lessons).

Add Faker

We're going to generate fake user data using the ubiquitous Faker package, which has an Elixir version.
It's worth glancing over the docs to see how much fake data we have access to. Let's add that now.

/mix.exs
commit: coming soon

www.learnphoenix.io 199 of 407

https://github.com/igas/faker
https://www.learnphoenix.io

11/3/16

[mod: {PhoenixChat, [1},
applications: [
:comeonin,
:cowboy,
:faker,
:gettext,

1]

end

defp do
L
:comeonin, "~> 2.3"},
:corsica, "~> 0.4"},
:cowboy, "~> 1.0"},
:faker, "~> 0.7"},
:gettext, "~> 0.11"},

Then be sure to run mix deps.get and restart your server.

$ mix deps.get

The next step is to generate two migrations: one to create an AnonymousUsers model and the other to
associate that anonymous user with our existing Messages model.

$ mix ecto.gen.migration create_anonymous_user

$ mix ecto.gen.migration message_belongs_to_anonymous_user

We'll start with the anonymous user migration. We want to use the uuid as the primary key, which is a
way of telling Ecto that the uuid is the unique identifier for each anonymous user. Ecto will, by default,

use :id anda :integer as the primary key. Each user will also have a name and an avatar (both of
which will be fake).

/priv/repo/migrations/2...9 create anonymous_ user.exs
commit: coming soon

www.learnphoenix.io 200 of 407

https://hexdocs.pm/ecto/Ecto.Schema.html
https://www.learnphoenix.io

11/3/16

defmodule PhoenixChat.Repo.Migrations.CreateAnonymousUsers do
use Ecto.Migration

def change do
create table(:anonymous_users, primary_key: false) do
add :id, :uuid, primary_key: true

add :name, :string
add :avatar, :string

timestamps
end
end
end

This should look familiar to you since it's basically the same as the other migrations we created. The next
migration is a little bit more interesting and introduces a new concept that we haven't touched on before.

We need to alter the existing :messages table to add a reference to the new :anonymous_users we just
created and remove the temporary :from field we added previously since we are now storing references
from a separate table.

To do this, we need to create both up and down blocks. The code in the up block runs a migration as you
would expect when you run mix ecto.migrate . The down block runs what is called a "down" migration,
which you can think of as an "undo”. In the event you screw up a migration, you can "rollback” your
migrations and re-run them (hopefully) with the right data the next time.

In our up migration, we're adding the :anonymous_user_id to the :messages table and declaring that it
references the :anonymous_user table we just created. We're also saying that when the referring
anonymous user is deleted (on_delete), change all messages references to that user (which no longer
exists) to nil.

In our down migration, we're saying, "if we have to undo this migration, remove the :anonymous_user_id
from the messages table and add :from back to the table".

/priv/repo/migrations/2...9 message belongs to_ anonymous_user.exs
commit: coming soon

www.learnphoenix.io 201 of 407
e

https://hexdocs.pm/ecto/Ecto.Migrator.html#up/4
https://hexdocs.pm/ecto/Ecto.Migrator.html#down/4
https://www.learnphoenix.io

11/3/16

defmodule .Repo.Migrations.MessageBelongsToAnonymousUser do
use Ecto.Migration

def do
alter table(:messages) do
add :anonymous_user_id, references(:anonymous_users, on_delete: :nilify_all, type: :u
remove :from
end
end

def do
alter table(:messages) do
remove :anonymous_user_id
add :from, :string
end
end
end

Now that we have our migrations, we need to set up our AnonymousUser model and update our Message
model to handle the new association.

Create and update models

Let's start by creating our AnonymousUser model.

$ touch web/models/anonymous_user.ex

Much of this should look familiar. We're creating has_many (docs) reference from our anonymous user to
her messages, saying that each anonymous user can have many messages associated with her.

The only tricky part is that we're telling our model explicitly not to auto-generate a primary key since we're
providing one with the uuid. The uuid is binary (a text string), so we need to specify @foreign_key_type
to :binary_id because it defaults to :integer . In sum, we're telling @primary_key thatthe :id should
not autogenerate andthatit'sa :binary_id.

In our changeset/2, we're referencing two functions that don't exist yet. We will create those below.

/web/models/anonymous_user.ex
commit: coming soon

www.learnphoenix.io 202 of 407

https://hexdocs.pm/ecto/Ecto.Schema.html#has_many/3
https://www.learnphoenix.io

11/3/16

defmodule .AnonymousUser do
use PhoenixChat.Web, :model

alias PhoenixChat.Message

@primary_key {:id, :binary_id, autogenerate: false}
@foreign_key_type :binary_id

schema "anonymous_users” do
field :name
field :avatar
has_many :messages, Message

timestamps
end

def (model, params \\ :empty) do
model
|> cast(params, ~w(id), ~w())
|> put_avatar
|> put_name
end
end

Now we need to create two functions to add a name and an avatar to our new anonymous user:
put_name/1 and put_avatar/1.

In put_name/1, we start by generating a fake name for our user. We do this by using Faker to generate a
random color and a buzzword_suffix, which gives us fake names like:

e Orange Alliance
e Blue Framework
e Purple Website

We don't care if they're unique since these are just for visual reference. From here, we use put_change/2
to add the :name to our changeset/2.

Then we use put_avatar/1 to do the same thing but for a 25 by 25 pixel image using Faker's image_url.

/web/models/anonymous_user.ex
commit: coming soon

www.learnphoenix.io 203 of 407

https://github.com/igas/faker/blob/master/lib/faker/color/en.ex
https://github.com/igas/faker/blob/master/lib/faker/company/en.ex
https://hexdocs.pm/faker/Faker.Avatar.html#image_url/2
https://www.learnphoenix.io

11/3/16

defmodule .AnonymousUser do

defp (changeset) do
adjective = Faker.Color.name |> String.capitalize
noun = Faker.Company.buzzword_suffix |> String.capitalize
name = adjective <> " " <> noun
changeset
|> put_change(:name, name)
end

defp (changeset) do
changeset
|> put_change(:avatar, Faker.Avatar.image_url(25, 25))
end
end

We're also going to add an additional function that will come into play later. Rather than keep a separate
table called something like :1lobby, we can figure out who our recently active users are by finding the
most recent messages and returning the users associated with those messages, with a default value of
the 20 most recent users (detailed explanation below the code).

/web/models/anonymous_user.ex
commit: coming soon

defmodule PhoenixChat.AnonymousUser do

@doc """
This query returns users with the most recent messages up to a given limit.
def recently_active_users(limit \\ 20) do
from u in __MODULE__,
left_join: m in Message, on: m.anonymous_user_id == u.id,
distinct: u.id,
order_by: [desc: u.inserted_at, desc: m.inserted_at],
limit: *limit
end
end

If you've worked a lot with SQL, this will look familiar to you. If this looks complicated, we'll go through it
line-by-line.

In the first line, we start with from u in __MODULE__, which is our way of telling Ecto that we want to

—

www.learnphoenix.io 204 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

search through anything that matches our AnonymousUser struct. In other words, it will look through all of
our anonymous users that we have stored in the database.

The next line uses a left_join, which is a SQL term that compares two tables and returns the first table
along with anything that matches from the second table. For an excellent example of a left join, check out
the docs from W3 Schools. In our case, we want to take our anonymous user's id and find all the
messages associated with that user so we can determine which anonymous users have most recently
sent a message.

Then we use distinct to make sure that all of the anonymous users are unique based on their ids. It's
worth noting that that not all databases support distinct . We're using Postgres, which does support it.

Then we pass in order_by along with two elements in a list, which tell our anonymous users that we
want to order them by most recent message, then by most recent addition to the database in descending
order based on timestamp (inserted_at). This way, we prioritize users that have active conversations
but still show users even if they haven't sent a message.

Finally, we 1limit the results to whatever was passed in, or default to 20 users. The caret (*) is required
when passing a value into an Ecto query. Without the caret, Ecto will think the variable is part of the query
syntax and not a value that you passed in.

Another thing to note is that Ecto does not care in which order you pass these arguments because it will
prepare a SQL statement for you with the proper ordering. So, for example, you can have you limit
statement before your order_by and it won't cause your results to be limited to 20 before they're
ordered.

The last thing we need to do is update our Message model to handle the new association with
anonymous users. The only difference here from previous associations is that we once again need to set
the primary key using :type toa :binary_id since our uuid is a string.

/web/models/message.ex
commit: coming soon

www.learnphoenix.io 205 of 407
e

http://www.w3schools.com/sql/sql_join_left.asp
https://www.learnphoenix.io

11/3/16

defmodule PhoenixChat.Message do
use PhoenixChat.Web, :model

alias PhoenixChat.{DateTime, User, AnonymousUser}

schema "messages” do
field :body, :string
field :timestamp, DateTime
field :room, :string

belongs_to :user, User
belongs_to :anonymous_user, AnonymousUser, type: :binary_id

timestamps
end

@required_fields ~w(body timestamp room)
@optional_fields ~w(anonymous_user_id user_id)

Before you move on to the next lesson, be sure to run your migration.

$ mix ecto.migrate

Now we have a way to add anonymous users to our database, associate them with incoming messages,

and return a list of our most recently active users. Keep in mind that the app is currently broken since we
haven't updated our controllers.

www.learnphoenix.io 206 of 407

https://www.learnphoenix.io

. 11/3/16
Learn Phoenix by Sam Corcos

Persist Anonymous Users

e Add anonymous users to admin channel
e Validate params

At this point, we have an AnonymousUser model and a changeset/2 to add them to the database, but we
aren't triggering this addition anywhere. In this section, we trigger a database addition when an
anonymous user joins our admin:active_users topic created previously.

We're also going to remove our admin presence from our active_users to make our frontend code
simpler (so we don't need to filter out admins any longer) and so we aren't passing along any extra data.
We're still keeping track of the admin presence on the backend and we will use that later on.

We also add some simple validations on the params we pass on our socket connection. For example, we
want to raise an error if both the id and uuid params are empty. This helps to simplify our code and lets
the frontend know if something is missing.

Add anonymous users to admin channel

We'll start by updating our join/3 function to pass along the socket with the id of the user who joined
the channel (either admin or anonymous user).

/web/channels/admin_channel.ex
commit: coming soon

www.learnphoenix.io 207 of 407
e

https://www.learnphoenix.io

11/3/16

defmodule .AdminChannel do
@moduledoc """
The channel used to give the administrator access to all users.

nnn

use PhoenixChat.Web, :channel
require Logger

alias PhoenixChat.{Presence, Repo, AnonymousUser}

@dOC nnn

The ‘admin:active_users' topic is how we identify all users currently using the app.

nnn

def ("admin:active_users"”, payload, socket) do
authorize(payload, fn ->
send(self, :after_join)
id = socket.assigns[:uuid] || socket.assigns[:user_id]
{:0k, %{id: id}, socket}
end)
end

Then we use pattern matching to match users that have a :user_id (which are our admins) and return
the socket without adding any data. This is effectively filtering out our admins on the backend so we don't
need to run the filter on the frontend and it ensures we aren't sending extra, unnecessary data to our
frontend. Recall that an underscore denotes a variable that will not be used in the body of the function
(_user_id). If you do not include this underscore, you will get a warning that there is an unused variable.

Then we create a new handle_info/2 function that matches a :uuid for an anonymous user. As soon
as this anonymous user joins, we check to make sure that the user is saved to the database using
ensure_user_saved , which we define below. Then, just as before, we track the presence state of this user
and push it to our socket, with the only difference that we are now sending a uuid rather than a generic
id since we are now only sending anonymous users.

/web/channels/admin channel.ex
commit: coming soon

www.learnphoenix.io 208 of 407
e

https://www.learnphoenix.io

11/3/16

defmodule PhoenixChat.AdminChannel do

@doc """
This handles the ‘:after_join' event and tracks the presence of the socket that
has subscribed to the ‘admin:active_users' topic.
def (:after_join, %{assigns: %{user_id: _user_id}} = socket) do
push socket, "presence_state"”, Presence.list(socket)
{:noreply, socket}
end

def (:after_join, %{assigns: %{uuid: uuid}} = socket) do
ensure_user_saved! (uuid)

push socket, "presence_state”, Presence.list(socket)

Logger.debug "Presence for socket:

{:0k, _} = Presence.track(socket, uuid, %{
online_at: inspect(System.system_time(:seconds))

n

1)
{:noreply, socket}
end

In our ensure_user_saved/1 function, we need to check if the user already exists. If the user does exist,
then we do nothing. If the user does not exist, then we create a new user with the uuid passedinasa
parameter. Recall that to add something to the database, you first need to create a changeset, then pass
that changeset to Repo to make the change.

/web/channels/admin_channel.ex
commit: coming soon

defmodule .AdminChannel do

defp (uuid) do
user_exists = Repo.get(AnonymousUser, uuid)
unless user_exists do
changeset = AnonymousUser.changeset (%AnonymousUser{}, %{id: uuid})
Repo.insert! (changeset)
end
end
end

So now, when an anonymous user joins a channel for the first time we add them to the database. You
should be careful where you add validations like this because they can quickly get out of control. For

www.learnphoenix.io 209 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

example, imagine if we added this validation on every message that was received rather than on join.
This would accomplish the same thing but would require dozens/hundreds of additional database reads

per user.

Validate params

It's generally good practice to validate your parameters when you receive data from a user. In our
user_socket , go ahead and add a validate_params/1 function (defined later) and remove the
:user_id from our socket since we are no longer passing along admin presence data.

/web/channels/user_socket.ex
commit: coming soon

defmodule PhoenixChat.UserSocket do

def (params, socket) do
user_id = params["id"]
user = user_id && Repo.get(User, user_id)
validate_params! (params)

socket = if user do
socket
|> assign(:user_id, user_id)

> assign(:username, user.username
b
|> assign(:email, user.email)
else
socket
|> assign(:uuid, params["uuid"])
end

{:0k, socket}
end

Now we need to define our validate_params/1 function. Ideally, we want to raise an error as early as
possible so we can track it down easier. In this case, we're pattern matching our id and uuid and
checking to make sure that they aren't empty. If they are, we raise an error that explicitly tells us what

the problem is.

If the parameters don't match anything, then we don't do anything (do: nil is a "no operation" or
llnoopll).

www.learnphoenix.io 210 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

/web/channels/user_ socket.ex
commit: coming soon

defmodule .UserSocket do

@empty ["", nil]
defp (%{"id" => id, "uuid" => uuid})

when id in @empty or uuid in @empty do
raise "id or uuid must not be empty”
end

defp (L), do:
end

At this point, our app is storing anonymous users when they join for the first time and we are sending only
the anonymous user's data to our frontend. The next step is to update our room_channel to make sure
we're sending along the new name and avatar to our frontend.

www.learnphoenix.io 211 of 407

https://www.learnphoenix.io

11/3/16

Broadcast Active and Inactive Users

¢ Poison.Encoder and \@derive
e Broadcast lobby_list

Now that we can receive messages, add anonymous users to the database, and keep track of recent
users based on the date of the last message they sent, we need to broadcast to our admins every time a
new user joins. Our frontend will then be able to listen to this event and handle updates accordingly.

This event will get triggered every time a user joins the admin:active_users topic so it will be up to the
frontend to check whether a user is already on the list.

We're also going to do a little bit of refactoring to use the @derive module attribute, which is a
convenient way to customize/instruct how Protocols treat our struct (explained in detail later). This is not
strictly necessary, but makes for cleaner code.

Reactor Message and RoomChannel

The first thing we're going to do is add @derive to our Message model. @derive (docs) is a module
attribute that allows you to customize how the struct is treated when it interacts with a Protocol (in our
case, our JSON API). We're going to instruct Poison.Encode to only encode certain fields and ignore the
rest.

This will save us from writing a bunch of code for specifying which fields to include in our JSON version
of our structs (which is what we're currently doing in our message_payload/1 function).

/web/models/message.ex
commit: coming soon

defmodule PhoenixChat.Message do
use PhoenixChat.Web, :model

alias PhoenixChat.{DateTime, User, AnonymousUser}

@derive {Poison.Encoder, only: ~w(id body timestamp room user_id anonymous_user_id)a}

www.learnphoenix.io 212 of 407
e

https://github.com/devinus/poison#encoding-only-some-attributes
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

So now, we send message data using our API, we're only going to send id, body, timestamp, room,

user_id, and anonymous_user_id.

We should also update our AnonymousUser to use @derive as wellto send id, name, and avatar.

/web/models/anonymous_user.ex
commit: coming soon

defmodule PhoenixChat.AnonymousUser do
use PhoenixChat.Web, :model

alias PhoenixChat.Message

@rimary_key {:id, :binary_id, autogenerate: false}
@foreign_key_type :binary_id
@derive {Poison.Encoder, only: ~w(id name avatar)a}

Now that we've defined what data we're sending from within our model, we no longer need a
message_payload/1 function to define our message payload. Let's go ahead and delete that from our

RoomChannel .

/web/channels/room channel.ex
commit: coming soon

defmodule .RoomChannel do
use PhoenixChat.Web, :channel
require Logger

alias PhoenixChat.{Message, Repo}

def ("room:" <> room_id, payload, socket) do
authorize(payload, fn ->
messages = room_id
|> Message.latest_room_messages
|> Repo.all
|> Enum.reverse
{:0k, %{messages: messages}, socket}
end)
end

www.learnphoenix.io 213 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Then let's pass anonymous_user_id as the uuid instead of the from field and remove the extra code
that called our no-longer-existing message_payload/1 function.

/web/models/room channel.ex
commit: coming soon

defmodule .RoomChannel do

def ("message”, payload, socket) do
payload = payload
|> Map.put("user_id", socket.assigns[:user_id])
|> Map.put(”anonymous_user_id", socket.assigns[:uuid])
changeset = Message.changeset(%Message{}, payload)

case Repo.insert(changeset) do
{:0k, message} —>
broadcast! socket, "message”, message
{:reply, :ok, socket}
{:error, changeset} ->
{:reply, {:error, %{errors: changeset}}, socket}
end
end
end

And now if you refresh your frontend, you should have a functioning app again.

Broadcast lobby _list

This where we use the recently_active_users/@ function we defined earlier to get the 20 most recently
active anonymous users. Recall that this works by looking through our Messages, finds the most recent
message from each anonymous user, and returns the 20 users that have sent or received messages
most recently.

After we make that query, we pass the list of 20 users along with our socket.

/web/channels/admin_channel.ex
commit: coming soon

www.learnphoenix.io 214 of 407

https://www.learnphoenix.io

11/3/16

defmodule .AdminChannel do

@dOC nnn

The ‘admin:active_users® topic is how we identify all users currently using the app.

nnn

def ("admin:active_users"”, payload, socket) do
authorize(payload, fn ->

send(self, :after_join)
id = socket.assigns[:uuid] || socket.assigns[:user_id]
lobby_list = AnonymousUser.recently_active_users |> Repo.all
{:0k, %{id: id, lobby_list: lobby_list}, socket}
end)
end

Next, we need to broadcast these changes to our frontend. The best time to do this is after a new user

joins the channel, so we can hook into our :after_join pattern match in handle_info to add the
broadcast.

We should also update our ensure_user_saved/1 to return the user after the query so we can pass that
user along to our broadcast .

/web/channels/admin_ channel.ex
commit: coming soon

www.learnphoenix.io 215 of 407

https://www.learnphoenix.io

11/3/16

defmodule PhoenixChat.AdminChannel do

def handle_info(:after_join, %{assigns: %{uuid: uuid}} = socket) do
user = ensure_user_saved! (uuid)

broadcast! socket, "lobby_list"”, user

push socket, "presence_state"”, Presence.list(socket)
Logger.debug "Presence for socket: #{inspect socket}"
{:0k, _} = Presence.track(socket, uuid, %{
online_at: inspect(System.system_time(:seconds))
1))
{:noreply, socket}
end

defp ensure_user_saved! (uuid) do
user_exists = Repo.get(AnonymousUser, uuid)
if user_exists do
user_exists
else
changeset = AnonymousUser.changeset (%AnonymousUser{}, %{id: uuid})
Repo.insert! (changeset)
end
end
end

But at the moment, we're going to broadcast these events to everyone who is subscribed to the channel,
but we actually only want to send this information to our admins. We're going to do this using
intercept/1 (docs), which allows us to hook into outgoing responses and manipulates them. In this
case, we want to hook into any broadcast to lobby_list and only broadcast it to administrators (not
anonymous users).

When the intercept happens, it passes to the handle_out function, in which we check if the user is an
admin (has a user_id). If so, we proceed. Otherwise, we return a {:noreply, socket} .

/web/channels/admin_channel.ex
commit: coming soon

www.learnphoenix.io 216 of 407
e

https://hexdocs.pm/phoenix/Phoenix.Channel.html#intercept/1
https://www.learnphoenix.io

11/3/16

defmodule PhoenixChat.AdminChannel do

intercept ~w(lobby_list)

@dOC nnn
Sends the lobby_list only to admins

nnn

def handle_out("lobby_list"”, payload, socket) do
assigns = socket.assigns
if assigns[:user_id] do
push socket, "lobby_list”, payload
end
{:noreply, socket}
end

And that's all we have to change in our admin_channel . We're now broadcasting the latest 20 active users
on join and sending an updated list any time a new user joins. Now we should head over to the frontend
to implement these changes.

www.learnphoenix.io 217 of 407

https://www.learnphoenix.io

. 11/3/16
Learn Phoenix by Sam Corcos

Connect the Frontend to AdminChannel

e Connect frontend
e Display active users

Now that our backend is keeping track of active users, we need to connect our frontend to list them. From
there, our admin can select a conversation and respond to incoming chats from anonymous users.

First we'll update our phoenix-chat component to add the AdminChannel tothe configureChannels
function. That way, when a user opens the chat window, they are subscribed to the active_users topic,
which adds them to the list of active users stored in ETS and keeps track of their status with Presence.

Then we need to update our phoenix-chat-frontend to list all users, make them selectable, retrieve
messages, and give our admin the ability to respond.

Updating phoenix-chat

Our update to the phoenix-chat component is pretty simple. Within the configureChannels function, all
we have to do is add a new channel called adminChannel and join it. Then on componentWillUnmount ,
we'll leave the channel.

/src/PhoenixChat. jsx
commit: coming soon

www.learnphoenix.io 218 of 407
e

https://www.learnphoenix.io

11/3/16

export class PhoenixChat extends React.Component {

componentWillUnmount () {
this.channel.leave()
this.adminChannel.leave()

b

configureChannels() {
this.channel = this.socket.channel (' room:${room}")

this.adminChannel = this.socket.channel(‘admin:active_users")
this.adminChannel. join()
.receive("ok”, () => {

console.log('Succesfully joined the active_users topic."‘)

And since we got rid of the from field, we need to update the from constant to determine on which side
our messages should appear.

/src/PhoenixChat. jsx
commit: coming soon

export class extends

render() {
const list = !this.props.messages
? null
: this.props.messages.map(({ body, id, anonymous_user_id }, i) => {
const right = anonymous_user_id === localStorage.phoenix_chat_uuid

www.learnphoenix.io 219 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

And that's all we have to change on our phoenix-chat component to connect to the admin channel.

Adding AdminChannel to Chat

Now we need to add Presence to our Chat component, which can then pass it down to the Sidebar
component, which renders the list of active users. We are going to handle all of this in local state for the
time being, but we may eventually move this into Redux if it makes sense.

Whent the component mounts, we want to initialize the socket and set up the adminChannel , which we
do within the configureAdminChannel function.

Within configureAdminChannel , we set the topic to active_users and listen for a presence_state or
presence_diff action, which lets us know a user joins or leaves the socket. Whenever a change occurs,
we update the this.state.presences object, which triggers a re-render.

Then we pass this.state.presences as props to our Sidebar component. Finally we connect our Chat
component to Redux and map the state of the user to the Redux state . It's a lot of code, but you've seen
most of it before.

Note: we're eventually going to move all of this logic to Redux. Generally speaking, when you find
yourself working with components that contain their own logic, you probably want to consider moving
that logic to Redux.

$ npm install --save phoenix

/app/components/Chat/index.js
commit: coming soon

www.learnphoenix.io 220 of 407
e

https://www.learnphoenix.io

11/3/16

import React from "react”

import cssModules from "react-css-modules”
import { Socket, Presence } from "phoenix”
import { connect } from "react-redux”
import style from "./style.css”

import { default as Sidebar } from "../Sidebar”

export class extends
constructor(props) {
super (props)
this.state = {
presences: {}

}

componentDidMount() {
const params = this.props.user
this.socket = new Socket("ws://localhost:4000/socket”, { params 3})
this.socket.connect()
this.configureAdminChannel ()

const mapStateToProps = state => ({
user: state.user

b))

export default connect(mapStateToProps) (cssModules(Chat, style))

Now configure the admin channel.

/app/components/Chat/index.js
commit: coming soon

www.learnphoenix.io 221 of 407
e

https://www.learnphoenix.io

11/3/16

export class Chat extends React.Component {

configureAdminChannel () {
this.adminChannel = this.socket.channel("admin:active_users")
this.adminChannel.on("presence_state"”, state => {
const presences = Presence.syncState(this.state.presences, state)
console.log('Presences after sync: ', presences)
this.setState({ presences })

b))

this.adminChannel.on("presence_diff", state => {
const presences = Presence.syncDiff(this.state.presences, state)

’

console.log('Presences after diff: ', presences)

this.setState({ presences })
b))
this.adminChannel. join()
.receive("ok”, ({ id }) => {
console.log('${id} succesfully joined the active_users topic.")

And finally render the Chat component.

/app/components/Chat/index.js
commit: coming soon

www.learnphoenix.io 222 of 407
e

https://www.learnphoenix.io

export class extends

render() {

return (

<div>
<Sidebar

presences={this.state.presences} />
<div className={style.chatWrapper}>
chat me
</div>
{ this.props.children }
</div>

11/3/16

The next thing we need to do is list our presences and users in our Sidebar . We're going to create two
functions within this component: 1istBy and renderList . The first function orders our data and the
second returns the jsx that we will render. We're going to use a lot from the new ES205 syntax, so a more

detailed explanation of each is provided below the codeblock.

Keep in mind that functions should sometimes live outside of the component. This is because React will
always redraw anything that is in a nested function because each time Sidebar renders, it creates a
completely new constant called 1istBy . This optimization doesn't usually make a difference, but it's

worth keeping in mind when you have components that are rendered a lot.

/app/components/Sidebar/index. js
commit: coming soon

www.learnphoenix.io

223 of 407

https://www.learnphoenix.io

11/3/16

import React from

import cssModules from "react-css-modules”
import { Presence } from "phoenix”

import style from "./style.css”

const listBy = (id, { metas: [first, ...rest] }) => {
first.count = rest.length + 1
first.id = id
return first

const renderList = props => {
return Presence.list(props.presences, listBy)
.map(({ id }) => {
return (
<div key={id}>
{ id }
</div>

)
b))

export const Sidebar = props => {
return (
<div className={style.sidebar}>
{ renderList(props) }
</div>

export default cssModules(Sidebar, style)

The renderList function is the return value from Phoenix.list . Note that Phoenix.list hereis
different on the frontend than the backend. As in, it's not this list, it's this one. There currently isn't much
in the way of docs, but that's the price you pay for working with cutting-edge frameworks.

From the docs:

By default, all presence metadata is returned, buta listBy function can be supplied to allow
the client to select which metadata to use for a given presence.

So within our 1listBy function, we take in props.presence . Each presence object has the keys id and
metas . metas contains a list of all the devices with which the user has been present. We are going to
use our listBy function to prioritize the first device/tab registered for each user. This is not especially
important for us since each anonymous user will generate a new uuid from each device, but we will do it
in case we need to track the presence of our admin.

We use object destructuring assignment and a spread operator to pull out the first value from our list

www.learnphoenix.io 224 of 407
e

https://hexdocs.pm/phoenix/1.2.0-rc.1/Phoenix.Presence.html#list/2
https://github.com/phoenixframework/phoenix/blob/master/priv/static/phoenix.js#L130-L182
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://www.learnphoenix.io

. 11/3/16
/ Z Learn Phoenix by sam Corcos

of metas . From there we are going to add the count field, which lets us know how many devices are
connected and the id of the user's presence.

Now, back to our renderList . After passing through Phoenix.list and going through the 1listBy
function, we have a list of presences that have been filtered down to one instance. We then map over the
list and return jsx objects for each presence.

Next we're going to make these users click-able so an admin can connect to a channel to receive and
respond to message from anonymous users.

www.learnphoenix.io 225 of 407

https://www.learnphoenix.io

11/3/16

Join Room and Receive Messages

e Connect to chatroom
® Receive messages

Now that we have a list of all active presences (we will eventually expand this to include all users, not just
currently active presences), we need to give our admin the ability to select one and respond. The Ul for
this will be clicking on a uuid on the left that represents a user.

This will subscribe the admin to the topic and allow her to respond to the user. It will also grab the most
recent 10 messages from the chatroom and use that to populate our Chat component with messages .

Create ChatRoom component

Our Chat component is already starting to get complicated, so we're going to create a new component
called ChatRoom to handle the actual rendering of messages and we'll leave the socket logic in Chat for
NOw.

Our ChatRoom component is going to receive a list of messages as props, which it will then render to the
page. Our renderMessages function maps over each of these messages and returns a jsx component for
each.

/app/components/ChatRoom/index. js
commit: coming soon

www.learnphoenix.io 226 of 407
e

https://www.learnphoenix.io

11/3/16

import React from "react”
import cssModules from "react-css-modules”
import style from "./style.css”

export class extends
componentDidUpdate() {
if (this.props.messages.length > 0) {
const lastMessage = this['chatMessage:${this
this.chatContainer.scrollTop = lastMessage.offsetTop
}
}

render() {
return (
<div
ref={ref => { this.chatContainer = ref }}
className={style.chatWrapper}>
{ this.renderMessages(this.props) }
</div>

export default cssModules(ChatRoom, style)

Then we should add a function to map over each of our messages and render them.

/app/components/ChatRoom/index. js
commit: coming soon

export class extends

renderMessages() {
return this.props.messages.map(({ body, id }, i) => {
return (
<div
ref={ref => { this[‘'chatMessage:${i}'] = ref }}
key={id}>
{ body }
</div>

www.learnphoenix.io 227 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Then we should add a wrapper to keep this component visible next to the Sidebar . Go ahead and
remove the .chatWrapper from ../Chat/style.css as well.

/app/components/ChatRoom/style.css
commit: coming soon

{

margin-left: 300px;
3

The next step is to connect our Chat component to our room channel and render our new ChatRoom
component.

Connecting to channel

Now we need to connect to our room channel, create a changeRoom function that we can pass to our
Sidebar that will allow us to change rooms, and render our ChatRoom component with the list of
messages we get from our socket.

/app/components/Chat/index.js
commit: coming soon

www.learnphoenix.io 228 of 407
e

https://www.learnphoenix.io

11/3/16

import { default as ChatRoom } from "../ChatRoom"

export class extends
constructor(props) {
super (props)
this.state = {
presences: {7},
messages: [1,
currentRoom:
3
this.changeChatroom = this.changeChatroom.bind(this)

}

nn

changeChatroom(room) {
this.channel = this.socket.channel (' room:${room}")
this.setState({
messages: []
1))

this.configureRoomChannel (room)

}

Now we need to configure our room channel to take in this new value.

/app/components/Chat/index.js
commit: coming soon

www.learnphoenix.io 229 of 407
e

https://www.learnphoenix.io

11/3/16

export class extends

configureRoomChannel (room) {
this.channel. join()
.receive("ok"”, ({ messages }) => {
console.log(*Succesfully joined the ${room} chat room.', messages)
this.setState({
messages,
currentRoom: room

D
1

.receive("error”, () => { console.log('Unable to join the ${room} chat room.') 3})

this.channel.on("message”, payload => {
this.setState({
messages: this.state.messages.concat([payload])

b))

And finally we need to pass our click handler to our Sidebar and pass our messages to our ChatRoom
component.

/app/components/Chat/index.js
commit: coming soon

www.learnphoenix.io 230 of 407
e

https://www.learnphoenix.io

11/3/16

export class extends
render() {
return (
<div>
<Sidebar
presences={this.state.presences}
onRoomClick={this.changeChatroom} />
<ChatRoom messages={this.state.messages} />

{ this.props.children }
</div>

The last change we need to make is to add an onClick to each of our presence components in the
Sidebar list.

/app/components/Sidebar/index. js
commit: coming soon

const renderList = props => {
return Presence.list(props.presences, listBy)
.map(({ id }) => {
return (
<div

onClick={() => { props.onRoomClick(id) }}
key={id}>

{ id }

</div>

At this point, our admin can receive messages. You should see an anonymous user's id appear in the
Sidebar and you should be able to click on that and see incoming messages. You can send messages
to this admin from your phoenix-chat component.

The next step is to allow our admin to respond.

www.learnphoenix.io 231 of 407
e

https://www.learnphoenix.io

. 11/3/16
Learn Phoenix by Sam Corcos

Change Room and Respond to Messages

¢ Respond to messages

Now that we have the ability to receive messages from our anonymous users, we need to be able to
respond to them.

Responding to messages

In order to respond to messages, we're going to need an input and a way to submit that message. We're
going to use a controlled input to handle our message data. We will cover controlled inputs in greater
detail in a future lesson, but for now you can think of them as a way to store values in state rather than in
the DOM element itself.

The first function we're adding is handleMessageSubmit , which we will attach to an event (e) on
onKeyDown on our input. If the key that was pressed happens to have the keyCode of 13, then it's the
return key. If the return key is pressed, we are currently in a room, and there is currently a value in the
input, we push a message to the room channel with the current room, the current value of the input, and a

timestamp. Then we reset the input's value.

The second function is handleChange , which listens for a change to the input field and updates
this.state.input with the new value.

The last function we're adding creates the input element.

/app/components/Chat/index.js
commit: coming soon

www.learnphoenix.io 232 of 407

https://facebook.github.io/react/docs/forms.html#controlled-components
https://www.learnphoenix.io

11/3/16

export class
constructor(props) {
super (props)
this.state = {
presences: {},
messages: [],
input: "",
currentRoom:

nn

}

this.changeChatroom = this.changeChatroom.bind(this)
this.handleMessageSubmit = this.handleMessageSubmit.bind(this)
this.handleChange = this.handleChange.bind(this)

handleChange(e) {
this.setState({ input: e.target.value })

b

handleMessageSubmit(e) {
if (e.keyCode === 13 && this.state.currentRoom && this.state.input) {
this.channel.push("message"”, {
room: this.state.currentRoom,
body: this.state.input,
timestamp: (new Date()).getTime()

1)
this.setState({ input: "" 3})

Then we need to pass along the handler functions to our ChatRoom component so we can connect them
to the onKeyDown and onChange events of our input.

/app/components/Chat/index.js
commit: coming soon

www.learnphoenix.io 233 of 407

https://www.learnphoenix.io

11/3/16

export class extends

render() {
return (
<div>
<Sidebar
presences={this.state.presences}
onRoomClick={this.changeChatroom} />
<ChatRoom
input={this.state.input}
currentRoom={this.state.currentRoom}
handleChange={this.handleChange}
handleMessageSubmit={this.handleMessageSubmit}
messages={this.state.messages} />
{ this.props.children }
</div>

The next step is to add a basic label to each of our messages so we can tell difference between
messages sent from our anonymous users and our admin.

/app/components/ChatRoom/index.js
commit: coming soon

www.learnphoenix.io 234 of 407
e

https://www.learnphoenix.io

11/3/16

import React from "react”
import cssModules from "react-css-modules”
import style from "./style.css”

export class extends

renderMessages() {
return this.props.messages.map(({
body,
id,
user_id,
anonymous_user_id

3, 1) =>{

const from = user_id ? 'Me’' : anonymous_user_id.substring(@,10)

\

const msg = ‘${from}:
return (
<div
ref={ref => { this[‘'chatMessage:${i}'] = ref }}
key={id}>
{ msg }
</div>

Now we should add an input box so our admin can respond to messages sent by the anonymous users.
We're going to take the event handlers we passed in from our Chat component and attach them to
events in the input box. Recall that when an onKeyDown event is triggered with the return key, the
message is submitted.

/app/components/ChatRoom/index. js
commit: coming soon

www.learnphoenix.io 235 of 407
e

https://www.learnphoenix.io

11/3/16

export class

renderInput() {
if (!this.props.currentRoom) return null
return (
<div className={style.inputWrapper}>
<input
value={this.props.input}
onKeyDown={this.props.handleMessageSubmit}
onChange={this.props.handleChange}
className={style.input} />
</div>

render() {
return (
<div className={style.container}>
<div
ref={ref => { this.chatContainer = ref }}
className={style.chatWrapper}>
{ this.renderMessages(this.props) }
</div>
{ this.renderInput(this.props) }
</div>

Let's also add some basic styling to make our input easier to use.

/app/components/ChatRoom/style.css
commit: coming soon

www.learnphoenix.io 236 of 407
e

https://www.learnphoenix.io

11/3/16

.container {
position: relative;
height: 100vh;
margin-left: 300px;

3

.chatWrapper {
position: relative;
height: calc(100vh - 60px);
padding-left: 20px;
padding-top: 10px;
padding-bottom: 10px;
overflow-y: scroll;

.input {
position: absolute;
bottom: 20px;
left: 20px;
width: calc(100% - 40px);
line-height: 40px;
font-size: 20px;
outline: none;
border: 1px solid #ccc;
border-radius: 3px;
padding-left: 10px;
color: #333;

Now when you enter information into the input and press return, you can send messages back to the
anonymous user.

www.learnphoenix.io 237 of 407
e

https://www.learnphoenix.io

11/3/16

List Active and Inactive Users

e Listing inactive users
e Merging with active users from Presence
e Distinguish admin messages

Currently, our lobby only lists active users that we are tracking with presence. You may recall that we are
also storing all of our users (not just the active users) in Postgres. What we would like to do is track
presence and the lobbylList separately and use presence to highlight users in the list that are currently
active and move them to the top of the list.

Fortunately, this is not difficult.

List inactive users

All we have to do is update our configureAdminChannel to handle lobby_list changes and update a
state variable called lobbyList when things change.

We're also going to leave our channels when the component unmounts so we don't accidentally keep the
connection alive for longer than necessary.

/app/components/Chat/index.js
commit: coming soon

www.learnphoenix.io 238 of 407
e

https://www.learnphoenix.io

11/3/16

export class Chat extends React.Component {
constructor(props) {

super (props)

this.state = {
presences: {},
messages: [],
input: "",
currentRoom: "",
lobbyList: []

componentWillUnmount() {

if (this.channel) this.channel.leave()

if (this.adminChannel) this.adminChannel.leave()
}

configureAdminChannel () {
this.adminChannel = this.socket.channel("admin:active_users")

this.adminChannel.on("lobby_list"”, (user) => {
if (!this.state.lobbylList.includes(user)) {
this.setState({ lobbylList: this.state.lobbylList.concat([user]) })
}
)

this.adminChannel. join()
.receive("ok", ({ id, lobby_list }) => {
console.log('${id} succesfully joined the active_users topic."‘)
this.setState({ lobbylList: lobby_list })

D)

Then we need to pass our lobbyList that we get from our backend and store in local state to our
Sidebar component. We will eventually refactor this and move this data into Redux, but are handling it
locally now to make it easier to see where the data is coming from.

/app/components/Chat/index. js
commit: coming soon

www.learnphoenix.io 239 of 407

https://www.learnphoenix.io

11/3/16

export class

render() {
return (
<div>
<Sidebar
currentRoom={this.state.currentRoom}
presences={this.state.presences}
lobbylList={this.state.lobbylList}
onRoomClick={this.changeChatroom} />
<ChatRoom
input={this.state.input}
handleChange={this.handleChange}
handleMessageSubmit={this.handleMessageSubmit}
currentRoom={this.state.currentRoom}
messages={this.state.messages} />
{ this.props.children }
</div>

So at this point, we're getting a list of all anonymous users in the lobby and passing it along to our
Sidebar . The next step is to take those users and render them in a list.

Merge with Presence

We're going to add a bunch of new functions that will allow us to order our users in a meaningful way,
then find users who are active and give them some special indicator.

The first function we're changing is our 1istBy function. Since we don't care about the number of
devices, we're just going to pass in an anonymous function that returns the id.

Next we're creating an orderByActivity function, which we're going to use to order our list of users. The
way this works is it takes in two values. If both users have the same activity, it doesn't change the
position. If the users are not the same (one is active, one is not), then if the current user is active
(a.active === true), we push it up one on the list. Otherwise, the user is not active and we push it down
one on the list.

/app/components/Sidebar/index. js
commit: coming soon

www.learnphoenix.io 240 of 407

https://www.learnphoenix.io

11/3/16

const orderByActivity = (a, b) => {
if (a.active === b.active) return 0

if (b.active === true) return 1
return -1

Now we need to update our renderList function to render our users. The activelist constis a list of
all our active users. We're eventually going to use this list of users to compare against our list of all users.
When there's a match, that means that the user is active and we will format that user differently. If no
match, then the user belongs in the list but is not currently present on the socket.

The lobbyList function is where we merge the two lists together to determine which users are active
and which are not. We start by mapping over each user in props.lobbyList (which contains all users
that have joined the lobby), then we check to see if activeList (which contains all our present users)
contains the current user with Array.includes. If the user ids match, then the user is deemed "active’, so
we set active to true (Array.includes returns true or false).

The last function is renderList, which now uses Array.sort and our orderByActivity function to put
the most recently active users at the top of the list. Then we map over each and assign an inset box-
shadow to all active users. Finally, we return the jsx object to render in the list.

Also, now that we have access to the name and avatar of each user, we can use that instead of the
random series of number in the uuid to identify them.

/app/components/Sidebar/index.js
commit: coming soon

www.learnphoenix.io 241 of 407

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://www.learnphoenix.io

11/3/16

const renderList = (props) => {
const activelList = Presence.list(props.presences, (id, _metas) => id)

const lobbylList = props.lobbylList.map(({ id, name, avatar }) => {
const active = activelList.includes(id)
return {
name,
avatar,
id,
active
3
1))

return lobbylList
.sort(orderByActivity)
.map(({ id, active, name, avatar }) => {
const newStyle = {}
if (active) newStyle.boxShadow = "inset @px @px 6px 4px rgba(58, 155, 207, 0.6)"
if (props.currentRoom === id) newStyle.background = "#ddd"

return (
<div
style={newStyle}
className={style.user}
key={id}
onClick={() => { props.onRoomClick(id) }}>
<div>

</div>
<div>
{ name }
</div>
</div>

Let's also add some styling to make our users easier to distinguish.

/app/components/Sidebar/style.css
commit: coming soon

www.learnphoenix.io 242 of 407
e

https://www.learnphoenix.io

.user {
display: flex;
align-items: center;
padding: 0.5rem;
border-bottom: 1px solid rgba(0,0,0,0.1);
border-bottom-width: 80%;

min-height: 50px;

cursor: pointer;

background: white;

transition: background 0.1s ease;

box-shadow: @px 4px 4px -2px rgha(0,0,0,0.2);
3
.user:hover {

background: #ddd;

by

11/3/16

We now have a functional list of users, prioritized by activity level. The admin can also click on any of

them and respond.

Empty room indicator

We should also give some indicator for when a no room is selected. Otherwise, people might just assume

that the app is broken. We'll do this in a new renderEmpty function.

/app/components/ChatRoom/index. js
commit: coming soon

renderEmpty() {
if (this.props.currentRoom) return null
return (
<div className={style.empty}>

No chat selected
</div>

And some styling for our placeholder.

www.learnphoenix.io

243 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

/app/components/ChatRoom/style.css
commit: coming soon

.empty {
display: flex;
align-items: center;

justify-content: center;
height: 80%;

color: #ccc;

font-size: 2em;

At this point, we can now see active and inactive users and respond to them properly. We're also sorting
the users by giving priority to those who are currently present.

www.learnphoenix.io 244 of 407

https://www.learnphoenix.io

. 11/3/16
Learn Phoenix by Sam Corcos

Styling the Chat Component

e Refactor with flexbox
e Make it look fancy

In this lesson, we just change our styling to use more of flexbox. This will set us up for our next lesson
where we display the recent activity of our users.

Update styles

Before we get much further, we should update the style of our Chat component and our Sidebar so we
can display things in a way that looks normal to a user. For starters, we're going to change around our
Chat component so that our elements are no longer absolutely positioned to demonstrate different ways
of aligning items and we're going to take this opportunity to show a few more features of flexbox.

After updating our styles, we're going to want a chatroom that looks something like the image below.

Q a56c4e79-1ea2-4e07-bf93-8e243d51553f Q

Last active: __ minutes ago

Search (coming soon)

.

a56c4e79-1ea2-4¢07-bf93-8e243d51553f] Me: It really makes me want to chat

a56c4e79-1: yeah, it's pretty cool

a56c4e79-1: i see you changed the style
a56c¢4e79-1: definitely a lot better
ab6c4e79-1: it's starting to look like a real app
Me: it sure is

Me: getting closer

Me: well...

Me: i can't think of any other filler text

Me: ill just write random stuff now

Although you generally don't want to mess with your App component, we're going to add some
background styling to it since we want our entire app to live within this background to give us that fancy,

subtle background color.

/app/components/App/index.js

www.learnphoenix.io 245 of 407

https://www.learnphoenix.io

/ E Learn Phoenix by Sam Corcos

commit: coming soon

import React from "react”

import cssModules from "react-css-modules”
import { connect } from "react-redux”
import style from "./style.css”

import Actions from "../../redux/actions”

export class extends
componentDidMount() {
this.props.dispatch(Actions.userAuth())
}

render() {
return (
<div className={style.background}>
<div className={style.backgroundHeader?} />
<div className={style.backgroundFooter} />
{this.props.children}
</div>

export default connect() (cssModules(App, style))

11/3/16

So now we have three additional elements around our Chat component. The first one we'll just set to
fixed and cover the entire app. Then we have a header, which we will color our theme red and a footer

which we will color an off-white.

/app/components/App/style.css
commit: coming soon

www.learnphoenix.io

246 of 407

https://www.learnphoenix.io

11/3/16

.background {
position: fixed;
top: 0;
left: 0;
height: 100vh;
width: 100vw;

.backgroundHeader {
position: absolute;
top: 0;
left: 0;
right: 0;
height: 200px;
background-color: rgbh(239, 95, 78);

.backgroundFooter {
position: absolute;
top: 200px;
left: 0;
right: 0;
height: calc(100vh - 200px);
background-color: rgh(245, 245, 250);

This will make our app look somewhat broken since our chat component does not have a background
color.

Refactor Sidebar component

We're going to add a header to this component, which will eventually be used to filter/search through
messages and we're going to change the positioning from absolute to flexbox. On the React-side, all
we're doing is adding a header. On the CSS-side, changing the layout to a flex column.

/app/components/Sidebar/index. js
commit: coming soon

www.learnphoenix.io 247 of 407
e

https://www.learnphoenix.io

11/3/16

export const Sidebar = props => {
return (
<div className={style.sidebar}>
<div className={style.header}>
Search (coming soon)
</div>
{ renderList(props) }
</div>

And now let's change the sidebar to a flex column with a width of 30%. We're also going to use a pattern
from the awesome site Subtle Patterns to give our sidebar a little flare.

/app/components/Sidebar/style.css
commit: coming soon

.sidebar {
display: flex;
flex-flow: column nowrap;
background: url("https://s3.amazonaws.com/learnphoenix-static-assets/images/swirl_pattern
overflow-y: scroll;
border-right: 1px solid rgb(213, 213, 213);
width: 30%;
position: relative;

.header {
display: flex;
justify-content: center;
align-items: center;
height: 60px;
background: rgh(238, 238, 239);
border-bottom: Tpx solid rgh(213, 213, 213);

And now our app looks even more broken! Next we need to wrap our ChatRoom component and change
the positioning of the items to use flexbox as well.

www.learnphoenix.io 248 of 407

https://subtlepatterns.com
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Refactor ChatRoom component

Since the elements in our ChatRoom component are mostly absolutely positioned, this is going to be a
significant change. The first thing we need to do is wrap our input so we can position it properly, then
we're going to wrap our chat component and set up flex rows and columns.

This app is basically just one row with two columns (one 30% width, and one 70% width). The first
column is our Sidebar , which we already handled, and the second contains the header, our messages,
and the input box.

First, let's wrap our whole Chat component with some padding to show a little bit of the background, and
then wrap our other components in a row.

/app/components/Chat/index.js
commit: coming soon

export class Chat extends React.Component {

render() {
return (
<div className={style.container}>
<div className={style.row}>
<Sidebar
presences={this.state.presences}
lobbyList={this.state.lobbylList}
onRoomClick={this.changeChatroom} />
<ChatRoom
input={this.state.input}
handleChange={this.handleChange}
handleMessageSubmit={this.handleMessageSubmit}
currentRoom={this.state.currentRoom}
messages={this.state.messages} />
</div>
{ this.props.children }
</div>

Now we're going to introduce our styles. These are pretty simple and bring to what is almost a functional

www.learnphoenix.io 249 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

app. The first wraps our chat component and pads it with 2rem so we show a little bit of the background
behind our chat interface. It also centers it.

The .row is basically our entire app, so we're going to give it a white background and a border. The
.column contains our header, our messages, and our input box.

/app/components/Chat/style.css
commit: coming soon

.container {
display: flex;
justify-content: center;
align-items: center;
position: relative;
height: 100vh;
width: 100vw;
z-index: 100;
padding: 2rem;

.row {
display: flex;
flex-flow: row nowrap;
height: 100%;
width: 100%;
border: 1px solid rgb(213, 213, 213);
background: white;

The next step is to style our ChatRoom component. We're also going to add a header which we can fill in
with content in a later lesson.

/app/components/ChatRoom/index. js
commit: coming soon

www.learnphoenix.io 250 of 407
e

https://www.learnphoenix.io

11/3/16

export class extends

renderHeader () {
return (
<div className={style.header}>
Header (coming soon)
</div>

render () {
return (
<div className={style.container}>
{ this.renderHeader() }

</div>

Then we should style the components in our chatroom.

www.learnphoenix.io 251 of 407
e

https://www.learnphoenix.io

11/3/16

.container {
position: relative;
display: flex;
flex-flow: column nowrap;
position: relative;
width: 70%;

.header {
display: flex;
flex-flow: row nowrap;
width: 100%;
background: rgh(238, 238, 239);
border-bottom: 1px solid rgb(213, 213, 213);
height: 60px;
display: flex;
flex-flow: row nowrap;
justify-content: space-between;
align-items: center;
padding-left: 10px;

.inputWrapper {
padding: @ 20px 20px 20px;
3

.input {
width: 100%;
line-height: 40px;
font-size: 16px;
outline: none;
border: 1px solid #ccc;
border-radius: 3px;
padding-left: 10px;
color: #333;

At this point, the app is starting to come together quite nicely! But if you start typing messages, you'll see
that the messages flow over behind our input box and our scrolling is all messed up. So let's add some
more styles to fix that.

This is also where we introduce flex-grow. You'll often see flex: 1 used, which is shorthand for the
following:

www.learnphoenix.io 252 of 407
e

https://www.learnphoenix.io

11/3/16

flex-grow: 1;

flex-shrink: 1;
flex-basis: auto;

3

Spend a couple minutes looking through this and this from CSS-Tricks for a great intro to how the flex
property is used. Since our header and input are fixed height, we want to be able to tell our

messageWrapper to fill all the remaining vertical space within our row . Thank to flexbox, all we have to do
is set flex-grow: 1.

/app/components/ChatRoom/style.css
commit: coming soon

.chatWrapper {
padding-top: 5px;

flex-grow: 1;
position: relative;
overflow-y: scroll;

So now that our app is styled and works properly, let's add some more detail to our Sidebar .

www.learnphoenix.io 253 of 407

https://css-tricks.com/boxes-fill-height-dont-squish/
https://css-tricks.com/almanac/properties/f/flex/
https://css-tricks.com
https://www.learnphoenix.io

11/3/16

Transactional Email with Mailgun and Bambo

e Set up Mailgun
e Set up Bamboo
¢ Send welcome email

The Elixir ecosystem is rich with libraries offering us the ability to send emails such as Swoosh and
Bamboo. For our application we'll be using Bamboo by Thoughtbot which has support for composable
emails and many different email providers. Bamboo also has really good documentation that's worth
looking over.

Sending emails is one of the ways we see Elixir sets itself apart from other languages like Ruby. With
great support for concurrency we won't need to include other dependencies to enable our applications to
send emails in the background.

Install Bamboo

The first thing we need to do is add our newest dependency, :bamboo to our mix.exs file:

/mix.exs
commit: coming soon

defp do
L
{:bamboo, "~> 0.7"},

Next we need to add :bamboo to our application function in mix.exs :

/mix.exs
commit: coming soon

www.learnphoenix.io 254 of 407
e

https://github.com/swoosh/swoosh
https://github.com/thoughtbot/bamboo
https://github.com/thoughtbot/bamboo
https://hexdocs.pm/bamboo/readme.html
https://www.learnphoenix.io

11/3/16

[mod: {PhoenixChat, []},
applications: [

:bamboo,

Then be sure to get your dependencies.

$ mix deps.get

Configuration
One of the best features of Bamboo is its support for different providers. For our project we'll be using
Mailgun but if you have a strong preference for another provider, the configuration should be similar.

Let's open up config/dev.exs and add a section for Bamboo at the bottom. This configuration will be
used only in development mode and informs Bamboo as to which adapter or provider to use:

/config/dev.exs
commit: coming soon

config :phoenix_chat, PhoenixChat.Mailer,

adapter: Bamboo.lLocalAdapter

The Bamboo.LocalAdapter is great for development. Rather than sending emails over the network and
through our providers, the emails are captured locally and available for previewing.

The other configurations need to be updated to include an appropriate Bamboo config. For testing we'll
want to use the special Bamboo.TestAdapter , which handles email in memory and does not send emails,
and in production we'll use the Bamboo.MailgunAdapter .

For a complete list of adapters see the Bamboo docs: Adapters.

Open config/test.exs and add the following:

/config/test.exs
commit: coming soon

www.learnphoenix.io 255 of 407
e

http://www.mailgun.com/
https://github.com/thoughtbot/bamboo#adapters
https://www.learnphoenix.io

11/3/16

config :phoenix_chat, PhoenixChat.Mailer,
adapter: Bamboo.TestAdapter

For the production configuration we'll use Mailgun and pull the API key and Mailgun domain from our
system environment variables, which we will define later:

/config/prod.exs
commit: coming soon

config :phoenix_chat, PhoenixChat.Mailer,
adapter: Bamboo.MailgunAdapter,

api_key: System.get_env("MAILGUN_API_KEY"),
domain: System.get_env("MAILGUN_DOMAIN")

Defining Emails

Now that we've installed Bamboo and configured it, we need to create our Mailer and define our emails.

Create a new file, 1ib/phoenix_chat/mailer.ex, so we can define our Mailer module:

$ touch lib/phoenix_chat/mailer.ex

/lib/phoenix chat/mailer.ex
commit: coming soon

defmodule .Mailer do

use Bamboo.Mailer, otp_app: :phoenix_chat
end

The Mailer is used for dispatching the emails to the adapter but construction of the Emails is done
elsewhere. Let's create an Email module lib/phoenix_chat/email.ex to construct our emails.

Phoenix is not necessary to use Bamboo, but we can use the special adapter to make email formatting
easier down the road. It also comes with this handy tool for previewing formatted emails. If you don't
need formatted emails, you can simply use import Bamboo.Email rather than Bamboo.Phoenix .

www.learnphoenix.io 256 of 407
e

https://github.com/thoughtbot/bamboo#using-phoenix-views-and-layouts
https://github.com/thoughtbot/bamboo#previewing-sent-emails
https://www.learnphoenix.io

11/3/16

$ touch lib/phoenix_chat/email.ex

/lib/phoenix chat/email.ex
commit: coming soon

defmodule .Email do
use Bamboo.Phoenix, view: PhoenixChat.EmailView

end

Next we'll need to create our first email. In Bamboo, emails are defined as functions and are built up
using a helpful domain-specific language (DSL). If you're not familiar with DSLs, you can think of them as
tiny, special-purpose languages or libraries that are really good at doing one thing--in this case, email.

To get started, we'll define a basic welcome email:

/lib/phoenix chat/email.ex
commit: coming soon

defmodule PhoenixChat.Email do
use Bamboo.Phoenix, view: PhoenixChat.EmailView

alias PhoenixChat.{User}

def welcome_email (%User{email: email}) do

new_email
|> to(email)
|> from("no-reply@phoenixchat.io")
|> subject("Welcome")
|> text_body("Welcome to PhoenixChat!")
end
end

Bamboo's APl is pretty easy. As you can see in the above code we specify the email to send to, the from
address, subject, and then the text body.

That's it for creating an email, now we need to send it.

Sending Emails

With Bamboo there are two ways to send emails within the current request and in the background. To

www.learnphoenix.io 257 of 407
e

https://en.wikipedia.org/wiki/Domain-specific_language
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

send an email within the current request, we use the deliver_now/1 function on our mailer. This function
will dispatch the email request immediately and will need a response before the HTTP request can
continue.

alias PhoenixChat.{Email, Mailer}

user .welcome_email |> Mailer.deliver_now

To send our emails in the background we can use the deliver_later/1 functionin Bamboo:

.welcome_email |> Mailer.deliver_later

The advantage of sending in the background is we won't block the current request, this has the least
impact on the user's experience and it's what we will use almost exclusively.

With our emails created and configured, we can proceed with integrating the welcome email into Phoenix.
Let's start by opening web/controller/user_controller.ex and creating a new method,
send_welcome_email/ , to handle sending the email.

/web/controllers/user_controller.ex
commit: coming soon

alias PhoenixChat.{Email, Mailer, User}

defp (user) do

user

|> Email.welcome_email

|> Mailer.deliver_later
end

Once we've created our function we can incorporate it into create/2, which is the function that gets
called when we create a new user.

/web/controllers/user_controller.ex
commit: coming soon

www.learnphoenix.io 258 of 407
e

https://www.learnphoenix.io

11/3/16

def (conn, %{"user” => user_params}) do
changeset = User.registration_changeset(%User{}, user_params)

case Repo.insert(changeset) do
{:0k, user} ->
{:0k, token, _claims} = Guardian.encode_and_sign(user, :token)

send_welcome_email (user)

That's it! Now our users will receive a simple welcome email when they register for a new account. If you
sign up, you should see something along the lines of the following in your server logs.

%Bamboo.Email{assigns: %{}, bcc: [], cc: [],
from: {nil, "no-reply@phoenixchat.io”}, headers: %{},
html_body: nil, private: %{}, subject: "Welcome",

text_body: "Welcome to PhoenixChat!”,
to: [nil: "info@learnphoenix.io"]}

www.learnphoenix.io 259 of 407

https://www.learnphoenix.io

11/3/16

Testing with Elixir and Phoenix: Controllers

e UserController tests
e Metaprogramming
e AuthController tests

We've already gone over the basics of testing in a previous lesson with React, so in this lesson we'll jump
right into testing your Phoenix app. We're going to start by testing our UserController .

To do this we're going to simulate requests by calling get/3, put/3, delete/3, post/3,etc. Those
functions simulate a dispatch to an endpoint in your app without the need to go through HTTP using
Phoenix.ConnTest.

UserController tests

The first thing you'll notice is the use PhoenixChat.ConnCase . This module comes by default in
test/support/conn_case.ex and it's worth looking it over to get a sense of what it's providing to you on
every test.

Now in order to save us some keystrokes, we're going to create two variables at the top of the file. One is
for valid user attributes and one for invalid. Generally speaking, when we pass valid attributes, we expect
things to pass, while invalid values should give us an error.

/test/controllers/user controller test.exs
commit: coming soon

defmodule .UserControllerTest do
use PhoenixChat.ConnCase

alias PhoenixChat.User
%{email: "me@test.com”, password: "some content”, username: "some content”}

%}

PhoenixChat.ConnCase provides us with a default setup block that passes a conn struct, just like we
would have in our actual Controller. From there, we can add things to it, such as headers. As it happens,

www.learnphoenix.io 260 of 407
e

https://hexdocs.pm/phoenix/Phoenix.ConnTest.html.
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

this is already set up for us from our generator, but it should look like the code below.

setup %{conn: conn} do

{:0k, conn: put_reqg_header(conn, "accept”, "application/json")}
end

The next block is our first test. Note that %{conn: conn} is the second argumentto test/3 (docs), which
is a pattern-match on the map passed by the setup block (the first argument is the string that describes
the test and the third argument is do block). A more detailed explanation below the code.

test "lists all entries on index"”, %{conn: conn} do
conn = get conn, user_path(conn, :index)

assert json_response(conn, 200)["data”] == []
end

In the first line of our test, we simulate the get request (docs) for users.index and update our conn
with that information.

Then we assert that the json response (docs) returned by users.index was successful (status code
200) and is an empty list, which is the result we should expect since the database has no user records.

Metaprogramming

In the next test, we create a user, then check to make sure that the user was added. So in order to make
our lives easier, we're going to create a utility function to create a user. This will allow us to call
create_user instead of a full Repo.insert/1 command each time. And since we're going to use this
function across multiple controllers, we're going to dig a little deeper into Phoenix to make this function
reusable.

We're going to add create_user/1 and create_user/2 to our test/support/conn_case.ex file. If you
open that file up, you'll see a block called using . This using block is what gets added every time you
add the use keyword to a module. So in the example of our UserControllerTest above, by adding use
PhoenixChat.ConnCase , we have effectively imported everything within this block. This is what is known
as metaprogramming in Elixir. It's abstraction layer upon abstraction layer.

www.learnphoenix.io 261 of 407
e

http://elixir-lang.org/docs/stable/ex_unit/ExUnit.Case.html#test/3
https://hexdocs.pm/phoenix/Phoenix.ConnTest.html#get/3
https://hexdocs.pm/phoenix/Phoenix.ConnTest.html#json_response/2
https://www.learnphoenix.io

11/3/16

using do
quote do
Import conveniences for testing with connections
use Phoenix.ConnTest

alias PhoenixChat.Repo

import Ecto

import Ecto.Changeset

import Ecto.Query, only: [from: 1, from: 2]

import PhoenixChat.Router.Helpers

The default endpoint for testing
@endpoint PhoenixChat.Endpoint
end

So now let's add the create_user functions and the necessary aliases to the file, and import
PhoenixChat.ConnCase into our using block. You might be thinking that we've created an infinite loop by
importing a module into itself, which imports itself into itself... but when you use import, it ignores the
using block, so by importing PhoenixChat.ConnCase into this block, we've just added the two
create_user functions into any module that uses use PhoenixChat.ConnCase .

/test/support/conn_case.ex
commit: coming soon

www.learnphoenix.io 262 of 407

https://www.learnphoenix.io

11/3/16

defmodule PhoenixChat.ConnCase do
use ExUnit.CaseTemplate

alias PhoenixChat.{Repo, User}

using do
quote do

import PhoenixChat.ConnCase

The default endpoint for testing
@endpoint PhoenixChat.Endpoint
end
end

def create_user!() do
Repo.insert! %User{username: "foo", email: "foo@bar.com"}
end

def create_user!(attrs) do
map = Map.merge(%{username: "foo", email: "foo@bar.com"}, attrs)
struct = struct(User, map)
Repo.insert! struct
end
end

In our test, we're going to simulate a post request with valid parameters to create a new user, then assert
that we get the appropriate 201 response for account creation and that we can find the user in the
database. For our query to work, we're going to drop (docs) the password field since we do not store plain
text passwords in our database.

To clarify, we're running two assertions to test this functionality. First we're making sure that our post
request worked, then we're making sure that the database was properly updated with the value.

/test/controllers/user_controller test.exs
commit: coming soon

test "creates and renders resource when data is valid”, %{conn: conn} do
conn = post conn, user_path(conn, :create), user: @valid_attrs
assert json_response(conn, 201)["data”]["id"]
assert Repo.get_by(User, Map.drop(@valid_attrs, [:password]))

end

www.learnphoenix.io 263 of 407

http://elixir-lang.org/docs/stable/elixir/Map.html#drop/2
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

The second line runs a post/2 (docs) request with the conn and user_path, which is an automatically
generated helper for calling our user route (docs). We're asking that route to render :create, which you
can seeinyour UserView .

If you want to see all your helpers, run the following and you will see all routes, with their helpers on the
left.

$ mix phoenix.routes

page_path GET / PhoenixChat.PageController :index
user_path GET /api/users PhoenixChat.UserController :index

Then we need to test to make sure that invalid attributes fails the way we want. This should already be in
place from our generator.

/test/controllers/user controller test.exs
commit: coming soon

test "does not create resource and renders errors when data is invalid”, %{conn: conn} do
conn = post conn, user_path(conn, :create), user: @invalid_attrs

assert json_response(conn, 422)["errors"] != %{}
end

We're also asserting that we get the proper error when an id is not present. Asserting errors is simple.
We use assert_error_sent/2, along with the error code we expect and a function that should generate
the error. In the case below, since there is no id of -1, it should give us an error. Your generator should
have created this for you as well.

Now we're going to test our :update function. Everything here is the same the previous test in which we
tested :create.

/test/controllers/user controller test.exs
commit: coming soon

test "updates and renders chosen resource when data is valid”, %{conn: conn} do
user = create_user!
conn = put conn, user_path(conn, :update, user), user: @valid_attrs

assert json_response(conn, 200)["data”]["id"]
assert Repo.get_by(User, Map.drop(@valid_attrs, [:password]))
end

Now we need to test the opposite and make sure it doesn't work with invalid parameters.

www.learnphoenix.io 264 of 407
e

http://elixir-lang.org/docs/stable/elixir/Process.html#get/2
https://github.com/phoenixframework/phoenix/blob/master/lib/phoenix/router/helpers.ex
https://github.com/elixir-lang/plug/blob/master/lib/plug/conn/status.ex
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

/test/controllers/user controller test.exs
commit: coming soon

test "does not update chosen resource and renders errors when data is invalid”, %{conn: con
user = create_user!

conn put conn, user_path(conn, :update, user), user: %{email: "foo"}
assert json_response(conn, 422)["errors"] != %{}
end

And for our last test, we're going to make sure that we can delete a user bu calling :delete and making
sure that we get a negative result from a Repo.get query by using refute .

/test/controllers/user controller test.exs
commit: coming soon

test "deletes chosen resource”, %{conn: conn} do
user = create_user!
conn = delete conn, user_path(conn, :delete, user)
assert response(conn, 204)
refute Repo.get(User, user.id)

end

AuthController tests

We have a lot to test in our AuthController . We aren't going to test the internals of things like Comeonin
or Guardian because it's safe to assume those will work.

$ touch test/controllers/auth_controller_test.exs

Just like we did with our previous tests, we need to set up our valid attributes and a setup block. This is
almost identical to our other controller.

/test/controllers/auth_controller test.exs
commit: coming soon

www.learnphoenix.io 265 of 407
e

https://www.learnphoenix.io

11/3/16

defmodule .AuthControllerTest do
use PhoenixChat.ConnCase

alias PhoenixChat.User
@valid_attrs %{email: "me@test.com”, password: "password”, username: "test"}

@invalid_attrs %{}
setup do
{:0k, conn: put_reqg_header(build_conn, "accept"”, "application/json")}

end

end

Now it's time to test our authentication routes. We're going to nest some of these tests within a
describe block so we can group similar tests.

For our first tests, we want to make sure that a successful authentication returns a JSON web token,
since that's the whole point of our authorization route.

In the first line, we create a user with valid attributes, then make a post request to
/auth/identity/callback with the valid parameters to successfully create an account.

Then we assert that the response is 201, which means it was created successfully.

Then we're asserting that the response contained the parameters we want (username and email), and at
the same time we are assigning the web token to the value token so we can use it later.

In our next assertion, we take that token we received in our last assertion and use
Guardian.decode_and_verify/1 to decode the token, which should work, and at the same time we are
storing the response in claims .

Then we take that claims value and find the user.id thatit's associated with. Check
PhoenixChat.GuardianSerializer.for_token/1 to see what's stored in sub.

Then we just make sure that if we give bad values an account does not validate.

/test/controllers/auth controller test.exs
commit: coming soon

www.learnphoenix.io 266 of 407

https://www.learnphoenix.io

11/3/16

describe "post '/auth/identity/callback'"” do
test "successful authentication returns JWT token”, %{conn: conn} do
user = User.registration_changeset(%User{}, @valid_attrs) |> Repo.insert!
params = %{email: user.email, password: "password"}
conn = post conn, "/auth/identity/callback”, params

response = json_response(conn, 201)["data”]
assert response

assert %{"username"” => "test", "token" => token, "email” => "me@test.com”} = response

assert {:ok, claims} = Guardian.decode_and_verify(token)
assert claims["sub”] == "User:#{user.id}"
end

test "unsuccessful authentication”, %{conn: conn} do
params = %{email: "non@existent.com”, password: "password"}
conn = post conn, "/auth/identity/callback”, params

assert json_response(conn, 400) == "Internal server error”
end
end

Our next describe block will handle our /auth/me route. This route takes in a JWT via authorization
header and checks to see if the token is valid.

First we need to create a user with valid parameters. Then we create a token by passing the connection
through Guardian .

Now that we have a valid token, we can simulate passing it to our /auth/me route in the auth header. We
then assert that the response we should receive is 200, which means it worked.

We're also going to assert that the response body returns the email, id, and the username of the user
because our frontend expects those values. If you forgot what the * does, it references a value above
rather than use the value for assignment.

In the second test, we simply pass an invalid token and assert that the response is 401 unauthorized.

/test/controllers/auth controller test.exs
commit: coming soon

www.learnphoenix.io 267 of 407
e

https://www.learnphoenix.io

11/3/16

describe "get '/auth/me'"” do
test "authorized user gets json response”, %{conn: conn} do
user = User.registration_changeset(%User{}, @valid_attrs) |> Repo.insert!
token = conn
|> Guardian.Plug.api_sign_in(user)
|> Guardian.Plug.current_token

conn = conn
|> put_req_header("authorization”, "Bearer #{token}")
|> get("/auth/me")

response = json_response(conn, 200)["data"]
assert response

%{email: email, id: id, username: username} = user
assert %{"email” => “email, "id" => *id, "username"” => “username} = response
end

test "unauthorized user”, %{conn: conn} do
conn = conn
|> put_req_header("authorization”, "Bearer fake_token")
|> get("/auth/me")

assert json_response(conn, 401) == "Internal server error”
end
end

And for the sake of optimization, we're going to give our test environment really bad keys so they
generate faster. This will overwrite our normal configuration when in the test environment.

/config/test.exs
commit: coming soon

config :comeonin, :bcrypt_log_rounds, 4
config :comeonin, :pbkdf2_rounds, 1

Debugging

If this is not your first time through the course, you might run into an error when you run mix test .

www.learnphoenix.io 268 of 407

https://www.learnphoenix.io

11/3/16

** (Postgrex.Error) ERROR (duplicate_table): relation "users"” already exists

If you run into this error, run MIX_ENV=test mix ecto.reset to reset your test database. Ecto creates a
separate database for your test environment, so just like on your actual app, when you start a new project
and your migrations change, you need to drop and create a fresh database.

www.learnphoenix.io 269 of 407

https://www.learnphoenix.io

. 11/3/16
Learn Phoenix by Sam Corcos

Testing with Elixir and Phoenix: Channels

RoomChannel tests
Channel helpers tests
AdminChannel tests
UserSocket tests

Channel tests, like Controller tests, simulate the broadcasting and pushing of events to the client without
making an actual socket connection. By simulating the connection, your tests will run much faster and
with less configuration so you can focus on testing the logic in your Channel handlers.

We're going to start with our RoomChannel .

RoomChannel tests

Just like with our controller tests, we get a lot out of the box with Phoenix. For Channels it's called
ChannelCase rather than ConnCase . It's worth taking a quick look at test/support/channel_case.ex to
get a sense of what you get for free with ChannelCase .

The setup block allows us to setup each test case with a socket that's subscribed to something that we
want to test, which in this case is room:lobby . We're also going assign a uuid to a number and
user_id to nil to test for anonymous users who are not admins.

To connect to the channel, we use subscribe_and_join/2 (docs).

While you're at it, go ahead and delete the existing tests.

/test/controllers/room _channel_ test.exs
commit: coming soon

www.learnphoenix.io 270 of 407
e

https://hexdocs.pm/phoenix/Phoenix.ChannelTest.html#subscribe_and_join/4
https://www.learnphoenix.io

11/3/16

defmodule .RoomChannelTest do
use PhoenixChat.ChannelCase

alias PhoenixChat.{RoomChannel, Message}

setup do
{:0k, %{messages: [1}, socket} =
socket("user_id", %{uuid: "1144", user_id: nil})
|> subscribe_and_join(RoomChannel, "room:lobby")
{:0k, socket: socket}
end

Now that we have our channel set up for each of our tests, we can start interacting with it. In our first test,
we're going to join a room, add messages to the database, then check to make sure the messages are
returned as the payload.

The first few lines add three messages to the database: two in room:1 and one in room:2 . The next line
calls the socket with user_id and %{some: :assign} which is there to communicate that it expects a
map for socket.assigns,then subscribes to the room:1 channel. We're using pattern matching in the
{:0k, %{messages: messages}, _} expression to match the result of our connection (which will be a list
of the latest 10 messages) to the term messages .

We then assert that we received two messages, since two of the messages we added were added to the
room we connected to: room:1 .

/test/controllers/room channel test.exs
commit: coming soon

test "joining a room returns messages from the DB as payload” do
timestamp = Ecto.DateTime.utc()
Repo.insert! (%Message{body: "Foo", timestamp: timestamp, room: "1"})
Repo.insert! (%Message{body: "Bar", timestamp: timestamp, room: "1"})
Repo.insert! (%Message{body: "Bar", timestamp: timestamp, room: "2"})

{:0k, %{messages: messages}, _} =
socket("user_id", %{some: :assign})
|> subscribe_and_join(RoomChannel, "room:1")

assert length(messages) ==
end

The last thing we need to test for our RoomChannel is that we can push messages using our socket. To

www.learnphoenix.io 271 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

do this we're creating a valid payload, then using the push function (docs) to send a message event to
the socket subscribed to room:1lobby with the payload we just defined. Recall that whenever a message
event is sent to our room channel, it triggers the def handle_in("message”, payload, socket) do
function defined in web/channels/room_channel .ex .

Then we use another assertion type called assert_reply (docs), which, as you might have guessed,
asserts that we received a reply that contains a reference to the event that was pushed, an :ok atom,
and the payload.

Then for good measure we're going to check our database to make sure that the message we sent was in
fact added to the database.

/test/controllers/room channel test.exs
commit: coming soon

test "message replies with status ok and saves message to DB", %{socket: socket} do
payload = %{
body: "hello”,
timestamp: 1470637865914,
room: "lobby",
from: "1144"

ref = push socket, "message"”, payload

assert_reply ref, :ok, payload

assert Repo.get_by(Message, payload)
end

ChannelHelpers tests

We created a few helpers to make authorization easier, so we need to test them too.

$ touch test/channels/channel_helpers_test.exs

Since this is normal Elixir, we are going to import ExUnit.Case, which is what you would import for any
other Elixir module you want to test. The functions in our ChannelHelpers are pure functions so they're
really easy to test. This is because pure functions have no side effects and always return the same output
given the same inputs.

/test/channels/channel helpers test.exs
commit: coming soon

www.learnphoenix.io 272 of 407
e

https://hexdocs.pm/phoenix/Phoenix.ChannelTest.html#push/3
https://hexdocs.pm/phoenix/Phoenix.ChannelTest.html#assert_reply/4
https://www.learnphoenix.io

11/3/16

defmodule .ChannelHelpersTest do
use ExUnit.Case

import PhoenixChat.ChannelHelpers

end

To test our authorization function, need to test both a passing and a failing test. Recall that authorize/2
takes in a payload and a function. The payload is used to determine if the user is authorized and the
function is what we run if the user is authorized. In this case, the payload is "test" since we currently set
authorized?/1 to return true no matter what it receives, and we are passing a function that returns "foo".
If we get that value, then the authorize/2 method worked properly.

Next we test a failed authorization. We do this by passing in a custom_authorize function that returns
false. Then we check to make sure that we received the error we expected: "unauthorized".

The last test is just a placeholder at this point since we will always return true no matter what value we
send to authorized?/1.

/test/channels/channel helpers_test.ex
commit: coming soon

test "authorize/2 and authorize/3" do
assert authorize("test"”, fn -> "foo"” end) == "foo"

failed_authorization = authorize("test”, fn -> "foo"” end, fn _ -> false end)
assert {:error, %{reason: "unauthorized"}} == failed_authorization
end

test "authorized?/1" do
assert authorized?(false) == true
end

AdminChannel tests

Now we're going to write tests for our AdminChannel , which is going to be very similar to our
RoomChannel tests.

$ touch test/channels/admin_channel_test.exs

First we add ChannelCase since we're testing a channel, then we add our setup block. We're going to

www.learnphoenix.io 273 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

use on_exit, which runs after every test, to call delete_all_objects/1 inourlist from :ets so we start
every test with a fresh ETS table.

/test/channels/admin channel test.exs
commit: coming soon

defmodule .AdminChannelTest do
use PhoenixChat.ChannelCase

alias PhoenixChat.{AdminChannel, LobbylList}

setup do
on_exit fn ->
:ets.delete_all_objects(LobbylList)
end
end

end

Our first test makes sure we can join the admin:active_users channel as an admin. This is the channel
from which we gain access to the list of all currently active users and populate the sidebar on our
frontend.

First we add some fake data to our LobbyList,then we simulate joining the socket with a user_id of 1,
since in our application we assume that any user with a user_id is an admin (anonymous users have a
uuid). This is mostly the same as our other channel test.

In our first assertion, we're testing that the lobby_list that we get back from our socket contains two
items by checking its length .

Then we use assert_push to assert that we can push a new event to lobby_list . In this case, we're
adding a new anonymous user.

Next we assert_push our presence_state, which starts out with an empty payload since no presences
have been tracked at this point (we're adding it now).

Finally, we assert_push that presence_diff is pushed to the client with a payload that signifies that a
presence has been tracked.

www.learnphoenix.io 274 of 407
e

https://www.learnphoenix.io

11/3/16

test "joining admin:active_users as admin” do
LobbyList.insert("foo")
LobbyList.insert("bar")

{:0k, %{lobby_list: lobby_list}, _socket} =
socket("user_id", %{user_id: 13})
|> subscribe_and_join(AdminChannel, "admin:active_users")

assert length(lobby_list) == 2

assert_push "lobby_list"”, %{uuid: 13}

assert_push "presence_state"”, %{}

assert_push "presence_diff"”, %{joins: %{"1" => %{}1}}
end

The last thing we want to test is to make sure that non-admins aren't receiving the list of all active users.

We start by connecting to the socket as an anonymous user by setting user_id to nil and uuid to
something valid.

Then we refute_push to refute thatthe lobby_list eventis triggered with a payload. This is our way of
testing handle_out/3 for lobby_list, which filters non-admins from receiving the event.

/test/channels/admin_channel test.exs
commit: coming soon

test "non-admin users do not receive the 'lobby_list' event on join" do
{:0k, %{lobby_list: _3}, _} =
socket("user_id", %{user_id: nil, uuid: 53})
|> subscribe_and_join(AdminChannel, "admin:active_users")

refute_push "lobby_list”, %{}
end

UserSocket tests

The last thing we need to test for our channels is our UserSocket . All we need to do to test this is insert a
user into our database and make sure that the user is being assigned to our socket.

$ touch test/channels/user_socket.exs

The first line adds an admin, then we connect to our UserSocket and pass the newly created admin's id

www.learnphoenix.io 275 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

along to it. Then we subscribe_and_join/3 the socket and then assert that we find each of the
parameters we expect.

In the second test, we do basically the same thing but as an anonymous user. If the user is anonymous,
she won't have a user_id, so we refute that there is one, and then assert that the uuid is the same as
the one we passed in.

/test/channels/user socket.exs
commit: coming soon

defmodule PhoenixChat.UserSocketTest do
use PhoenixChat.ChannelCase

alias PhoenixChat.{Repo, User, UserSocket}

test "connecting to user socket as logged-in user” do
admin = Repo.insert!(%User{email: "admin@bar.com”, username: "admin"})

{:0k, socket} = connect(UserSocket, %{"id"” => admin.id})
{:0k, _, socket} = subscribe_and_join(socket, "room:1", %{})

assert socket.assigns.user_id == admin.id

assert socket.assigns.email == admin.email

assert socket.assigns.username == admin.username
end

test "connecting to user socket as anonymous user” do
{:0k, socket} = connect(UserSocket, %{"uuid” => 25})
{:0k, _, socket} = subscribe_and_join(socket, "room:25", %{})

refute socket.assigns.user_id
assert socket.assigns.uuid == 25
end

www.learnphoenix.io 276 of 407
e

https://www.learnphoenix.io

11/3/16

Testing with Elixir and Phoenix: Models

o Write tests for User model
o Write tests for Message model

The tests we're going to write for our models are a little bit more specific than the ones we wrote for our
controllers and channels. This is because we may call Model behaviors in our Controllers or Channels but
not the other way around.

So we need to test our input data validations and our custom queries.

Channel/Controller tests often indirectly test the behavior of our model, like when we get initial messages
on channel.join and expect latest_room_messages/2 to have been called with the most recent 10
messages. But we also want to make sure that our models work independently of our controllers and
channels. Fortunately these tests are simpler than the Controller/Channel tests since we can call the
functions directly (e.g. User.changeset/2) rather than simulating an HTTP request like we had to do with
our Controller.

User model

We start by importing ModelCase , which contains useful functions for Model testing. Check them out at
test/support/model_case.ex . Then, just as we did in our other tests, we create a set of valid and invalid
attributes to make our tests easier to read.

/test/models/user test.exs
commit: coming soon

defmodule .UserTest do
use PhoenixChat.ModelCase

alias PhoenixChat.User

%{email: "foo@bar.com”, encrypted_password: "some content”, username: "some

%{}

Since we don't have any custom queries for our User model yet, all we're going to test is our validations

www.learnphoenix.io 277 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

on input data. The first and simplest is testing our changeset with valid inputs. To do this we use
changeset.valid?, which is a field in the Ecto.Changeset struct (docs). If you log a valid changeset,
you'll get something like the result below (note the valid?: true field).

#Ecto.Changeset<action: nil, changes: %{email: "foo@bar.com”, username: "some content”}, er

This should be the same as the output from the generator.

/test/models/user_test.exs
commit: coming soon

test "changeset with valid attributes” do
changeset = User.changeset(%User{}, @valid_attrs)
assert changeset.valid?

end

Then we're going to test all the ways in which we can make an invalid changeset . Cure

If you look at our changeset in web/models/user.ex,you'll see that we have a few constraints: namely
cast, validate_format, validate_length, and unique_constraint.

def (model, params \\ :empty) do
model
|> cast(params, ~w(email username), [1)
|> validate_format(:email, ~r/@/)
|> validate_length(:username, min: 1, max: 20)

|> update_change(:email, &String.downcase/1)
|> unique_constraint(:email)
|> update_change(:username, &String.downcase/1)
|> unique_constraint(:username)
end

In each of the following tests, we're going to create a changeset with invalid attributes of a particular type
and check the error message to make sure it's the error we expect.

changeset stores errorsinits :errors field, which is populated by a list of two-element tuples in the
format {field_name, error_msg} . So in our assertion, we're pulling out the value we want using in to
pull the value out of the errors list. We encourage you to put in the occasional I0.puts to make sure
you understand which values are coming from where.

/test/models/user test.exs
commit: coming soon

www.learnphoenix.io 278 of 407
e

https://hexdocs.pm/ecto/Ecto.Changeset.html
https://www.learnphoenix.io

11/3/16

test "changeset with blank email and username” do
%{errors: errors} = User.changeset(%User{}, %{})
assert {:email, {"can't be blank”, [1}} in errors
assert {:username, {"can’'t be blank”, []1}} in errors
end

test "changeset with invalid email format"” do
%{errors: errors} = User.changeset(%User{}, %{email: "foo"})
assert {:email, {"has invalid format”, []}} in errors

end

test "changeset with username invalid length” do

long_username = String.duplicate "f", 21

%{errors: errors} = User.changeset(%User{}, %{username: long_username})

assert {:username, {"should be at most %{count} character(s)"”, [count: 20]}} in errors
end

test "changeset must have a unique email” do
changeset = User.changeset(%User{}, @valid_attrs)
Repo.insert! (changeset)

changeset = User.changeset(%User{}, @valid_attrs)

{:error, changeset} = Repo.insert(changeset)

assert {:email, {"has already been taken”, [1}} in changeset.errors
end

test "changeset must have a unique username” do
changeset = User.changeset(%User{}, @valid_attrs)
Repo.insert! (changeset)

attrs = Map.put(@valid_attrs, :email, "test@bar.com")

changeset = User.changeset(%User{}, attrs)

{:error, changeset} = Repo.insert(changeset)

assert {:username, {"has already been taken"”, []}} in changeset.errors
end

Then we need to test our registration_changeset inthe same way. First we pass valid attributes and

make sure it works. We're also testing to make sure that an encrypted_password field was created by
using the get_change/3 method (docs). We don't need to test put_encrypted_pw/1 directly because it is
safe to assume that Comeonin and Bcrypt work properly.

Once we've tested a passing changeset, we send a password that is too short and ensure that our error
corresponds to the "password is too short" error.

/test/models/user test.exs
commit: coming soon

www.learnphoenix.io 279 of 407
e

https://hexdocs.pm/ecto/Ecto.Changeset.html#get_change/3
https://www.learnphoenix.io

11/3/16

test "registration changeset with valid attributes” do
valid_attrs = Map.put(@valid_attrs, :password, "password")
changeset = User.registration_changeset(%User{}, valid_attrs)
assert changeset.valid?
assert get_change(changeset, :encrypted_password)

end

test "registration changeset with invalid password length"” do
long_password = String.duplicate "p", 101
%{errors: errors} = User.registration_changeset(%User{}, %{password: long_password})
assert {:password, {"should be at most %{count} character(s)"”, [count: 100]}} in errors
end

Message model

Our message model is a little bit more complicated since we need to test our custom query that fetches
the latest 10 posts.

First we set up the valid and invalid attributes.

/test/models/message_test.exs
commit: coming soon

defmodule .MessageTest do
use PhoenixChat.ModelCase

alias PhoenixChat.Message

@valid_attrs %{body: "some content”, room: "some content”, timestamp: "2010-04-17 14:00:0
@invalid_attrs %{}

Then we test our changeset with those attributes, just as we did with the User model.

/test/models/message_test.exs
commit: coming soon

www.learnphoenix.io 280 of 407

https://www.learnphoenix.io

11/3/16

test "changeset with valid attributes” do
changeset = Message.changeset(%Message{}, @valid_attrs)
assert changeset.valid?

end

test "changeset with invalid attributes” do
%{errors: errors} = Message.changeset(%Message{}, @invalid_attrs)
assert {:body, {"can’'t be blank”, [1}} in errors
assert {:timestamp, {"can’t be blank”, []}} in errors
assert {:room, {"can't be blank”, [1}} in errors
end

And now we test our query. We can test queries by running them and then checking the records returned
by the query and matching them with the results that we expect.

In some circumstances, we may choose to run an assertion on the query struct returned by Ecto . We're
going to do this in the last assertion of this test because all we're testing is that the default 1imit is set
to 10. You could also test this by creating 11 messages, running the query, then assert that we only got 10
back.

We prepare the test by inserting multiple messages to the database with different timestamps, since we
need to know which are the most recent to ensure they are properly ordered.

Then we create our query by calling latest_room_messages/2 with 1 asthe room (note that we added
three messages to room 1) and 2 as the override for the default value of 10, so we will only get the two
most recent messages back. Now that we've created the query we want, we use Repo.all/1 to get the
result of the query.

Now we run our first assertion, which makes sure that we only received 2 messages. If we hadn't
specified 2 inour latest_room_messages/2, we should have received all 3 messages we added to the
database because the default limit is 10 messages.

From there we use the head-tail pattern matching to separate out the first message from the list (the
head) from the rest of the message (the tail) and assign the head to msg1 and the tail to msg2 .

Then in our assertion, we are checking to make sure that the second message (msg2) has the same
timestamp value as the second message we added to our database (second). We do this with
Ecto.DateTime.compare/2. Keep in mind that comparing Ecto.DateTime structs with things like > or
other comparison operators won't work as expected because they're treated as structs rather than
normal values.

Our next assertion checks to make sure that the values we received are ordered properly. We expect that
our most recent (by timestamp) message should be first, so we use compare/2 again to assert that
msgl.timestamp is greaterthan (:gt) msg2.timestamp .

The last assertion, as mentioned earlier, tests to make sure that the default value for our 1imit is 10 if

www.learnphoenix.io 281 of 407
e

http://elixir-lang.org/getting-started/pattern-matching.html#pattern-matching
https://hexdocs.pm/ecto/Ecto.DateTime.html#compare/2
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

we do not specify anything.

/test/models/message_test.exs
commit: coming soon

test "query that returns latest messages of a given room” do

first Ecto.DateTime.from_erl({{2016, 5, 233}, {12, 30, 12}})

second = Ecto.DateTime.from_erl({{2016, 5, 24}, {12, 30, 12}})

third Ecto.DateTime.from_erl({{2016, 5, 25}, {12, 30, 123}})

Repo.insert! (%Message{room: "1", body: "test", timestamp: first})

Repo.insert! (%Message{room: "1", body: "test”, timestamp: second})

Repo.insert! (%Message{room: "1", body: "test"”, timestamp: third})

Repo.insert! (%Message{room: "2", body: "test”, timestamp: Ecto.DateTime.utc()})

messages = Message.latest_room_messages(”1", 2) |> Repo.all
assert length(messages) ==

[msgl | [msg2]] = messages

assert Ecto.DateTime.compare(msg2.timestamp, second) == :eq

assert Ecto.DateTime.compare(msgl.timestamp, msg2.timestamp) == :gt

assert {10, :integer} in Message.latest_room_messages("”1").limit.params
end

If you run your tests and you're getting an error along the lines of the code below, you are most likely
running the wrong version of Ecto. You need to upgrade to Ecto 2.0.

3) test changeset with invalid attributes (PhoenixChat.MessageTest)
test/models/message_test.exs: 14
Assertion with in failed
code: {:body, "can't be blank"”} in errors

lhs: {:body, "can't be blank"}
rhs: [body: {"can't be blank”, [1}, timestamp: {"can't be blank”, []1},
room: {"can't be blank”, []}]
stacktrace:
test/models/message_test.exs:16: (test)

www.learnphoenix.io 282 of 407
e

https://www.learnphoenix.io

11/3/16

Creating an Organization Model

e (Creating the model
e Writing tests

At this point in our app, all users who sign up will have access to the same chatroom. This is fine if you're
self-hosting, but we want to build this to handle multiple accounts, which we will call Organizations .
Then at some point, we will add the ability to include multiple administrators within each organization.

For example, if you have two websites, say sightlinemaps.com and learnphoenix.io, each website would
represent an organization. We want to send chat messages from visitors to sightlinemaps.com only to
the admins of the Sightline Maps organization, and not to LearnPhoenix.

The structure of our organizations will look like the image below, with the following characteristics: 1)
Every user (admin/owner) may only be associated with one organization, 2) Each organization may only
have one owner, 3) Every organization may have multiple administrators who can see and respond to
messages.

ORGANIZATION

(E.G. HTTPS://SIGHTLINEMAPS.COM)

SAN@F00.COM

BEN@FO00.£0M JASON@F00.£0M

Creating an Organization model

www.learnphoenix.io 283 of 407

http://sightlinemaps.com
http://learnphoenix.io
http://sightlinemaps.com
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

We're going to start by adding an Organization model with only three fields:

public key -randomly generated unique key that will be used for routing messages from users to
admins. website - a unique website. owner - an association with a User . This is the creator/owner of
the organization.

The public key will be automatically generated when an organization is created. This public key will be
used for routing messages from users to admins. All users of website A will use the same public key as
all admins of website A. Every user and admin socket connection will store the public key of the relevant
organization.

We also take steps to ensure our data is valid since we want website and public_key to be unique.
Also, we want the website to have a valid URL format. So to validate the URL format, we use Regular
Expressions, which we will cover only briefly. If you are not familiar with Regular Expressions, there are
ample resources online to learn how they work and what they are used for. One of them is regexone.com.

So now let's create an Organization model with a website,a public_key, and an owner_id.We're
also going to generate the controller and a lot of other boilerplate that comes with it by using mix
phoenix.gen. json.

$ mix phoenix.gen.json Organization organizations \

public_key website owner_id:references:users

Then we need to change a few things. The first notable change is that we're addinga :nilify_all

option to the :on_delete for our user (docs). The reason we're doing this is because every organization
must have an owner, and if a user is deleted, we have to decide what to do with the organization. For now,
we're just going to set the value of the owner to nil and we can later decide what we want to do with un-
owned organizations. If we didn't do this, we would only know if an organization is un-owned by filtering
out all organization that do not have a user that is currently registered.

Then we change around our index since we want our organizations to be unique based on their
public_key and their website . We're also adding an index on owner_id because we might have to
search based on that parameter at some point.

/priv/repo/migrations/...create organization.exs
commit: coming soon

www.learnphoenix.io 284 of 407
e

https://regexone.com/
https://hexdocs.pm/ecto/Ecto.Migration.html#references/2
https://www.learnphoenix.io

11/3/16

defmodule .Repo.Migrations.CreateOrganization do
use Ecto.Migration

def do
create table(:organizations) do
add :public_key, :string, null: false
add :website, :string, null: false
add :owner_id, references(:users, on_delete: :nilify_all)

timestamps()
end

create index(:organizations, [:owner_id])

create unique_index(:organizations, [:public_key])

create unique_index(:organizations, [:websitel)
end

And now we have to build out our Organization model. For the sake of clarity, we're going to go through
each function individually. The firstis our changeset , in which we define what is a valid Organization
model with a variety of constraints. These constraints and functions are defined below the changeset
and are explained in greater detail below. The format of the changeset should look familiar.

/web/models/organization.ex
commit: coming soon

www.learnphoenix.io 285 of 407

https://www.learnphoenix.io

11/3/16

defmodule .Organization do
use PhoenixChat.Web, :model

schema "organizations"” do
field :public_key, :string
field :website, :string
belongs_to :owner, PhoenixChat.Owner

timestamps()
end

@doc nnn
Builds a changeset based on the ‘struct® and ‘params'.

nnn

def (struct, params \\ %{}) do
struct
|> cast(params, [:website])
|> validate_required([:website])
|> update_change(:website, &set_uri_scheme/1)
|> validate_change(:website, &validate_website/2)
|> unique_constraint(:website)
|> put_public_key()
|> unique_constraint(:public_key)
end

Within our changeset pipeline, we have a put_public_key/1 function. This is the function that generates
the :public_key forthe organization. We're going to allow for the future possibility that someone might
need to change their information without changing the public_key, so we're going to use this function
only if the organization is new, which we determine based on whether the incoming data has an id field
(if it's been added to the database already, it will have an id, otherwise it won't).

Assuming the organization is new and the changeset is valid, we pass it along to put_change/3 (docs),
which changes a key (in this case :public_key) with a value. On our case, that value is the output of
another function we need to create called random_key/@ . If the organization already exists, then we pass
it along to the rest of the changeset without changing the public_key field.

Within the random_key function, we're generating a random key using the crypto module in Erlang,
which gives us random bytes which encode to Base64 text, then we trim that to a certain number of
characters. We're setting a default length of 10 characters. If you're interested in learning more about has
collision probabilities to determine how long you should make your API key, check our blog post on the
subject.

/web/models/organization.ex
commit: coming soon

www.learnphoenix.io 286 of 407
e

https://hexdocs.pm/ecto/Ecto.Changeset.html#put_change/3
https://blog.learnphoenix.io/how-long-should-i-make-my-api-key-833ebf2dc26f#.a4s7j1s67
https://www.learnphoenix.io

11/3/16

defmodule .Organization do
use PhoenixChat.Web, :model

defp (%{data: data} = changeset) do
if changeset.valid? && !data.id do
changeset
|> put_change(:public_key, random_key())
else
changeset
end
end

defp (length \\ 10) do

:crypto.strong_rand_bytes(length) |> Base.encode64 |> binary_part(@, length)
end

The next couple functions deal with the website input. If the user provides an input for a website without
a URI prefix, such as http://, https://,or ftp://,we are going to prepend it with a default URI
scheme of https://, so that a website of foo.com becomes https://foo.com.

Within this function, we're using Elixir's Regex module to match on any string that starts with (*) any set
of numbers or letters (w+) followed by :// . If it matches, that means the website provided already has a
URI scheme. If it doesn't match, then we're prepending https:// to it. And regardless of whether it
matches or not, we're turning the whole string into lowercase before returning. If you want to test out if
your particular regex is valid with Elixir, check out Elixre (you might even want to bookmark it).

/web/models/organization.ex
commit: coming soon

www.learnphoenix.io 287 of 407

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://elixir-lang.org/docs/stable/elixir/Regex.html
http://www.elixre.uk/
https://www.learnphoenix.io

11/3/16

defmodule PhoenixChat.Organization do
use PhoenixChat.Web, :model

defp set_uri_scheme(nil), do: nil
defp set_uri_scheme(website) do
if Regex.match?(~r/*\w+:\/\//, website) do
website
else
"https://" <> website
end |> String.downcase()
end
end

Inthe validate_website function, we're validating that the website address we received is valid. This a
complicated thing to match and we aren't going to even attempt to handle the edge cases, but this
validation should handle the overwhelming majority of websites (if you want to get a sense of how many
random things are actually valid URLs, check out formvalidation.io). This function starts by using the Elixir
URI module to split the website into scheme (e.g. https://)and host (e.g. learnphoenix.io).

We want to return an error if the URI scheme is not http or https, or if it does not pass our
valid_host_format/1 function, which has its own regular expression. The first grouping of the regular
expression looks for some series of numbers and letters thatendina . (*([a-zA-z]+\.)). The asterisk
(*) tells us that

Within the valid_host_format/1 function, we're running a new regular expression that checks to make
sure that the url starts with some series of numbers and/or letters, followed by a . , followed by anything
(*), and must end with a series of letters.

/web/models/organization.ex
commit: coming soon

www.learnphoenix.io 288 of 407

http://formvalidation.io/validators/uri/
http://elixir-lang.org/docs/stable/elixir/URI.html
https://www.learnphoenix.io

11/3/16

defmodule .Organization do
use PhoenixChat.Web, :model

defp (:website, website) do
%URI{scheme: scheme, host: host} = URI.parse(website)

if is_nil(scheme) ||
is_nil(host) ||
not scheme in ~w(http https) ||
!valid_host_format?(host) do
[website: "invalid url format"]
else
[]
end
end

defp (host) do
Regex.match? ~r/*([a-zA-z]+\.)*x[a-zA-Z]+$/, host
end
end

Organization model tests

To ensure the stability of our app, we're going to write some tests for our Organization model. Much of
the code below will have already been written by the generator and all of the content of these tests has
already been covered in the previous chapters on testing. (If there is anything in this codeblock that you
do not believe was covered previously, please email info@learnphoenix.io and we will add clarification)

/test/models/organization_test.exs
commit: coming soon

defmodule PhoenixChat.OrganizationTest do
use PhoenixChat.ModelCase

alias PhoenixChat.Organization

@valid_attrs %{website: "foo.com"}
@invalid_attrs %{}

test "changeset with valid attributes” do
changeset = Organization.changeset(%0rganization{}, @valid_attrs)

assert changeset.valid?

www.learnphoenix.io 289 of 407
e

https://www.learnphoenix.io

11/3/16

test "changeset must have unique website” do
changeset = Organization.changeset(%0rganization{}, @valid_attrs)
Repo.insert! changeset

changeset = Organization.changeset(%0rganization{}, @valid_attrs)
{:error, changeset} = Repo.insert(changeset)

assert {:website, {"has already been taken”, [1}} in changeset.errors
end

test "changeset must have a unique public key generated on create"” do
changeset = Organization.changeset(%0rganization{}, %{website: "http://foo.com”})
orgl = Repo.insert! changeset

changeset = Organization.changeset(%0rganization{}, %{website: "http://bar.com”})
org2 = Repo.insert! changeset

assert orgl.public_key != org2.public_key
end

test "changeset's website must be a valid url” do
some_invalid_urls = ["test this”, "?2?2?2", "...", ".www.foo.bar.”, "foo.", "ftp://foo.com

for invalid_url <- some_invalid_urls do
changeset = Organization.changeset(%0rganization{}, %{website: invalid_url})

assert {:website, {"invalid url format”, []1}} in changeset.errors
end

some_valid_urls = ~w(foo.com www.foo.com http://foo.com https://foo.com?test=foo foo.co

for valid_url <- some_valid_urls do
changeset = Organization.changeset(%0rganization{}, %{website: valid_url})

assert changeset.valid?
end
end
end

Also, just for the sake of making sure our app compiles at this point, let's add the endpoint that the
generator suggested to router.ex.

/web/router.ex
commit: coming soon

www.learnphoenix.io 290 of 407
e

https://www.learnphoenix.io

11/3/16

scope "/api", PhoenixChat do
pipe_through :api

resources "/users”, UserController, except: [:new, :edit]
resources "/organizations”, OrganizationController, except: [:new, :edit]
end

Next we need to associate our users with an organization and set up endpoints to change our
organizations.

www.learnphoenix.io 291 of 407
e

https://www.learnphoenix.io

11/3/16

Associate Organizations and Users

e Alter :users table
e Update models
e Update model tests

Now that we have organizations set up, we need to associate our User model with an organization. A
user may create an organization and a user will be associated with an organization. The owner of the

organization will have special priveleges that we will add later on (such as inviting others, deleting the
organization, etc).

Alter :users table

The first and most straightforward thing to do is to generate a new migration and alter the existing
:users table to include a new field for :organization_id so we know to which organization this user
belongs.

$ mix ecto.gen.migration add_organization_reference_in_user

Then we alter the :users table and add an :organization_id which references our :organizations
table. We're also setting an option to nilify_all so when a user is deleted, all of the user's owned
organizations will have their owner_id setto nil . We do this since we want users whose organizations
have been deleted to have a nil value rather than continue to reference a non-existent user.

/priv/repo/migrations/...reference in user.exs
commit: coming soon

defmodule .Repo.Migrations.AddOrganizationReferenceInUser do
use Ecto.Migration

def do

alter table(:users) do
add :organization_id, references(:organizations, on_delete: :nilify_all)
end
end
end

www.learnphoenix.io 292 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Now we need to update our models to reflect this change.

Update User and Organization models

The first change we'll make is to the User model, in which we will add an association between our User
model and our Organization model. In this case, we're adding a has_one association between the
Organization and the User, signifying that each user may only own one organization. Then we're
adding a belongs_to association to link our users to a particular organization.

For a more detailed explanation of the belongs_to/3 function, here's one from the Ecto docs.

You should use belongs_to in the table that contains the foreign key. Imagine a company <->
manager relationship. If the company contains the manager_id in the underlying database
table, we say the company belongs to manager.

We're also going to associate our organizations with our users.

/web/models/user.ex
commit: coming soon

defmodule PhoenixChat.User do
use PhoenixChat.Web, :model
alias PhoenixChat.Organization

schema "users” do
field :email, :string
field :encrypted_password, :string
field :username, :string
field :password, :string, virtual: true

has_one :owned_organization, Organization, foreign_key: :owner_id
belongs_to :organization, Organization

timestamps
end

Then within our Organization model, we add a has_many association with :admins with the
:organization_id as the foreign key, telling our Organization schema that it should expect to have

(potentially) many admins. We also say that an organization belongs_to whichever User is the
:owner_id foreign key that we set above in our User model.

We're also going to adjust our changeset to require an :owner_id when an organization is created

www.learnphoenix.io 293 of 407
e

https://hexdocs.pm/ecto/Ecto.Schema.html#belongs_to/3
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

because we don't want organizations without an owner.

/web/models/organization.ex
commit: coming soon

defmodule .Organization do
use PhoenixChat.Web, :model
alias PhoenixChat.{User, Repo}

schema "organizations"” do
field :public_key, :string
field :website, :string

has_many :admins, User, foreign_key: :organization_id
belongs_to :owner, User, foreign_key: :owner_id

timestamps()
end

@doc """
Builds a changeset based on the ‘struct® and ‘params'.
def (struct, params \\ %{}) do
struct
|> cast(params, [:website, :owner_id])
validate_required([:website, :owner_id])
update_change(:website, &set_uri_scheme/1)
validate_change(:website, &validate_website/2)
unique_constraint(:website)
put_public_key()
unique_constraint(:public_key)

The last thing we should do before proceeding is update our model tests with these new associations.

Update model tests

We'll start with the User tests because they're simpler.

Our first test checks to make sure that we can create an organization with an :owner_id that references
a user. In order to do this, we need to use Repo.preload/3 (docs) to load the :owned_organization
association with our user.

www.learnphoenix.io 294 of 407
e

https://hexdocs.pm/ecto/Ecto.Repo.html#c:preload/3
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

If you're not familiar with how relational databases handle associations, you can think of the association
as a way of pointing to another struct (in our case, User pointingto Organization), but without the need
to copy the entire organization into the user. But, if you want to actually check to make sure that the
organization is the one you're intending to reference (user.owned_organization), you need to load it into
the user, otherwise the :owned_organization of the user would not contain any data.

/test/models/user_test.exs
commit: coming soon

defmodule PhoenixChat.UserTest do
use PhoenixChat.ModelCase

alias PhoenixChat.{User, Organization, ConnCase}

@valid_attrs %{email: "foo@bar.com”, encrypted_password: "some content”, username: "some
@invalid_attrs %{}

test "user can own an organization” do
user = ConnCase.create_user!
org = Repo.insert! %0rganization{website: "foo.com"”, owner_id: user.id, public_key: "t
user = Repo.preload(user, :owned_organization)

assert user.owned_organization == org
end

test "user belongs to organization"” do
org = Repo.insert! %0rganization{website: "foo.com”, public_key: "test"}
user = ConnCase.create_user! (%{organization_id: org.id})
|> Repo.preload(:organization)

assert user.organization == org
end

Then we need to set up and alter a few of our Organization tests. The first change is to our setup
block, in which we want to create a user for every test since every organization will need an owner. And
since the database clears before every test, each new user will have an id of 1. Because of that, we're
adding owner_id: 1 toour @valid_attrs, which should reference the user created at the start of each
test.

/test/models/organization_test.exs
commit: coming soon

www.learnphoenix.io 295 of 407
e

https://www.learnphoenix.io

11/3/16

defmodule PhoenixChat.OrganizationTest do
use PhoenixChat.ModelCase

alias PhoenixChat.{Organization, ConnCase}

@valid_attrs %{website: "foo.com”, owner_id: 1}
@invalid_attrs %{}

setup do
user = ConnCase.create_user! (%{id: 1})
{:0k, %{user: user}}

end

test "organization belongs to owner”, %{user: user} do
org = Repo.insert! %0rganization{website: "foo.com”, owner_id: user.id, public_key: "te
|> Repo.preload(:owner)

assert org.owner == user
end

test "organization can have one admin” do
org Repo.insert! %Organization{website: "foo.com”, public_key: "test"}
user = ConnCase.create_user! (%{username: "bar"”, email: "bar@foo.com"”, organization_id:

org = Repo.preload(org, :admins)

assert org.admins == [user]
end

test "organization has many admins” do
org = Repo.insert! %0rganization{website: "foo.com”, public_key: "test"}
user = ConnCase.create_user! (%{username: "bar"”, email: "bar@foo.com”, organization_id:
user2 = ConnCase.create_user! (%{username: "baz", email: "baz@qux.com"”, organization_id:

org = Repo.preload(org, :admins)

assert org.admins == [user, user2]
end

Then we need to update a few of our other tests with the new :owner_id attribute so that their
changeset becomes valid.

/test/models/organization_ test.exs
commit: coming soon

www.learnphoenix.io 296 of 407
e

https://www.learnphoenix.io

11/3/16

test "changeset must have a unique public key generated on create” do
changeset = Organization.changeset(%0rganization{}, @valid_attrs)
org]l = Repo.insert! changeset

changeset = Organization.changeset(%0rganization{}, %{website: "http://bar.com”, owner_id
org2 = Repo.insert! changeset

assert orgl.public_key != org2.public_key
end

test "changeset's website must be a valid url” do
for valid_url <- some_valid_urls do
changeset = Organization.changeset(%0rganization{}, %{website: valid_url, owner_id: 13})
assert changeset.valid?

end
end

Now if you run your tests, all of your model tests will pass (though you should still have 5 errors since we
haven't updated our OrganizationControllerTest).

Also, make sure you run your migration!

$ mix ecto.migrate

The next step is to make our CRUD endpoints to allow our users to create a new organization. From there,
our users will have access to their public key that they can use to populate their phoenix-chat
component and start sending and receiving messages routed to the proper organization.

www.learnphoenix.io 297 of 407

https://www.learnphoenix.io

11/3/16

CRUD Endpoints for Organization: Part 1

e Update OrganizationControllerTest
¢ Update OrganizationController
¢ Create organization on signup

Now that we have our Organization ready, we need to give our frontend the ability to add and update
them. We're going to do this by adding some simple CRUD (Create Read Update Delete) operations.

Update OrganizationControllerTest

Most of the work for creating an Organization was in the model. In fact, there's almost nothing we have
to change from the generator output in our OrganizationController , but we will need to make some
significant changes to our tests.

This is a big block of code, but none of this is new--we covered each of these tests in the previous section
on testing controllers. One thing to note is that we can call create_user!/1 and create_user!/2 since
we're adding use PhoenixChat.ConnCase to our module. You should go through each test to make sure
you understand what it's testing. If you run into issues, refer back to the chapter on testing controllers.

/test/controllers/organization controller test.exs
commit: coming soon

defmodule PhoenixChat.OrganizationControllerTest do
use PhoenixChat.ConnCase

alias PhoenixChat.{Organization, Repo}
@valid_attrs %{website: "http://www.foo.com”, owner_id: 1}
@invalid_attrs %{}

test "lists all entries on index"”, %{conn: conn} do
conn = get conn, organization_path(conn, :index)
assert json_response(conn, 200)["data"] == []

end

test "shows chosen resource”, %{conn: conn} do
create_user! (%{id: 13})
changeset = Organization.changeset(%0rganization{}, @valid_attrs)
org = Repo.insert!(changeset)

conn = get conn, organization_path(conn, :show, org)

www.learnphoenix.io 298 of 407
e

https://www.learnphoenix.io

11/3/16

response = json_response(conn, 200)["data"]
assert %{"public_key" => _, "owner_id" => 1, "website” => "http://www.foo.com",
"id" => _} = response
end

test "does not show resource instead throws error when id is nonexistent”, %{conn:
assert_error_sent 404, fn ->
get conn, organization_path(conn, :show, -1)
end
end

test "creates and renders resource when data is valid”, %{conn: conn} do
create_user! (%{id: 13})
conn = post conn, organization_path(conn, :create), organization: @valid_attrs

assert json_response(conn, 201)["data”]["id"]
assert Repo.get_by(Organization, @valid_attrs)
end

test "does not create resource and renders errors when data is invalid”, %{conn: conn} do
conn = post conn, organization_path(conn, :create), organization: @invalid_attrs
assert json_response(conn, 422)["errors”] != %{}

end

test "updates and renders chosen resource when data is valid”, %{conn: conn} do
create_user! (%{id: 13})
changeset = Organization.changeset(%0rganization{}, @valid_attrs)
org = Repo.insert! (changeset)

new_attrs = %{website: "http://www.bar.com"}
conn = put conn, organization_path(conn, :update, org), organization: new_attrs

assert json_response(conn, 200)["data"]["id"]
assert Repo.get_by(Organization, new_attrs)
end

test "does not update chosen resource and renders errors when data is invalid”, %{conn: c
create_user! (%{id: 13})
changeset = Organization.changeset(%0rganization{}, @valid_attrs)
org = Repo.insert!(changeset)
conn = put conn, organization_path(conn, :update, org), organization: %{website: nil}

assert json_response(conn, 422)["errors"] != %{}
end

test "deletes chosen resource”, %{conn: conn} do
create_user! (%{id: 13})
changeset = Organization.changeset(%0rganization{}, @valid_attrs)
org = Repo.insert!(changeset)
conn = delete conn, organization_path(conn, :delete, org)

assert response(conn, 204)

www.learnphoenix.io 299 of 407
e

https://www.learnphoenix.io

11/3/16

refute Repo.get(Organization, org.id)

end
end

Now when you run your tests, they should all pass.

Update OrganizationController

The only thing we need to change in our controller is to add scrub_params/2 (docs), which simply checks
to make sure the required parameters are there and turns all empty strings into nil . Everything else was
created by the generator.

/web/controllers/organization controller.ex
commit: coming soon

defmodule .OrganizationController do
use PhoenixChat.Web, :controller

alias PhoenixChat.{Organization, Repo}

plug :scrub_params, "organization"” when action in [:create, :update]

Create organization on signup

We'll also want to give our user the ability to create an organization at the same time they create their
account. To accomplish this, we're going to use Ecto.Changeset.cast_assoc/2 inour
User.registration_changeset/2, which will allow us to create and update the organization association
at the same time we create our organization.

The first thing do is change our required fields in our changeset . Since we are allowing an organization
to be created at the same time as a user, we may want to pass a newly-created User as the
association parameter. If we do, then we don't need to passin an :owner_id since we will handle that
inour cast_assoc/2 inour registration_changeset/2 and notin our changeset/2.

/web/models/organization.ex
commit: coming soon

www.learnphoenix.io 300 of 407
e

https://hexdocs.pm/phoenix/Phoenix.Controller.html#scrub_params/2
https://www.learnphoenix.io

11/3/16

defmodule .Organization do

def (struct, params \\ %{}, association \\ false) do
required_fields = if association, do: [:website], else: [:website, :owner_id]

struct
|> cast(params, [:website, :owner_id])
|> validate_required(required_fields)
|> update_change(:website, &set_uri_scheme/1)
|> validate_change(:website, &validate_website/2)
|> unique_constraint(:website)
|> put_public_key()
|> unique_constraint(:public_key)
end

@doc nnn
User for ‘cast_assoc/2' in ‘User.registration_changeset/2'. It's only difference
from ‘changeset/3' is that it does not require an ‘owner_id"'.
def (struct, params \\ %{}) do
changeset(struct, params, true)
end

So now within our User model, we need to update our registration_changeset/2 to handle the
association mentioned above. This cast_assoc/2 will look for an :owned_organization field in the
params and use that to assign an :owned_organization association between the user currently being
created and a new organization.

/web/models/user.ex
commit: coming soon

def registration_changeset(model, params) do
model
|> changeset(params)
|> cast(params, ~w(password), [1)
|> cast_assoc(:owned_organization, with: &rganization.owner_changeset/2)
|> validate_length(:password, min: 6, max: 100)
|> put_encrypted_pw
end

www.learnphoenix.io 301 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Note that our cast_assoc is looking for an :owned_organization key, so we will need to change the data
we're sending on account creation to the following format:

username,
email,
password,

owned_organization: {
website

Then for good housekeeping, let's write a couple tests for this change. For our Organization test, we are
making sure that the new owner_changeset/2 works as expected.

/test/models/organization_ test.ex
commit: coming soon

test "owner changeset does not require an owner id” do
changeset = Organization.owner_changeset(%0rganization{}, %{website: "foo.com"})

assert changeset.valid?
end

Then within our User test, we are updating our registration_changeset/2 testto make sure that a new
:owned_organization is created if it's provided.

/test/models/user_ test.ex
commit: coming soon

www.learnphoenix.io 302 of 407

https://www.learnphoenix.io

11/3/16

test "registration changeset with valid attributes” do
valid_attrs = Map.put(@valid_attrs, :password, "password")
changeset = User.registration_changeset(%User{}, valid_attrs)
assert changeset.valid?
assert get_change(changeset, :encrypted_password)

Test that a new owned_organization is created properly if it is provided
valid_attrs = %{owned_organization: %{website: "http://www.foo.com"}}
changeset = User.registration_changeset(changeset, valid_attrs)
assert changeset.valid?
assert get_change(changeset, :owned_organization).changes.website == "http://www.foo0.co
assert get_change(changeset, :owned_organization).changes.public_key
end

And that's it. Most of the boilerplate code for our CRUD endpoints was built by our generator. We barely
had to change OrganizationController and we didn't have to touch our OrganizationView .

www.learnphoenix.io 303 of 407
e

https://www.learnphoenix.io

. 11/3/16
Learn Phoenix by Sam Corcos

CRUD Endpoints for Organization: Part 2

¢ Additional validation for organization creation
¢ Return organization data on authorization

Additional validations

Since we currently only want each user to be associated with one organization (either as an admin or an
owner), we need to add a validation to make sure that a user cannot create or be associated with more
than one account. It's easy to disable this endpoint on the frontend, but we also want to make sure that a
feisty customer can't break his own account by usinga curl command.

We're going to create another validation just like we did with our website validation above, using
validate_change/3 (docs). In this case, we're creating a function called validate_new_owner_admin/2
to make sure the user trying to create an organization is not already associated with an existing account.
Just like we did in our auth/me route, we're finding a user, preloading the associations, then checking to

see if we get an organization. If we do, we return an error.

/web/models/organization.ex
commit: coming soon

www.learnphoenix.io 304 of 407
e

https://hexdocs.pm/ecto/Ecto.Changeset.html#validate_change/3
https://www.learnphoenix.io

11/3/16

(struct, params \\ %{}, association \\ false) do
required_fields = if association, do: [:website], else: [:website, :owner_id]

struct

|> cast(params, [:website, :owner_id])

|> validate_required(required_fields)

|> validate_change(:owner_id, &validate_new_owner_admin/2)
update_change(:website, &set_uri_scheme/1)
validate_change(:website, &validate_website/2)
unique_constraint(:website)
put_public_key()
unique_constraint(:public_key)

defp validate_new_owner_admin(:owner_id, owner_id) do
user = Repo.get! User, owner_id
org = Repo.preload(user, :organization).organization || Repo.preload(user, :owned_organ

if org do
[owner_id: "user is owner or admin of existing organiation"]
else
(]
end
end

Update auth/me

Now that we can create an organization, we need to be able to return the public_key tothe userina
consistent manner. Currently, when a user creates an organization we return the key in the HTTP
response, but after that response the user has no way to access her key again. To solve this, we're going
to update the auth/me route to return the public_key of the organization (if there is one) that the user
owns or is an admin.

Although we currently only have owners and no admins, we want to check if the current user is either an
owner or an admin of an existing organization. We check this by using Repo.preload/3 (docs) to load the
associations of both :organization and :owned_organization.We then check to see if thereis a

match in either one. If there is no match, it returns nil so we want to render just the user data without
the organization data.

/web/controllers/auth_controller.ex
commit: coming soon

www.learnphoenix.io 305 of 407
e

https://hexdocs.pm/ecto/Ecto.Repo.html#c:preload/3
https://www.learnphoenix.io

11/3/16

def me(conn, _params) do
user = Guardian.Plug.current_resource(conn)
org = Repo.preload(user, :organization).organization || Repo.preload(user, :owned_organ
case org do
nil -> render(conn, UserView, "show.json"”, user: user)
org -> render(conn, UserView, "show.json", user: user, org: org)
end
end

Then we need to update our UserView to handle this new data.

/web/views/user view.ex
commit: coming soon

def render("show. json", %{user: user, org: org}) do
%{data: render_one(user, UserView, "user_organization.json”, org: org)}

end

def render("show. json", %{user: user}) do
%{data: render_one(user, UserView, "user.json”)}
end

def render("user_organization.json"”, %{user: user, org: org}) do
%{email: user.email,
id: user.id,
username: user.username,
website: org.website,
public_key: org.public_key}

And now when we authorize a user, we check to see if that user is associated with an organization and
return the organization's data along with the authorization request. The next step is to connect our
frontend and allow our existing user to create an organization.

www.learnphoenix.io 306 of 407

https://www.learnphoenix.io

. 11/3/16
Learn Phoenix by Sam Corcos

Controlling and Validating Forms

e Controlled forms
e Validating forms
e Giving Ul feedback

Controlled form

Now that our components are starting to look closer to what we would like, we should tie our form in with
the state of our component. When people first start using Redux, they have a habit of tying everything
into state . But just because you have the global store doesn't mean that everything belongs there. Or
as Redux founder Dan Abramov said:

You don't need a single source of truth for everything. Just make sure you have a single
source of truth for any particular thing.

A form like a signup or login form is a good example of transitory data that does not need to be saved in
your Redux store . If a user navigates away and comes back, does he expect that Redux would
remember the status of that form? Probably not. In fact, she would probably think it's weird.

It is for this reason that our Signup and Login components will have their values tied to local state.
First we should set the initial values of our form state.

/app/components/Signup/index. js
commit: coming soon

www.learnphoenix.io 307 of 407

https://www.learnphoenix.io

11/3/16

export class extends
constructor(props) {
super (props)
this.state = {

nn

username: ,
email: "",
password: "",
passwordVerify:

3
this.submit = this.submit.bind(this)

nn

/app/components/Login/index.Jjs
commit: coming soon

export class extends
constructor(props) {
super (props)
this.state = {
email: "",
password:

nn

Update Login component

Then we need three more things. We need a handleChange function (or whatever you prefer to name it)
that will update our state based on the input, we need to set the value of each input to the value of the
corresponding state value, and we need to change the values that we submit to our new state values.

/app/components/Login/index. js
commit: coming soon

export class Login extends React.Component {
constructor(props) {
super (props)
this.state = {

www.learnphoenix.io 308 of 407

https://www.learnphoenix.io

11/3/16

nn

email: ,
password:

}
this.submit = this.submit.bind(this)

nn

submit() {
const user = {
email: this.state.email,
password: this.state.password
}
this.props.dispatch(Actions.userlLogin(user))

}

handleChange(input, e) {
this.setState({ [input]: e.target.value })
3

render() {
return (
<div className={style.wrapper}>
<div className={style.form}>
<div className={style.inputGroup}>
<input
value={this.state.email}
onChange={ e => { this.handleChange("email”, e) }}
placeholder="Email”
className={style.input}
type="text" />
</div>
<div className={style.inputGroup}>
<input
value={this.state.password}
onChange={ e => { this.handleChange("password"”, e) }}
placeholder="Password"
className={style.input}
type="password” />
</div>
<Button
onClick={this.submit}
_style={{ width: "100%" }}
type="primary">
Submit
</Button>
</div>
</div>

www.learnphoenix.io 309 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

So now, when you type something into the input field, it triggers the onChange function, which in turn
triggers the this.handleChange function that we defined. Within that function, we set the local state of
the relevant input to the value of the input, which is also tied to the relevant this.state[value] . We've
provided a handy chart showing the general flow of controlled forms below.

Handy chart coming soon

This might sound like a roundabout way of filling out forms, and that's because it is. But there are
advantages of doing it this way (as you will see shortly).

Update Signup component

One things users have come to expect from forms is immediate feedback as to the validity of their form
inputs because it's annoying to fill out an entire form only to submit the form and have an error telling you
that it's invalid (especially when it then erases all existing form data, which many websites do for some
reason).

Let's start by updating our Signup component to use a controlled form just like our Login component
above.

/app/components/Signup/index.Jjs
commit: coming soon

export class Signup extends React.Component {
constructor(props) {
super (props)
this.state = {
username: "",
email: ""
password: "",
passwordVerify:
}

this.submit = this.submit.bind(this)

’

nn

submit() {
const user = {
username: this.state.username,
email: this.state.email,
password: this.state.password
}
this.props.dispatch(Actions.userNew(user))

b

handleChange(input, e) {
this.setState({ [input]: e.target.value })

www.learnphoenix.io 310 of 407
e

https://www.learnphoenix.io

11/3/16

render() {
return (
<div className={style.wrapper}>
<div className={style.form}>
<div className={style.inputGroup}>
<input
onChange={e => { this.handleChange("username”, e) }}
value={this.state.username}
placeholder="Username"
className={style.input}
type="text" />
</div>
<div className={style.inputGroup}>
<input
onChange={e => { this.handleChange("email”, e) }}
value={this.state.email}
placeholder="Email"
className={style.input}
type="text"” />
</div>
<div className={style.inputGroup}>
<input
onChange={e => { this.handleChange("password”, e) }}
value={this.state.password}
placeholder="Password”
className={style.input}
type="password” />
</div>
<div className={style.inputGroup}>
<input
onChange={e => { this.handleChange("passwordVerify"”, e) }}
value={this.state.passwordVerify}
placeholder="Verify Password”
className={style.input}
type="password” />
</div>
<Button
onClick={this.submit}
_style={{ width: "100%" }}
type="primary">
Submit
</Button>
</div>
</div>

And now that we have a controlled form, we can use the values we received to validate our inputs before

www.learnphoenix.io 311 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

a user submits them. We're going to create two validations to make it easy for a user to know in advance
whether the email address they entered is valid and whether the password match.

We'll start by creating valid and invalid constants that we can use as out inline style objects. If valid, the
input will receive a green underline; if invalid, it will receive a red underline.

The first function is validatePassword, which compares the current state of our passwords and returns
invalid if less than 6 characters or when the passwords don't match. It returns valid when the password
are at least 6 characters and match.

The second is validateEmail , which uses a regular expression to make sure the email address contains
an @ symbol, which is a bit oversimplified, but it servers our purposes.

/app/components/Signup/index.Jjs
commit: coming soon

const validInput = { borderBottom: "3px solid #4CAF50" }
const invalidInput = { borderBottom: "3px solid #F44336" }

export class

validateEmail() {
if (this.state.email.length < 1) return {}
return /@/.test(this.state.email) ? validInput : invalidInput

b

validatePassword() {
if (this.state.password.length < 1) return {}
if (this.state.password.length < 6) return invalidInput
return this.state.password === this.state.passwordVerify ? validInput : invalidInput

}

Then we need to connect these functions to our inputs. We're going to add a style tagto our email and
passwordVerify inputs, and in that style tag we call the relevant function to validate. Note that in the
event of no match (in both cases, if length < 1), we're returning an empty object.

/app/components/Signup/index.Jjs
commit: coming soon

www.learnphoenix.io 312 of 407
e

https://www.learnphoenix.io

11/3/16

export class extends

render() {

return (
<div className={style.wrapper}>
<div className={style.form}>

<div className={style.inputGroup}>
<input
onChange={e => { this.handleChange("email”, e) }}
style={this.validateEmail ()}
value={this.state.email}
placeholder="Email”
className={style.input}
type="text" />
</div>

<div className={style.inputGroup}>
<input

onChange={e => { this.handleChange("passwordVerify"”, e) }}
style={this.validatePassword()}
value={this.state.passwordVerify}
placeholder="Verify Password”
className={style.input}
type="password"” />

</div>

</div>
</div>

And now you have form validation. As you can see, React's inline styling makes this really easy.

www.learnphoenix.io 313 of 407

https://www.learnphoenix.io

11/3/16

Create and Join an Organization on Signup

Update Signup component
Connect to endpoint

Create new action

Add header to Chat component

Now that we can create an organization on our backend, let's add a new view on our frontend that will
access our new endpoints. We already have a /settings route, so let's use that for creating an
organization from an existing account and let's update our Signup component to handle an optional
organization input.

Since creating an organization from initial signup is easier, we will start with that the move on to creating
a user from our /settings route.

Update Signup component

As it turns out, this requires very little effort. All we have to do is add a website field to our form and
send it to our backend in the format that it expects.

/app/components/Signup/index. js
commit: coming soon

export class Signhup extends React.Component {
constructor(props) {
super (props)
this.state = {

nn

username: 5

nn

email: ,
password: "",
passwordVerify:
website: ""

}
this.submit = this.submit.bind(this)

nn

submit() {
if (this.state.website) {
const userWithOrg = {

www.learnphoenix.io 314 of 407
e

https://www.learnphoenix.io

11/3/16

username: this.state.username,
email: this.state.email,
password: this.state.password,
owned_organization: {

website: this.state.website
}

}
this.props.dispatch(Actions.userNew(userWithOrg))

} else {
const user = {
username: this.state.username,
email: this.state.email,
password: this.state.password,
}
this.props.dispatch(Actions.userNew(user))
}
}

render() {

return (
<div className={style.wrapper}>
<div className={style.form}>

<div className={style.inputGroup}>
<input

onChange={e => { this.handleChange("website"”, e) }}
value={this.state.website}
placeholder="Website (optional)”
className={style.input}
type="text" />

</div>

</div>
</div>

Now go ahead and logout by deleting your token from localStorage (delete localStorage.token), then
refresh the page. You are now logged out and unauthenticated. Now, when you create a valid account
with a valid website, you'll create both a user and an organization at the same time.

To check to make sure this is working, try putting a console.log inyour userAuth action. If you do, you
should now see public_key and website along with the data you previously received from the server.

The next step is to allow a user who already has an account but no organization create an organization
from the /settings route.

www.learnphoenix.io 315 of 407

https://www.learnphoenix.io

. 11/3/16
/ ? Learn Phoenix by sam Corcos

Create an action

Go ahead and sign out again by deleting your token and refreshing, then create a new user without
including a website. From here, we'll create a new Redux action that connects to our endpoint so that the
existing user can create a new organization.

Everything in this action should look familiar. In the event of an error, we're passing our errors to our
reducers but we aren't going to bother with proper error handling at the moment.

The organization parameter we're sending to our server expects a website and an owner_id, which is
the ID of the currently logged-in user. At some point in the future, we will refactor this to handle
authentication on the backend using Guardian, but for now, let's just pass the user's ID we're storing in
props asthe owner_id.

If the organization is created successfully, we will re-authorize the user so we can get the credentials for
this organization, which come from our recently-changed auth/me route.

/app/redux/actions.js
commit: coming soon

www.learnphoenix.io 316 of 407

https://www.learnphoenix.io

11/3/16

Actions.organizationNew = function (organization) {
return dispatch => fetch(® /api/organizations', {
method: "POST",
headers: {
Accept: "application/json",
"Content-Type": "application/json"

3},
body: JSON.stringify({ organization })
1))
.then((res) => { return res.json() })
.then((res) => {
if (res.errors) {
return dispatch({
type: "ORGANIZATION_NEW_ERROR",
payload: {
errors: res.errors
3
1))
3
dispatch({
type: "ORGANIZATION_NEW"

b))
return dispatch(Actions.userAuth())

1))
.catch((err) => {
console.warn(err)
b))
3

We should also update our user reducer to take in the new information that we get from the auth/me
endpoint. Recall that we now receive public_key and website from that endpoint.

www.learnphoenix.io 317 of 407

https://www.learnphoenix.io

11/3/16

function user(state

nn
)
nn

email:
username:
ld nn

’

’
nn

public_key: ,

website:
}, action) {

switch (action.type) {

nn

case "USER_AUTH":
return Object.assign({}, state, {
email: action.payload.user.email,
username: action.payload.user.username,
id: action.payload.user.id,
public_key: action.payload.user.public_key,
website: action.payload.user.website

b))

default: return state

The next step is to update our Settings component and connect it to this action. But before we do that,
let's update our Chat component with a header that can easily link us to the /settings route.

Add header to Chat component

Now that we have an endpoint, we should add a header to the top of our app that contains a link to our
/settings route. From there, can add the functionality to create a new organization.

We're going to make a fairly simple header that shows the name of the currently-selected anonymous
user (i.e. room), displays a (currently placeholder) avatar, and shows when they were last active (currently
a placeholder as well).

If there is no current room selected (! this.state.currentRoom), then we render an empty header with
just the settings cog.

/app/components/Chat/index. js
commit: coming soon

import { Link } from "react-router”

www.learnphoenix.io 318 of 407

https://www.learnphoenix.io

11/3/16

export class Chat extends React.Component {

renderHeader () {
if (!this.state.currentRoom) {
return (
<div className={style.header}>
<div />
<Link to="settings" className={style.settings}>
<img
alt="1link to settings”
className={style.cog}
src="https://s3.amazonaws.com/learnphoenix-static-assets/icons/cog.png" />
</Link>
</div>

const avatar = {
height: "40px",
width: "40px",
background: "#ccc",
border: "l1px solid #888",
borderRadius: "50%"

return (
<div className={style.header}>
<div className={style.identity}>
<div style={avatar} />
<div className={style.titleGroup}>
<h3 className={style.title}>
{ this.state.currentRoom }
</h3>
<div className={style.lastActive}>
Last active: __ minutes ago
</div>
</div>
</div>
<Link to="settings"” className={style.settings}>
<img
alt="link to settings”
className={style.cog}
src="https://s3.amazonaws.com/learnphoenix-static-assets/icons/cog.png" />
</Link>
</div>

render() {
return (
<div>

www.learnphoenix.io 319 of 407

https://www.learnphoenix.io

11/3/16

<Sidebar
presences={this.state.presences}
onRoomClick={this.changeChatroom}
lobbylList={this.state.lobbylList} />
<div className={style.chatWrapper}>
{ this.renderHeader() }
<div
className={style.chatContainer}
ref={ref => { this.chatContainer = ref }}>

{ this.renderEmpty() }
{ this.renderMessages() }
</div>
{ this.renderInput() }
</div>
{ this.props.children }
</div>

From here we can add some styling to make our header look more like we would expect.

/app/components/Home/style.css
commit: coming soon

www.learnphoenix.io 320 of 407
e

https://www.learnphoenix.io

11/3/16

.header {
position: absolute;
top: 9;
left: 0;
width: 100%;
background: rgh(238, 238, 239);
border: 1px solid rgh(213, 213, 213);
height: 60px;
display: flex;
flex-flow: row nowrap;
justify-content: space-between;
align-items: center;
z-index: 100;

.identity {
display: flex;
flex-flow: row nowrap;
align-items: center;
padding-left: 30px;

.titleGroup {
padding-left: 10px;
}

.title {
font-size: Tem;
font-weight: normal;
color: #333;

3

.lastActive {
padding-top: 6px;
color: #727272;
font-size: 0.8em;

3

.settings {
padding-right: 30px;
}

.cog {
filter: invert(40%);
height: 35px;

3

www.learnphoenix.io 321 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ ? Learn Phoenix by sam Corcos

Now we have an easy way to navigate to our /settings route by clicking on the cog in the header. From
here, we need to add the ability to create an organization from the settings page or display the affiliated
organization's API key.

www.learnphoenix.io 322 of 407
e

https://www.learnphoenix.io

11/3/16

Create Organization from Settings Route

e Update Settings component

So at this point, we can create an organization on signup, but we cannot create an organization after
we've signed up. What we need is a settings page that will allow unaffiliated administrators to create a
new organization and will allow affiliated administrators to see their API key.

Update Settings component

Now that we can easily link to our /settings route, we should add the ability to create a new
organization from within that component.

This is a lot of code, but none of it is new. We're adding a form just like we did in all our other forms and
we're selectively rendering either a form or an API key depending on whether or not the current user has
an associated organization.

/app/components/Settings/index.js
commit: coming soon

import React from "react”
import cssModules from "react-css-modules”
import { connect } from "react-redux”
import { Link } from "react-router”
import style from "./style.css”

import Actions from "../../redux/actions’

'

import Button from "../Button”

export class Settings extends React

constructor(props) {
super (props)
this = {

nn

website:

3
this

submit() {
const organization = {
website: this

www.learnphoenix.io 323 of 407
e

https://www.learnphoenix.io

11/3/16

this.props.dispatch(Actions.organizationNew(organization))

3

handleChange(input, e) {
this.setState({ [input]: e.target.value })
}

renderOrganization() {
if (!this.props.user.public_key) {
return (
<div className={style.inputGroup}>
<input
onChange={e => { this.handleChange("website"”, e) }}
placeholder="Website (e.g. https://phoenixchat.io)”
type="text"
className={style.input} />
<Button
onClick={this.submit}
style={{ marginTop: "15px" }}
type="primary">
Create Organization
</Button>
</div>
)
}

return (
<div className={style.apiKey}>
Your API key: {this.props.user.public_key}
</div>

render() {
return (
<div>
<div className={style.nav}>
<Link
className={style.logo}
to="/">
<img
alt="1learnphoenix logo"
className={style.image}
src="https://s3.amazonaws.com/learnphoenix-static-assets/favicons/favicon-96x
<div className={style.title}>
PhoenixChat.io
</div>
</Link>
<div />
</div>
<div className={style.settings}>

www.learnphoenix.io 324 of 407

https://www.learnphoenix.io

11/3/16

</div>
</div>

Settings.propTypes = {
user: React.PropTypes.object,
organization: React.PropTypes.object,
dispatch: React.PropTypes.func

}

const mapStateToProps = state => ({
user: state.user

1

export default connect(mapStateToProps) (cssModules(Settings, style))

That's a lot of code, but it's nothing you haven't seen before. And now to make this page usable, we need
to add some styling.

$ touch app/components/Settings/{style.css,spec.js}

/app/components/Settings/index.js
commit: coming soon

.settings {
display: flex;
flex-flow: column nowrap;
align-items: center;
height: calc(100vh - 60px);
margin-top: 50px;
position: relative;
z-index: 100;

.nav {
height: 60px;
padding: @ 30px;
display: flex;
flex-flow: row nowrap;
justify-content: space-between;
align-items: center;

.logo {

www.learnphoenix.io 325 of 407
e

https://www.learnphoenix.io

11/3/16

row nowrap;
align-items: center;

3

.title
font-size: 1.5em;
cursor: pointer;
color: #4c4c4c;

b

.image {
height: 50px;
padding-right: 5px;
}

.input {
padding: Trem Trem;
border-radius: 3px;
border: 1px solid #ccc;
font-size: 1.71em;
outline: none;
width: 400px;

.inputGroup {
display: flex;
flex-flow: column nowrap;

by

.apiKey {
font-size: 1.5em;

Now, if you're signed in and not affiliated with an organization, you can create one. Otherwise, it shows
your API key. Our settings page is a little bit sparse, but to be fair, we don't have a lot of settings at the
moment.

Settings tests

We should also write a few tests. This component really doesn't do all that much, so all we should really
test is that it renders, it has a submit function, and that the proper organization option is rendered (form
with button or the key).

www.learnphoenix.io 326 of 407

https://www.learnphoenix.io

11/3/16

import React from 'react’
import expect from 'expect'’
import { shallow } from 'enzyme'

import { Settings } from './’'

const props = {
user: {
email: "foo",
id: 1234,
public_key: "asdf”
3
3

describe('<Settings />', () => {

it('should render’, () => {

const renderedComponent = shallow(

<Settings {...props} />

)

expect(renderedComponent.is('div')).toEqual(true)
1))
it('should have a submit function’, () => {

const component = new Settings()

expect(component.submit).toExist()
1))
// TODO does not work
// it('should render a button if no key is present’, () => {
// const renderedComponent = shallow(

<Settings {...props} public_key="" />
//)
// expect(renderedComponent.find('button’).length).toEqual(1)
/73
it('should render no button if key is present’, () => {
const renderedComponent = shallow(
<Settings {...props} />

/)
// expect(renderedComponent.find('button’).length).toEqual (@)
//})

Now that we have access to our public key, let's add that to our npm component, which will pass it along
to our APl in order to properly route messages.

www.learnphoenix.io 327 of 407
e

https://www.learnphoenix.io

11/3/16

Pass API Key from Frontend

¢ Add API key to phoenix-chat
e Pass key via socket

In this section, we're just going to add the public key that we generated to our PhoenixChat component,
then update our component to handle that key.

Add token to PhoenixChat

In phoenix-chat-frontend, all we need to do is add the token to our PhoenixChat component.
Obviously, add the proper token instead of N1kfVrAM9/ .

/app/components/Home/index. js
commit: coming soon

www.learnphoenix.io 328 of 407

https://www.learnphoenix.io

11/3/16

export class extends

render() {
if (this.props.user.email) {
return (
<Chat>
<PhoenixChat token="N1kfVrAM9/" />
</Chat>
)
}
return (
<div className={style.leader}>
<h1 className={style.title}>Phoenix Chat</h1>
{ this.state.formState === "signup"” ? <Signup /> : null }
{ this.state.formState === "login" ? <Login /> : null }
{ this.renderToggleContent() }
<PhoenixChat token="N1kfVrAM9/" />
<img

role="presentation”

className={style.circles}

src="https://s3.amazonaws.com/learnphoenix-static-assets/images/circles-full.png’
</div>

i

Since we're already passing this.props.user asthe params in our Chat component when we connect
to the socket, we don't need to change anything else.

And that's it for our frontend. Now your phoeinx-chat component has access to token via
this.props.token . Make sure you have npm run watch going in your phoenix-chat directory so your
app will update when you make changes.

Update phoenix-chat

Now all we need to do is add the token to our parameters before passing it along to the socket.
Alternatively, we could pass the public key along with every message, but passing it along in the socket
will save us some bandwidth.

/src/PhoenixChat. jsx

commit: coming soon

www.learnphoenix.io 329 of 407
e

https://www.learnphoenix.io

11/3/16

export class extends

componentDidMount() {
if (!localStorage.phoenix_chat_uuid) {
localStorage.phoenix_chat_uuid = uuid.v4()

}

this.uuid = localStorage.phoenix_chat_uuid

const params = { uuid: this.uuid, public_key: this.props.token }
this.socket = new Socket("ws://localhost:4000/socket”, { params })
this.socket.connect()

this.configureChannels(this.uuid)

And believe it or not, that's it! We're done configuring the frontend with API keys. The rest of the work will
be in our API to route messages to the appropriate organization.

www.learnphoenix.io 330 of 407

https://www.learnphoenix.io

. 11/3/16
Learn Phoenix by Sam Corcos

Routing Messages Using API Keys

e Update UserSocket
¢ Broadcast by public_key
e Populate lobby_list by public_key

At this point in our app we can create a new organization from our frontend, but the organizations don't
really mean anything since our messages aren't associated with an organization. So in order to separate
the messages based on organization, we need to update our channels so that admins can only see
messages of other admins and so that admins can only see messages associated with the API keys of
their organizations.

Rather than send the public_key as data along with every message, we've required the client to connect
to the socket with the key in the params, so we now have access to that key via assign/3 (docs), which
we've used a number of times already.

Update UserSocket

We will start by updating our user socket. In our connect/2 function, we're assigning :public_key from
our params whether the user is an anonymous user or an administrator. Note that in our anonymous
client the token comes directly in the params while in our admin dashboard, it comes from our user
information.

/web/channels/user_socket.ex
commit: coming soon

www.learnphoenix.io 331 of 407

https://hexdocs.pm/phoenix/Phoenix.Socket.html#assign/3
https://www.learnphoenix.io

11/3/16

def (params, socket) do
user_id = params["id"]
user = user_id && Repo.get(User, user_id)

socket = if user do
socket
|> assign(:user_id, user_id)
|> assign(:username, user.username)
|> assign(:email, user.email)
else
socket
|> assign(:user_id, nil)
|> assign(:uuid, params["uuid"”])
end
|> assign(:public_key, params["public_key"])

{:0k, socket}
end

Then we should update our tests to take in this new parameter.

/test/channels/user_socket_ test.exs
commit: coming soon

www.learnphoenix.io 332 of 407
e

https://www.learnphoenix.io

11/3/16

defmodule PhoenixChat.UserSocketTest do
use PhoenixChat.ChannelCase

alias PhoenixChat.{Repo, User, UserSocket}

test "connecting to user socket as logged-in user"” do
admin = Repo.insert! (%User{email: "admin@bar.com”, username: "admin"})

{:0k, socket} = connect(UserSocket, %{"id" => admin.id, "public_key"” => "pub_key"})
{:0k, _, socket} = subscribe_and_join(socket, "room:1", %{3})

assert socket.assigns.user_id == admin.id

assert socket.assigns.email == admin.email

assert socket.assigns.username == admin.username
end

test "connecting to user socket as anonymous user” do
{:0k, socket} = connect(UserSocket, %{"uuid” => 25, "public_key" => "pub_key"})
{:0k, _, socket} = subscribe_and_join(socket, "room:25", %{})

refute socket.assigns.user_id

assert socket.assigns.uuid == 25

assert socket.assigns.public_key == "pub_key"
end

Broadcast by public_key

Now it's time to match the chats from anonymous users to the admins in the organization associated
with the public_key they're passing along.

Note that we are using the public key we stored in socket.assigns inthe previous lesson. We use this
public key to filter out the admins that do not have the same public keys from receiving the "lobby_list”
event for a particular user. This means that a user public key "foo” will only be visible to admins with
public key "foo” .

/web/channels/admin_channel.ex
commit: coming soon

www.learnphoenix.io 333 of 407
e

https://www.learnphoenix.io

11/3/16

defmodule PhoenixChat.AdminChannel do

def (:after_join, socket) do
push socket, "presence_state"”, Presence.list(socket)
%{assigns: assigns} = socket
id = assigns.user_id || assigns.uuid
LobbyList.insert(id)
broadcast! socket, "lobby_list"”, %{uuid: id, public_key: assigns.public_key}
{:0k, _} = Presence.track(socket, id, %{
online_at: inspect(System.system_time(:seconds))
b))
{:noreply, socket}
end

def ("lobby_list"”, payload, socket) do
%{assigns: assigns} = socket
if assigns.user_id && assigns.public_key == payload.public_key do

push socket, "lobby_list"”, payload

end
{:noreply, socket}

end

end

Then we need to update our admin channel tests to handle this new information.

/test/channels/admin_channel test.exs
commit: coming soon

www.learnphoenix.io 334 of 407
e

https://www.learnphoenix.io

11/3/16

test "joining admin:active_users as admin” do
LobbyList.insert("foo")
LobbyList.insert("bar")

{:0k, %{lobby_list: lobby_list}, _socket} =
socket("user_id", %{user_id: 1, public_key: "pub_key"})
|> subscribe_and_join(AdminChannel, "admin:active_users")

assert length(lobby_list) == 2

assert_push "lobby_list”, %{uuid: 1}

assert_push "presence_state”, %{}

assert_push "presence_diff", %{joins: %{"1" => %{}}}
end

test "non-admin users do not receive the 'lobby_list’' event on join" do
{:0k, %{lobby_list: _3}, _} =
socket("user_id", %{user_id: nil, uuid: 5, public_key: "pub_key"})
|> subscribe_and_join(AdminChannel, "admin:active_users")

refute_push "lobby_list”, %{}
end

So now we're properly sorting which users will receive the lobby_list associated with a particular
public_key. The next step is to ensure that each lobby_list is populated with the right anonymous users.

Populate lobby list by public_key

We want to populate the list of chatrooms in the admin's sidebar only with chatrooms/users that have the
same public key. To do this, we store uuids in ETS using their public_key as the filter. Then we'll create
a new function, LobbyList.lookup/1,that will allow us to retrieve all uuids in the LobbyList table with the
same public_key.

Note that we set the :bag option for our :ets table so that it can store multiple values with the same key.
You can read more about ETS tables and the difference between a :bag anda :set inthe (docs).

/lib/phoenix_chat/lobby list.ex
commit: coming soon

www.learnphoenix.io 335 of 407
e

http://erlang.org/doc/man/ets.html
https://www.learnphoenix.io

11/3/16

defmodule .LobbylList do

@table __MODULE__

@dOC nnn
Create an :ets table for this module. We set the ‘:bag' option so that we can
store multiple values with the same keys.

nnn

def do
opts = [:public, :named_table, {:write_concurrency, true}, {:read_concurrency, false},
:ets.new(@table, opts)

end

def (public_key, uuid) do
:ets.insert(@table, {public_key, uuid})
end

def (public_key) do
:ets.delete(@table, public_key)
end

def (public_key) do
@table
|> :ets.lookup(public_key)
[> Enum.map(fn {_, uuid} -> uuid end)
end
end

And now that we've significantly altered our ETS table, we need to change our admin_channel to use our
handy new lookup/2 function.

The first change is in our join/3 function, in which we get a list of uuids of users with the same public
key as the current admin and send it back to the frontend to be displayed in the sidebar.

Then, in our handle_info/2 function, we use LobbylList.insert/2, which now takesina public_key, to
keep track of rooms to be displayed to the proper admins. And finally we push the presence state of
these users to track which users are online.

www.learnphoenix.io 336 of 407
e

https://www.learnphoenix.io

11/3/16

defmodule PhoenixChat.AdminChannel do

def ("admin:active_users”, payload, socket) do
authorize(payload, fn ->
send(self, :after_join)

public_key = socket.assigns.public_key
lobby_list = LobbyList.lookup(public_key)
{:0k, %{lobby_list: lobby_list}, socket}
end)
end

def (:after_join, socket) do
%{assigns: assigns} = socket
id = assigns.user_id || assigns.uuid

Keep track of rooms to be displayed to admins
LobbylList.insert(assigns.public_key, id)
broadcast! socket, "lobby_list”, %{uuid: id, public_key: assigns.public_key}

Keep track of users that are online
push socket, "presence_state"”, Presence.list(socket)
{:0k, _} = Presence.track(socket, id, %{
online_at: inspect(System.system_time(:seconds))
1))
{:noreply, socket}
end

Finally, we need to make some minor alterations to our tests to handle the changes in our LobbylList .

/test/channels/admin_channel test.exs
commit: coming soon

test "joining admin:active_users as admin” do
LobbyList.insert("pub_key", "id1")
LobbyList.insert("pub_key", "id2")

Granted, we aren't doing much in the way of authentication, but we now have a functional app! Try

www.learnphoenix.io 337 of 407
e

https://www.learnphoenix.io

11/3/16

/ E Learn Phoenix by Sam Corcos

opening an incognito window or a different browser, go to localhost:3000, and sign up. You'll see that
you no longer have access to the chats from other organizations.

www.learnphoenix.io 338 of 407
e

https://www.learnphoenix.io

11/3/16

Store and Track Recent Activity

Generate fake name
Generate fake avatar
Store and send last active
Pass along last message

coming soon

www.learnphoenix.io 339 of 407
e

https://www.learnphoenix.io

11/3/16

Display Recent Activity

¢ Show when last online
e Use MomentJs

Coming soon

In this section, we're going to use Presence to display when a user was last active. To handle time, we're
going to use Moment.js, which gives us easy access to things like relative time.

Currently, there is no modular way to import Moment.js and it's frustratingly large (about 50kb), but at
some point they will make it modular and we can replace the import with just the relative time function.
(If this change has happened and we are not aware of it, please send us an email at info@learnphoenix.io
and we'll update)

Update users when present

TODO

Update user list

On our frontend, the first thing we should do is update our user list to take in some additional information
about our user. Currently, we're just displaying the user's uuid. What we want to be able to see an avatar
for easy reference, a generated text name (again, for easy reference), the last messages that was sent
between the two users, and the time they were last active.

It makes more sense to handle random avatar generation and names on the server, and we have no way
to access the last message sent from the frontend, so we will just use placeholders for now.

Our user element is basically one row with three columns. The first column contains the avatar, the
second contains the user id (and later the generated words) followed by the latest message, and the third
contains the last time the user was active. The avatar and last active will have fixed width, while the name
and text will grow to fill the remaining space.

/app/components/Sidebar/index. js
commit: coming soon

www.learnphoenix.io 340 of 407
e

http://momentjs.com/
http://momentjs.com/#relative-time
https://www.learnphoenix.io

11/3/16

export const Sidebar = (props) => {

const renderList = lobbylList
.filter(({ id }) => { return id.length === 36 })
.sort(orderByActivity)
.map(({ id, active }) => {
const newStyle = active ? { boxShadow: "inset @px @px 6px 4px rgbha(58, 155, 207, 0.6)"

const avatar = {
height: "40px",
width: "40px",
background: "#ccc”,
border: "1px solid #888",
borderRadius: "50%"

return (
<div

style={newStyle}

className={style.user}

key={id}

onClick={() => { props.onRoomClick(id) }}>

<div className={style.avatar}>
<div style={avatar} />

</div>

<div className={style.content}>
<div className={style.name}>

{ id }
</div>
<div className={style.lastMessage}>
This was our last message

</div>

</div>

<div className={style.activity}>
test

</div>

</div>

Then we need to add styles to reflect those changes. Nothing is new here, except that we are composing

www.learnphoenix.io 341 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

a few columns from .column and using white-space: nowrap to stop our uuid from wrapping around. If

the message or the uuid is too long, we simply hide it. At some point, we'll introduce something more
sophisticated that can handle ellipses (...), but this will be fine for now.

/app/components/Sidebar/style.css
commit: coming soon

.user {
display: flex;
flex-flow: row nowrap;
align-items: center;
padding: @.5rem;
border-bottom: T1px solid #ccc;
height: 70px;
background: white;
cursor: pointer;
transition: background 0.1s ease;
box-shadow: @ 3px 3px -2px rgha(0,0,0,0.25);
3
.user:hover {
background: #eeeeee;

}

.column {
display: flex;
flex-flow: column nowrap;

}

.avatar {
composes: column;
padding-right: 10px;
3

.content {
composes:
flex: 1;

)

overflow:

.name {
white-space: nowrap;
padding-bottom: 6px;
3

.lastMessage {
color: #565656;

www.learnphoenix.io 342 of 407

https://www.learnphoenix.io

11/3/16

composes: column;
width: 60px;
color: #aaa;

font-weight: 300;
font-size: 0.8em;
align-items: flex-end;

Now that our user is styled with placeholders, it's time to add Moment.js and add the last activity to the
profile.

Latest activity

Now we need to install moment. Then we just need to use time from now to display the proper value in
our sidebar.

$ npm install --save moment

/app/components/Sidebar/index. js
commit: coming soon

import moment from "moment”

www.learnphoenix.io 343 of 407
e

http://momentjs.com/docs/#/displaying/fromnow/
https://www.learnphoenix.io

11/3/16

Deploying the API to Heroku

Phoenix Buildpacks
Configuring the App
Environment Variables
Deploying

The performance of Phoenix/Elixir is most apparent when using Heroku. Popular sites like Hex.pm run on
a single dyno resulting in big cost savings.

Before we proceed, you'll need to register for a Heroku account and install the Heroku toolbelt. The
toolbelt is a command line interface for Heroku that allows us to easily deploy our code, read logs, or
make environment changes.

Phoenix Buildpacks

Heroku relies on buildpacks to configure a dyno for a specific language and/or framework. For our
Phoenix application we'll add a buildpack that will install Erlang, Elixir, and our application dependencies.

In one fell swoop we can create our new Heroku application and add our buildpack, let's run the Heroku
create command in our project directory:

$ heroku create --buildpack "https://github.com/HashNuke/heroku-buildpack-elixir.git"
Creating enigmatic-ravine-4201... done, stack is cedar-14

Buildpack set. Next release on enigmatic-ravine-4201 will use https://github.com/HashNuke/h
https://enigmatic-ravine-4201.herokuapp.com/ | https://git.heroku.com/enigmatic-ravine-4201
Git remote heroku added

Or if you've already signed in and created a Heroku project, you can add it as a git remote and assign a
buildpack.

$ heroku buildpacks:add "https://github.com/HashNuke/heroku-buildpack-elixir.git”

It's probably worthwhile to look through the brief documentation for this particular buildpack in case you
need to do some debugging.

Sometimes Heroku will not automatically add the git remote . You can test this by running the

www.learnphoenix.io 344 of 407
e

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/hex.pm
https://toolbelt.heroku.com/
https://github.com/HashNuke/heroku-buildpack-elixir
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

command git remote -v and you should see two for origin that go to Github and two for heroku,
which go to Heroku. In the event that it does not, log in to Heroku.com, select the project, click Settings,
and copy the Git URL from the Info section and run the command (with the proper URL):

$ git remote add heroku <git_url>

The create command tells us it created enigmatic-ravine-4201,the name of our application within
Heroku, set our buildpack, and finally added a remote to git. The outputted URL is the URL for our
application, right now it only shows the Heroku welcome page.

Note: Our Phoenix application doesn't rely on static assets but if it did, we'd need to add >
another buildpack to handle asset compliation:

$ heroku buildpacks:add https://github.com/gjaldon/heroku-buildpack-phoenix-static.git

Configuring the App

With the application created and buildpack set, we need to make some final changes to Phoenix before
we can deploy to Heroku.

For the purposes of security, we don't want to store our secret keys in a file on Heroku. Instead, we'll use
environment variables. Be sure to use the host: that relates to your Heroku project. Let's open
config/prod.exs and add the secret_key_base key and retrieve the value from the system.

We're also setting check_origin to false because we want to allow all of our anonymous chat clients to
be able to connect no matter what their domain.

/config/prod.exs
commit: coming soon

config :phoenix_chat, PhoenixChat.Endpoint,
http: [port: {:system, "PORT"}],

check_origin: false,
force_ssl: [rewrite_on: [:x_forwarded_proto]],
secret_key_base: System.get_env("SECRET_KEY_BASE")

Since we won't be storing our secret keys in config/prod.secret.exs, remove the following line from our
config/prod.exs:

www.learnphoenix.io 345 of 407
e

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/heroku.com
https://www.learnphoenix.io

11/3/16

import_config "prod.secret.exs”

Lastly, we need to update our Repo configure to rely on the "DATABASE_URL” environment variable Heroku
sets:

/config/prod.exs
commit: coming soon

config :phoenix_chat, PhoenixChat.Repo,
adapter: Ecto.Adapters.Postgres,
url: System.get_env("DATABASE_URL"),
pool_size: 10,
ssl: true

Environment Variables

To populate our "DATABASE_URL"” environment variable, we need to use a Heroku add-on database. For
our application the Heroku Postgres hobby tier will be sufficient (and free). Using the Heroku toolbelt, let's
add it to our project:

$ heroku addons:create heroku-postgresql:hobby-dev

We will also need to create an elixir_buildpack.config file that will tell Elixir about our environment
variables in Heroku.

$ touch elixir_buildpack.config

Within that file, we need to add our DATABASE_URL that you can find when you log into Heroku. This one
will actually be added for you automatically, but we will need to do this in the future with Mailgun and
other environment variables, so it's best to get used to doing it now.

/elixir buildpack.config
commit: coming soon

www.learnphoenix.io 346 of 407
e

https://www.learnphoenix.io

11/3/16

config_vars_to_export=(

DATABASE_URL
SECRET_KEY_BASE

Finally, we need to generate and set a new secret key. With mix, let's generate a new secret:

$ mix phoenix.gen.secret
NrRwQpjBoUeKz1JInvWT+WrmF+hSnRPvkeDkHKwIgv5b1KVeSOPUp9GA69S6VGXV T

Now we can add our new secret key to Heroku:

$ heroku config:set SECRET_KEY_BASE="NrRwQpjBoUeKz1JInvWT+WrmF+hSnRPvkeDkHKwIgv5blKVeSOPUp9G

If you intend to send emails, you'll also need to set up a Mailgun account and add those keys to your
configuration as well. Otherwise, you should comment out the mail portion of your app otherwise it will
cause an error on deployment.

It might also be a good idea to set always_rebuild to true since this will save you from some hard-to-
debug errors later on.

/elixir buildpack.config
commit: coming soon

config_vars_to_export=(
DATABASE _URL
SECRET_KEY_BASE
MAILGUN_API_KEY
MAILGUN_DOMAIN

)

always_rebuild=true

elixir_version=1.3.2

$ heroku config:set MAILGUN_API_KEY=key-cec83902409402940958398a2cf3
$ heroku config:set MAILGUN_DOMAIN=https://api.mailgun.net/v3/mg.domainname.io

You're also going to need a Procfile that tells your server how to run.

www.learnphoenix.io 347 of 407

https://www.learnphoenix.io

11/3/16

$ echo "web: MIX_ENV=prod mix phoenix.server" > Procfile

Deploying

We've created a Heroku project, added our buildpack, configured our application, and setup the
environment, all that's left is for us to commit our changes and deploy them to Heroku:

$ git add .

$ git commit -am "chore: adjust configuration for deploy”

Deploying to Heroku is as easy as pushing your code. Note that Heroku ignores all branches other than
master, so if you want to push a different branch, you need to specify. So if you wanted to push the
develop branch, you would have to run: git push heroku develop:master

$ git push heroku master

Counting objects: 3, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 288 bytes | @ bytes/s, done.
Total 3 (delta 2), reused @ (delta 0)

remote: Compressing source files... done.

remote: Verifying deploy.... done.
To https://git.heroku.com/enigmatic-ravine-4201.git
f7ac6d3..e08a63e test -> master

Before we visit our site, let's run our migrations on Heroku. We need to set the mix environment to prod,
as it defaults to dev .

$ heroku run MIX_ENV=prod mix ecto.migrate

Now we're ready to see our app in action, typing heroku open in the console will open our browser to our
app:

www.learnphoenix.io 348 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ ? Learn Phoenix by sam Corcos

$ heroku open

And now we've successfully deployed our Phoenix application to Heroku. Take note of the URL of your
API because we will need it later.

www.learnphoenix.io 349 of 407
e

https://www.learnphoenix.io

11/3/16

Deploying the Frontend to S3

e Webpack production optimizations
e AWSS3

Now that we have an app that sort-of functions on our local environment, we should start looking into
deployment options. You may have noticed that our app doesn't have much in the way of server
configuration in our /server. js file. That's no coincidence; our app doesn't run on a server.

In fact, if you compile your app using webpack with the webpack command and then open the
index.html file within /dist, you'll see that you have a fully functional app just from static assets. That
index.html file has all the assets it needs to run an app without a server because everything is static
and all of your data comes from an API call to our backend.

Given that everything is static, it's super easy to host our site. We don't even have to spin up a server to
do it; we can simply drop in the files and serve them when someone hits your url. We're going to host
these files on Amazon Web Service's (AWS) Simple Storage Service (S3). We will go into detail on these
later.

Change API_HOST

Now we have a functional app. The last thing we need to do in preparation for deployment is change out
our hardcoded localhost:4000 values.

To do this, we need to change our webpack.config.js to include a webpack.DefinePlugin .

module: {

}s
plugins: [
new webpack.DefinePlugin({
"process.env”: {
API_HOST: JSON.stringify('http://localhost:4000'),
SOCKET_HOST: JSON.stringify('ws://localhost:4000/socket’)

}

www.learnphoenix.io 350 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Now all we have to do is change out every instance of http://localhost:4000 for
process.env.API_HOST . We can use ES6 string interpolation (which uses a ${}) to insert a string into an
existing string, so your new paths would look something like this: ${API_HOST}/api/users . Also change
out the ws://localhost:4000/socket for process.env.SOCKET_HOST .

You'll probably have to run this manually with a find and replace. Keep in mind that string interpolation
only works with back ticks (), not quotes (""). As always, when you change your webpack configuration,
you need to restart your server.

Starting with AWS

One of the reasons we're using S3 rather than a Node server is that S3 is insanely cheap. It's something
like 5 cents per gigabyte per month for storage and another 5 cents per gigabyte for data transfer. In
other words, you would have to have an insane amount of traffic for the cost to even become noticeable.

Not only that, but this type of architecture can instantly scale to a seemingly-infinite amount of traffic (if
you're at a point at which AWS cannot handle your level of traffic, then you shouldn't be reading this
tutorial series).

Go to aws.amazon.com and create an account. You'll need to add your credit card as well, but this is
going to cost little-to-nothing, so relax.

Then go to your console where you can see all of the tools that AWS has to offer. There are lots and lots
of them, and they all have vague and confusing names. All we're going to use for the time being is S3, so
go ahead and click on S3.

On the left you'll see a list of your buckets . Think of a bucket as a figurative bucket that holds your files.
You can dump all kinds of data in a bucket. We're going to create a new bucket that will hold all of our
static files for our frontend app.

Click on the "Create Bucket" button and create a bucket with a name that is unique across all AWS. A
good strategy for naming your domain is to give it the name of your domain, since by definition your
domain will be unique. Since we're going to host this app at www.phoenixchat.io we can give it that
bucket name. Since yours will have to be unique, you'll have to come up with something different, but you
get the idea. Go ahead and click Create .

Now you'll see your bucket on the left. On the right you'll see an option for Static Website Hosting.Go
ahead and click on that dropdown and select Enable website hosting . Where it says Index Document
go ahead and type in index.html and click Save .

The next part is a little bit less obvious. We need to set up Permissions that determine who can access
the bucket and what can be done with it. Under Permissions, click on Add bucket policy, after which

point you'll see a blank textarea. This text area expects your configuration options in JSON and Amazon
gives us a tool to automatically generate this code. On the bottom left of this modal, you should see AWS

www.learnphoenix.io 351 of 407
e

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/aws.amazon.com
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Policy Generator . Click on that.

Change Select Type of Policy to S3 Bucket Policy.
Change Principal to x, which means "everyone".

For Actions go ahead and check the box for GetObject .

The Amazon Resource Name (ARN) follows a pattern that is shown below the text input. It's something
like arn:aws:s3:::<bucket_name>/<key_name> . If your bucket is named www.phoenixchat.io and you
want it to apply to everyone your configuration will look like: arn:aws:s3:::www.phoenixchat.io/*

Then click Add Statement , which will show your configuration options in a table. Check them over and
make sure they're right and then click Generate Policy .

Copy the JSON that was generated and paste that into the other tab with the empty text area and click
Save.

AWS Identity and Access Management (IAM)

Now we want to send our files to S3. But before we can do that, we need to give ourselves access to S3
through the command line tool (you could upload your files through the website, but it's clunky and can't
be done programmatically).

Go back to the AWS console and click on Identity and Access Management .

From here, click on Groups on the left and create a new group. Administrators is a perfectly valid group
name, but you can enter any name you like and click Next Step.

Then add the policy AmazonS3FullAccess which you can find by filtering down the options. Then click
Next Step to review, and if everything looks right click Create Group .

Now that we have a group, we need to create a user to add to that group. On the left side, click Users,
then Create New User . Enter a username for that user. In our case, we're going to enter the username
phoenixchat , but it's common to use your first and last name as the username.

Make sure the Generate an access key for each user is checked, then create the user. You'll see an
option to Download credentials . Go ahead and do that now because we will need those credentials
later.

Now click on the username from the list (not the checkbox), go to the Groups tab and Add User to
Groups . Select the Administrators group and click Add to groups .

Finally, under the Security Credentials tab under Sign-In Credentials, choose Manage Password . Go
ahead and fill out the Assign a custom password option and click Apply .

www.learnphoenix.io 352 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

We're now ready to send our app to S3... but not quite. We need to change around our webpack
configuration a little bit to prepare our app for production.

Configuring webpack for production

We need webpack to build our app in production mode. This means a few things need to change.

1. We need to uglify and minify our code to make it smaller

2. We need to dedupe our code to remove duplicate information
3. Export our environment variables

4. (Potentially) load React and other libraries as externals

The first takes our code and removes whitespace and any extraneous data to make our bundle as small
as possible. This simple step often cuts your bundle size by more than 1/3.

The second is deduplication (dedupe), which looks for files that are duplicates and removes the copy.
This doesn't often noticeably affect the bundle size, but it doesn't cost anything to add.

The third is adding our environment variables. In this case, we only have one, which as you will see later
tells webpack to use our Heroku app rather than localhost:4000 . In the future, this is where you would
inject things like Stripe tokens. But keep in mind, your environment variables are not hidden from the
user. You shouldn't have anything secret living in your frontend.

The last piece of optimization is to load some of our libraries as externals. It's possible that our user will
already have common libraries, such as React, cached in their browser. If that's the case, then we don't
need to fetch that data again. This is not strictly necessary, and we aren't going to bother with it at this
point.

In the future, we will look into more advanced optimizations, such as code splitting and the use of an
entry-chunk to reduce our initial bundle size as much as possible. For more on webpack optimization,
check out this page.

Before we can proceed, with our build, we're going to need to set up some environment variables. You
can use the code below (with the proper information instead of the placeholders within < >) to export
your variables to the environment. You can also keep themina .sh file such as .env.sh and runrun it
with source .env.sh to export all of the variables at the same time.

If you choose to keep these keys in a file, be sure to add that file to your .gitignore so you don't
accidentally expose your keys to the world.

export PROFILE=<profile name>
export AWS_ACCESS_KEY_ID=<access key>

export AWS_SECRET_ACCESS_KEY=<secret key>
export BUCKET=<bucket name>

www.learnphoenix.io 353 of 407
e

https://github.com/webpack/docs/wiki/optimization
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Go ahead and run this now so we have access to these variables.

Now let's create a special webpack configuration just for production. We'll call it
webpack.prod.config. js.

There are many ways to go about setting up your webpack configuration for production. Since the
configuration is just an object, you can run it through a series of functions or conditionals to determine
what you're exporting (often based on the currently chosen environment).

It's also common to make a "shared" configuration that all apps will use and then build on that as you add
more environments and platforms. Keep in mind that this configuration is just JavaScript, so you can
manipulate the configuration object just like you could any other JavaScript object.

That said, we're just going to keep it simple and put this in a new file for now and optimize later if it
becomes necessary.

$ touch webpack.prod.config.js

We're going to need the extract-text-webpack-plugin, which combines all of our CSS into a separate
CSS file, which prevents React from inlining your styles into the JavaScript and bundles them all into a
single file that gets loaded in parallel with your JavaScript bundle. This is something you want to do with

react-css-modules in production.

$ npm install --save-dev extract-text-webpack-plugin

Within your webpack.prod.config.js file, add the following configuration. It will be almost the same as
our existing code with a few differences, explained below the codeblock.

var path = require('path’)

var webpack = require('webpack’)

var ExtractTextPlugin = require('extract-text-webpack-plugin')
var cssnext = require('postcss-cssnext')

var HtmlWebpackPlugin = require('html-webpack-plugin’)

module.exports = {
devtool: 'cheap-module-source-map’,

entry: [
"whatwg-fetch”,
'./app/index’
1,
output: {
path: path.join(__dirname, 'dist'),
filename: ’'bundle.js’

www.learnphoenix.io 354 of 407
e

https://github.com/webpack/extract-text-webpack-plugin
https://github.com/gajus/react-css-modules#production
https://www.learnphoenix.io

11/3/16

Learn Phoenix by Sam Corcos

new ExtractTextPlugin('style.css’, {
allChunks: true
D,
new webpack.optimize.DedupePlugin(),
new webpack.optimize.UglifyJsPlugin({
minimize: true,
compress: {
warnings: false
}
D,
new webpack.DefinePlugin({
API_HOST: JSON.stringify("https://phoenix-chat-api.herokuapp.com”),
SOCKET_HOST: JSON.stringify("wss://phoenix-chat-api.herokuapp.com"),
"process.env"”: {
NODE_ENV: JSON.stringify('production’)
}
D,
new HtmlWebpackPlugin({
template: "index.html"”,
hash: true,
filename: "index.html”
1))
1,
module: {
loaders: [
{
test: /\.js$/,
loaders: ['babel’],
exclude: /node_modules/,
include: path.join(__dirname, 'app')
P
{
test: /\.css$/,
loader: ExtractTextPlugin.extract('style’, 'css?modules&importlLoaders=1&localldentN
include: path.join(__dirname, 'app')
3
]
o
postcss: function () {
return [cssnext]
P
resolve: {
extensions: [

The first thing we changed is our devtool , which we changed from eval to cheap-module-source-map .
This change along will save you about 80% on your bundle size. If you aren't familiar with what source
maps are, you can think of it as how your computer lets you know how errors that occur in compiled code

www.learnphoenix.io 355 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

correspond to your un-compiled, human-readable code. So with a good source map, rather than getting
an error like "error bundle.js line 1", you would get, "error app/components/Chat/index.js line 42".

You'll notice that our entry point no longer includes webpack dev server, because we don't need it. If
you're worried about cross-browser compatibility, you can also npm install babel-polyfill and add that
as entry point as well. That will add some weight to your code, but it'll make sure your app works with
older browsers.

We've also added 5 plugins. The first is the extract text plugin, which pulls out your inline styles and adds
them to a single CSS file at the top of app. The next two are simply optimizations. They are not necessary
for a successful build, but they make your bundle smaller and more efficient.

The last plugin is the HtmlWebpackPlugin, which is not an optimization, but it will inject our index.html
file into our production distribution. You could simply copy this over or use the file-loader if you
wanted, but we want to use this plugin to hash our bundle names to solve any cache invalidation issues
with S3. When you compile a production build, check your index.html file and you'll see that your bundle
and style files have a ? and a random series of numbers and letters after it. We will explain why this is
important in a later lesson when we go over CloudFront.

And now that we're injecting our HTML file into our app, we should remove the tags we have hardcoded in
our index.html file:

<!-- Delete this -->
<link rel="stylesheet"” href="style.css">

<!-- Delete this too -->
<script src="bundle.js"></script>

But in doing this, we've broken our dev build, so you need to add the HtmlWebpackPlugin to your
webpack.config. js file as well.

var HtmlWebpackPlugin = require('html-webpack-plugin')

module.exports = {

new HtmlWebpackPlugin({
template: "index.html",
hash: true,
filename: "index.html”

b))

www.learnphoenix.io 356 of 407
e

https://github.com/ampedandwired/html-webpack-plugin#configuration
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

We will also need to install that plugin.

$ npm install html-webpack-plugin --save-dev

Now go ahead and run webpack with the webpack.prod.config. js to build our app using the production
configuration.

$ webpack --config webpack.prod.config. js

Check the /dist directory to make sure everything is in order. If you open the dist/index.html filein a
browser, you should have a fully functional app. If this works as you would expect, then we're ready to
deploy.

For now, we'll hack this together. In the next lesson, we'll go over continuous integration and automated
deployments.

Hosting on S3

Go back to AWS and click on that bucket we made earlier (in our case, www.phoenixchat.io). Click
Upload in the top left and add the index.html, bundle.js,and style.css files currentlyin /dist.
Once those are uploaded, click Properties on the top right and select Static Website Hosting .

Change the setting to Enable website hosting and setthe Index document to index.html.When you
save, you should see an endpoint just above the tabs with a long domain name ending in

. ..admazonaws.com .

Click on the link. Your site is now live.

www.learnphoenix.io 357 of 407
e

https://www.learnphoenix.io

11/3/16

Continuous Integration and Deployment

e Automated deployment
e Continuous integration with CircleCl
e Continuous deployment

We now have a (mostly) functional app that has been uploaded to S3 and is live for the world to see. But
opening up AWS and dragging files after a manual build is tedious and prone to error. To remedy this
situation, we're going to write an automated deployment script that will run a series of commands to
send our newly created site to S3.

Once we have our automated deployment set up, we'll create an account with CircleCl for continuous
integration. If you're not familiar with continuous integration, it's a service that will automatically build
your app, run your tests, and if everything seems to work, it will automatically deploy the current version.

Continuous integration is extremely useful for large organizations that have many developers pushing
code to the same codebase at the same time while in production. That said, it requires rigorous testing or
you might find yourself in a position where you deployed an update that broke something.

Automated deployment

We're first going to set up automated deployment on our local environment, then we'll worry about
continuous integration. We're going to need to install the AWS command line tool.

$ brew install awscli

Then we need to configure our AWS credentials so we can deploy. You can do this one piece at a time,
but | recommend writing a shell script so you can execute these the same way every time. Let's go ahead
and create a new file called deploy.sh.

$ touch deploy.sh

Within this file, we should add all of the necessary commands to deploy to S3. Remember from a
previous lesson that we need to export all of our environment variables so we can access them later.
This is what the source .env.sh command was for.

www.learnphoenix.io 358 of 407
e

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/circleci.com
https://www.learnphoenix.io

11/3/16

echo "Version number..."”
aws --version

echo "Configuring access id..."
aws configure set aws_access_key_id $AWS_ACCESS_KEY_ID

echo "Configuring secret key..."
aws configure set aws_secret_access_key $AWS_SECRET_ACCESS_KEY

echo "Syncing with $BUCKET"
aws s3 sync ./dist s3://$BUCKET

If you do not know your bucket location, you can run the following to find out your default region.

$ aws s3api get-bucket-location --bucket $BUCKET

We're also including echo commands so we can see in our terminal what step in the process our
configuration has reached. This is basically just a console.log to let us know if and where we run into
issues.

Now we should be ready to deploy. Make sure your terminal is in the root of phoenix-chat-frontend and
simply run the commands in our deploy.sh script.

$ sh deploy.sh

And like magic, all of your files are uploaded. If you want to run a test to make sure your deploy.sh script
is working, try changing the background to red or something obvious and re-deploy. You should see the
changes immediately propagate when you refresh the page.

Continuous integration

The next step is to set up continuous integration. Go ahead and sign up with CircleCI and link your Github
account. If you have a preference for another continuous integration company, feel free to use them--
they're mostly all the same, but the files will be different.

Go ahead and click on Add project from the menu on the left, then add those environment variables we
have stored in our .env.sh file and API_HOST and SOCKET_HOST as environment variables to CircleCl.

Create a circle.yml file at the root of your project. This is required for CircleCl and it gives a series of
instructions for CircleCl to execute in order to properly run your code.

www.learnphoenix.io 359 of 407
e

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/circleci.com
https://www.learnphoenix.io

11/3/16

$ touch circle.yml

Then add the following code to configure CircleCl. We will go over each line, but there are many more
configuration options available. It might be worth your time to skim through the configuration docs to get
a sense of how much you can do with CircleCl and the various continuous integration environments.

machine:
node:
version: 6.3.0 # React CSS Loader does not work with @.X versions of node

dependencies:
override:
- npm install
- npm install -g webpack # Need access to webpack cli to build the project

- sudo pip install awscli # Need access to AWS CLI to deploy the project

deployment:
aws:
branch: master
commands:
- chmod +x deploy.sh
- webpack --config webpack.prod.config. js
- ./deploy.sh

The first line sets the version of Node to something we want to use. This is not strictly necessary, but it's
good to know what version you're using rather than just accepting the default.

Next we set our dependencies. In this case, we are running npm install (which it will run by default
anyway, but we're being safe), and two additional installations for the webpack command line tool that
will allow CircleClI to compile our code and awscli which is the AWS command line tool we need to run
our deploy.sh script.

Finally, we have our deployment to AWS. CircleCl has a special configuration for AWS since so many
people use it. We are telling CircleClI to only use these commands for our master branch. If you wanted,
you could set up special deploy configurations for other branches. It's not uncommon to deploy to beta
or develop to make sure the site works on other branches as you go along.

The only tricky thing here is the chmod +x deploy.sh, which changes the permissions of our container to
allow us to execute the deploy script. chmod is one of those things that is rarely covered and used often.
If you ever run into errors related to permissions, it's probably an issue with chmod .

Save this file, git add, git commit, and git push, and you should see CircleClI create a container, build the
project, run the tests, then deploy to AWS. Pretty cool!

www.learnphoenix.io 360 of 407
e

https://circleci.com/docs/configuration/
https://www.learnphoenix.io

11/3/16

SSL and CloudFront

Getting an SSL certificate
Setting up CloudFront

Cache Invalidation

e Domain names with Route 53

While Heroku automatically gives us an encrypted connection to our API via HTTPS (which is just a
normal HTTP connection plus an SSL security layer-people will use the two terms interchangeably), S3
does not. That's because there's nothing sitting between the user and the files.

The only way to solve this problem is to 1) set up a Node server to handle requests and run this on EC2,
or 2) run our requests through a proxy like CloudFront. Since we're going to need to communicate to our
backend by a secure route, we're going to need to set up CloudFront and route our connections through it.

We will also need an SSL certificate. This used to be a long, tedious, and painful process that often cost
hundreds of dollars a year (Godaddy still charges $299/yr for it), but thanks to AWS, you get it for free
and it's super easy to set up!

Getting an SSL certificate

As mentioned above, this used to be complicated and expensive, but now it's really easy. Log in to
aws.amazon.com and open up the Certificate Manager . Click the Request a certificate buttoninthe
top left.

Then you want to request what is called a wildcard certificate and a naked domain certificate. That
gives you the ability to protect all the single-level sub-domains of a particular site, so it would cover
www.phoenixchat.io, api.phoenixchat.io, etc. Assuming the domainis phoenixchat.io, the
requested domains would be *.phoenixchat.io and phoenixchat.io. Click Review and request and
Confirm and request .

It often takes a few minutes to validate, but that's it. You're done.

Setting up CloudFront

CloudFront is something you can put in front of your app to make load times faster and enable HTTPS. It
does aggressive caching in certain locations around the world so your app loads faster since your app

www.learnphoenix.io 361 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

won't have to request assets every time the page loads.

Within CloudFront, click on Create Distribution followed by Create underthe Web section. From
Origin Domain Name you can select the S3 bucket you just made from the dropdown. Make sure you add
domain you would like to reference in the Alternate Domain Names section (e.g. phoenixchat.io). Change
Viewer Protocol Policy to Redirect HTTP to HTTPS and add index.html asthe Default Root
Object . Then under SSL Certificate,choose Custom SSL Certificate and select the certificate you
just created. Then create the distribution.

This will take a while to provision (often minutes to hours). While we're waiting, we can explain how cache
invalidation works.

Cache Invalidation

Cache invalidation is a big subject and an especially complicated one. Fortunately for us, our use case is
pretty simple. Because CloudFront caches files based on their names, if we make a change to
bundle. js, CloudFront doesn't know that it needs to clear the cache and bring in the new version of the
app. The act of clearing this cache is called an invalidation .

Since we're injecting our HTML file with hashed bundle and style files, all we have to do is tell CloudFront
not to cache our index.html file, since every time we update the app, our bundle and style files will have
a new hashed suffix.

The way to tell CloudFront to never cache the index.html file is by setting a new behavior. Select the
distribution by clicking on the ID. Then go to the Behaviors and create a new behavior. Add index.html
to the Path Pattern. Then change Object Caching to Customize, and set the Maximum and Default
TTL (Time To Live-which is how long the object is cached) to o .

Domain names with Route 53

If you've purchased your domain from another provider, your setup is going to be different. Assuming you
used Amazon's Route 53, this is how you would point your domain to the CloudFront distribution you
just created.

After purchasing a domain, go to Hosted zones in the left panel and select Create hosted zone for the
domain you would like to change.

Now choose Create record set . Then in the panel on the right, toggle the Alias to Yes and select the
CloudFront distribution you just created. Keep in mind that the distribution might not be provisioned yet,
in which case you'll have to wait (if you go to CloudFront and it says "in progress", it isn't done). Then
click Create and you're done. Now if you go to the domain you purchased (e.g. https://phoenixchat.io) it
should look like you expect with HTTPS enabled.

www.learnphoenix.io 362 of 407
e

https://phoenixchat.io
https://www.learnphoenix.io

. 11/3/16
/ z Learn Phoenix by sam Corcos

Keep in mind, these changes can often take hours to propagate. If your changes don't immediately appear,
don't automatically assume there is an error. Unfortunately there is no way around this and it makes your
code really difficult to debug.

www.learnphoenix.io 363 of 407
e

https://www.learnphoenix.io

11/3/16

ESLint and Airbnb style guide

e What is ESlint
¢ Install ESLint
e Examples of rule overrides

When you're working with a big team or on open source projects, there will come a point where the
various styles of each person will begin to collide. Some people insist on semicolons, some despise
them; some like 2 spaces for indentation, some insist on 4. At a certain point, your codebase begins to
look rather inconsistent. Wouldn't it be nice if you could set rules for your codebase that everyone needed
to follow so your format was totally uniform throughout your app? Enter ESLint.

ESLint allows you to set formatting rules and will throw errors/warnings if someone attempts to violate
those rules. And if you're using an IDE like Atom, you can use a linter in realtime, which will let you know if
the code you just wrote is out of format every time you save. If you're using Atom, you can install ESLint
by using the Atom package manager, apm (below).

$ apm install linter-eslint

Install ESLint

The most commonly used starting point for ESLint is the Airbnb style guide. AlImost everyone uses this as
the default options when building a React application.

$ npm install --save-dev eslint-config-airbnb eslint \

eslint-plugin-jsx-ally eslint-plugin-import \
eslint-plugin-react babel-eslint

Once those are installed, you'll need a .eslintrc. js file, in which you specify options for ESLint (you will
often see this as simply .eslintrc, but this is deprecated in favor of explicit file extensions like .js).
These options include plugins, globals, and rule overrides.

$ touch .eslintrc.js

www.learnphoenix.io 364 of 407
e

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/atom.io
https://www.npmjs.com/package/eslint-config-airbnb
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Within this file, we will extend the existing airbnb style guide and add the plugins that enable us to use
React and jsx. We also define our globals here. ESLint will throw an error if you try to use a function or
variable that is not declared in the file, so global namespaces like document or window will not work. In
order to get around this, you have to declare all your global variables within your configuration so ESLint
knows what to expect.

From there, we define a few rules. These rules are necessarily a matter of opinion. We have included

some pretty common overrides and we will go over each of them (and the reason for using them) below
the codeblock.

module.exports = {

"extends"”: "airbnb",

"parser”: "babel-eslint”,

"plugins”: [
"react”,
"jsx-ally",
"import"

1,

"globals": {
"window"”: true,
"document”: true,
"fetch": true,
"localStorage"”: true

}s

"rules": {
"comma-dangle”: [1, "never"],
"semi”: [2, "never"],
"arrow-body-style”: 0,
"quotes”: ["error"”, "double"],
'react/jsx-closing-bracket-location’: [1, 'after-props’'],
'no-param-reassign': ["error"”, { "props": false }],
"react/jsx-filename-extension”: [1, { "extensions": [".js"] }]

Rules
Every rule in ESLint has documentation--pretty darn good documentation, actually. If you want to learn
more about a particular rule, you can always find it by using the search bar at the top of the ESLint docs.

Within the configuration of your rules, you can set arule to @, which means "off", 1, which means
"warning", or 2, which means error and will throw a exit code of 1. Many of these rules will have
additional configurations, which are specified in the documentation associated with each rule.

The first rule we're going to override is the comma-dangle (docs). Some people like comma dangles

www.learnphoenix.io 365 of 407

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/eslint.org
http://eslint.org/docs/rules/comma-dangle
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

because it can save you from errors caused by a lack of a comma when adding or removing items from
lists or objects. We're not going to use them because comma dangles don't work with JSON. But we're
just going to turn this into a warning rather than an error, so our code will still pass even if we have a few
comma dangles here and there.

The second rule is semi , which requires semicolons. We're setting the configuration to require that
semicolons are not used or it will throw an error. This is because semicolons provide nothing and merely
serve to clutter your JavaScript code.

The third rule is arrow-body-style , which controls how you use curly braces around your ES2015 arrow
functions. We're just going to turn this off because there is too much variation in how these functions can
be written in React.

The fourth rule is requiring that all quotes are double quotes. For some reason, this is always
controversial, but we're using double quotes because you're more likely to include a single ' within a
string than you are a double quote and because Elixir and JSON use double quotes for strings.

The fifth rule is specific to React, where we determine how the closing bracket should be formed. Some
people like the extra > on a new line, others do not. We're going to add this extra character at the end of
our element properties, like we've been doing so far in the React lessons. For more information on this
rule, check the (docs).

The sixth rule, no-param-reassign, is somewhat obscure, but it makes it so that you cannot reassign
variables that are passed in as parameters (docs). We're overriding part of the rule so that we still cannot
reassign the variable, but we can assign its properties. For example, we cannot reassign foo ifit's
passed in from myFunction(foo) , but we can assign foo.bar .

The last rule we're overriding is the filename extension. We're just going to name all of our files . js
rather than specifying .jsx or .es6 or anything like that. There aren't any real advantages to including
all the extra filetypes, so we're just going to make everything .js.

Additional

You'll also want to create a .eslintignore file so you can ignore files that you don't need to lint.

$ touch .eslintignore

We're going to add all the generated files, as well as our webpack configuration, our server.js file, and
all of our tests.

www.learnphoenix.io 366 of 407
e

https://github.com/yannickcr/eslint-plugin-react/blob/master/docs/rules/jsx-closing-bracket-location.md
http://eslint.org/docs/rules/no-param-reassign
https://www.learnphoenix.io

11/3/16

coverage

node_modules
webpack. *
server.js
**/spec. js

The reason we're ignoring these files is because they'll each require a litany of ESLint overrides. For
example, you can include specific ESLint overrides in a comment on the top of any file. Just to get our
server. js file to pass, we'll need to add the following 3 overrides.

/* eslint-disable import/no-extraneous-dependencies */
/* eslint-disable no-console */

/* eslint-disable no-unused-expressions */

And to get each of our spec. js files to pass, we'd have to add even more, and we'de have to add them to
every spec file. So unless you want to do that (which you're more than welcome to do—-writing an alias
would probably speed up the process), it's just easier to skip them.

www.learnphoenix.io 367 of 407

https://www.learnphoenix.io

11/3/16

Refactoring Redux

e Separating concerns in Redux
e Best practices

In this section, we're going to change all of our Redux actions into actions that are more performant,
testable, and easier to read. You probably noticed that our Actions were starting to get a little out of
control. Now it's time we refactor them.

Incremental refactoring

As far as refactors go, this will be pretty easy so we're going to do this a little differently than previous
lessons. Since all of our actions are more or less the same, we're just going to show you how to refactor
one of the actions and you should try refactoring the others using the same strategy. If you get stuck,
send us a message on Slack and we'll walk you through it.

Let's take a look at our userAuth action:

www.learnphoenix.io 368 of 407

https://www.learnphoenix.io

11/3/16

Actions.userAuth = function
return dispatch => fetch(®
method: "GET”,
headers: {
Accept: "application/json",

"Content-Type": "application/json",
Authorization: ‘Bearer

}

/auth/me*, {

1))
.then((res) => {
return res.json()
1)
.then((res) => {
dispatch({
type: "USER_AUTH",
payload: {
user: res.data
3
1))
1)
.catch((err) => {
console.warn(err)

1
by

We should also move our actions into new directory and into an index. js file. It will make sense why we
are doing this later on.

$ mkdir app/redux/actions
$ touch app/redux/actions/{index,async}.js

Then copy over the existing content from actions.js into async.js and delete actions.js.So now
your Redux directory/file structure should look like this, with all of your actions living in async. js:

redux
| -- reducers. js
|-- store.js
|-- actions
|-- async.js
|-- index. js

The next thing we should do is change our exports so that we're exporting each action individually. So
let's get rid of the Actions object and simply use export function.We'll also need to get rid of that
default export atthe end. So now, each of your functions should look like this (with the body of the

www.learnphoenix.io 369 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

actions removed for brevity):

/app/redux/actions/async.js
commit: coming soon

export function

export function (user) {

export function (user) {

export function (organization) {

But now we aren't exporting our actions, so nothing will work. In order to export all of our exported
actions, let's add an export inour index. js file that takes in all the actions from async. js.

/app/redux/actions/index. js
commit: coming soon

export * from "./async"

And now we're ready for major refactoring.

Remove Try-Catch

The first thing we should do is remove the catch statement at the end and handle errors within then .
This is debatable, but using try-catch for logic can end up displaying errors that aren't what you would
expect. For example, if you had a spelling error or something like that within your then, it would raise in
your catch statement, making bugs harder to track down. Check out this comment from Dan Abramov
for another example.

/app/redux/actions/async.js
commit: coming soon

www.learnphoenix.io 370 of 407
e

https://github.com/facebook/react/issues/7617#issuecomment-247710003
https://www.learnphoenix.io

Actions.userAuth = function
return dispatch => fetch(®
method: "GET”,
headers: {
Accept: "application/json",

"Content-Type": "application/json",

Authorization: ‘Bearer
3
1))
.then((res) => {
return res.json()
b))
.then((res) => {
dispatch({
type: "USER_AUTH",
payload: {
user: res.data

11/3/16

/auth/me*, {

Pulling out HTTP calls

The next part of our refactor involves pulling our HTTP calls into a separate file. Let's create an http. js

file within our actions directory and add some logic there.

$ touch app/redux/actions/http.js

Again, we're only going to change userAuth in this lesson, but you should refactor the other actions as

well.

/app/redux/actions/http.Jjs
commit: coming soon

www.learnphoenix.io

371 of 407

https://www.learnphoenix.io

11/3/16

export function userAuth() {
return fetch('${process.env.API_HOST}/auth/me*, {
method: "GET”,
headers: {

Accept: "application/json",
"Content-Type": "application/json",
Authorization: ‘Bearer ${localStorage.token}' ||

nn

So now that we have our HTTP call pulled out, we can use it in our async. js file.

/app/redux/actions/async.js
commit: coming soon

import * as http from "./http”

export function O <
return dispatch => {
http.userAuth()
.then((res) => {
return res.json()
)
.then((res) => {

dispatch({
type: "USER_AUTH",
payload: {
user: res.data

This will allow us to write tests specific to our HTTP calls and different tests specific to our
asynchronous actions.

Async-Await

The next thing to do is to get rid of the then block by using the ES2016 Async-Await which was added in
July of 2016. If you're not familiar, it's similar to a generator.

We're also going to add a failure action (USER_AUTH_FAILURE) in case we want to do something in the

www.learnphoenix.io 372 of 407
e

https://github.com/tc39/ecmascript-asyncawait
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

event of auth failure.

/app/redux/actions/async.js
commit: coming soon

import * as http from "./http”

export function O <
return async dispatch => {
const response = await http.userAuth()
if (response.status !== 200) {
dispatch({ type: "USER_AUTH_FAILURE" })
} else {
const result = await response.json()
dispatch({
type: "USER_AUTH",
payload: {
user: result.data

If you try to run this, you will get an error. That's because we need babel-polyfill to handle async-

await until it's widely supported.

$ npm install --save-dev babel-polyfill

Then add it as an entry point in our webpack configuration just like we did with whatwg-fetch . You'll have
to do this in both webpack.config.js and webpack.prod.config. js .

/webpack.config.js

commit: coming soon

www.learnphoenix.io 373 of 407

https://www.learnphoenix.io

11/3/16

module.exports = {

devtool: 'eval',
entry: [

'whatwg-fetch',

'babel-polyfill’,
'webpack-dev-server/client?http://localhost:3000',
"./app/index’

1l

Although it doesn't affect us here, something to keep in mind that is that every time you dispatch and
change state, you're causing a re-render. So if you look at our userNew function, you'll see that we're
dispatching the user data to our reducer, then calling userAuth . This will cause two renders, which you
may or may not want to do depending on your situation.

Separating synchronous actions

The last major change we'll make is to pull out our synchronous actions. These are all of our actions that
don't require a request to our server. So that includes changing modal states, loading states, and
dispatching the results of an asynchronous request.

$ touch app/redux/actions/sync. j

/app/redux/actions/sync.js
commit: coming soon

export const userAuthSuccess user => ({
type: "USER_AUTH",
payload: {
user
}
1))

export const userAuthFailure
type: "USER_AUTH_FAILURE"

1

/app/redux/actions/async.js
commit: coming soon

www.learnphoenix.io 374 of 407
e

https://www.learnphoenix.io

11/3/16

import * as http from "./http”
"./sync"

import * as sync from

export function O <
return async dispatch => {
const response = await http.userAuth()
if (response.status !== 200) {
dispatch(sync.userAuthFailure())
} else {
const result = await response.json()
dispatch(sync.userAuthSuccess(result.data))

We're also going to want to use our synchronous actions in some of our components, so we should add
an export in our index.js file that gives us access to them.

/app/redux/actions/index.js
commit: coming soon

export * from "./sync"
export * from "./async”

The only other immediate change you should make for this refactor is in you App component. Instead of
importing Actions, we need to import the individual action, userAuth . And then we have to change the
dispatch.

n

import { userAuth } from "../../redux/actions”

export class extends
componentDidMount() {

this.props.dispatch(userAuth())

3

And that should do it. Our Redux actions are now split into functions that are task-specific, which will
make them much easier to test and reason about. When you refresh, your app should still function.

You will need to refactor out all of the Actions imports, since we are only exporting named exports now.
So, for example, the Login component should now import userlLogin like this:

www.learnphoenix.io 375 of 407
e

https://www.learnphoenix.io

11/3/16

// 0ld import
import Actions from

n

../../redux/actions”

// New import
import { userLogin } from

n

../../redux/actions”

www.learnphoenix.io 376 of 407
e

https://www.learnphoenix.io

11/3/16

Testing Redux

e Action tests
e Reducer tests

coming soon

www.learnphoenix.io 377 of 407
e

https://www.learnphoenix.io

11/3/16

Refactoring React

¢ mapDispatchToProps

coming soon

www.learnphoenix.io 378 of 407
e

https://www.learnphoenix.io

11/3/16

UI Component Development with React
Storybook

¢ Installation
e Component isloation

What is it?

"scripts”: {
"storybook": "start-storybook -p 9001"

3

https://github.com/kadirahqg/react-storybook

www.learnphoenix.io 379 of 407
e

https://github.com/kadirahq/react-storybook
https://www.learnphoenix.io

11/3/16

Redux Optimization with ImmutableJS

www.learnphoenix.io 380 of 407
e

https://www.learnphoenix.io

11/3/16

Basics of analytics

e The goal of analytics
e What to track
¢ All of the options

If you've built a website any time since about 2005, you've probably used Google Analytics. You add a
snippet to your page and you magically have access to pageviews, bounce rate, customer location,
browser, device, and many other pieces of information. This is a good starting point, but there is so much
more that can be done with analytics.

Two common tools are Mixpanel and Kissmetrics, which give you deeper insights into customer behavior
and conversion rates. If you're a lazy programmer and you want to pawn even tracking off on non-
technical people, Heap Analytics is a great option since it tracks all events and lets you define them on a
graphical user interface after the fact.

Any tool you choose will be fine. They've all converged on some of the same basic functionality that we'll
need.

The goal of analytics

Developers who are new to analytics often take the "analyze everything" approach, where they want to
track every event and user interaction down to the last excruciating detail. While this approach has its
advantages, it's usually better to take a step back and think about what you hope to accomplish with your
analytics.

If you have an e-commerce site, your goal is to get as much revenue as possible. You will want to track
the series of actions that users take that lead to a purchase.

If users that come from a particular source (Google ads, Facebook ads, organic traffic) have a particular
affinity to certain products, then you need to know that. If users often get frustrated and leave because
they have too many menus to click through, then you need to know that.

Everything you do will be focused on how to get customers to make purchases and turn the average
visitor into a customer.

We are building a business-facing chat app, so our goals are different than the goals of an e-commerce
site. There are really two things we want to track:

1. Conversion rate

www.learnphoenix.io 381 of 407
e

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/mixpanel.com
https://www.kissmetrics.com/
https://heapanalytics.com/
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

2. Feature usage

We will go over each of these independently at a high level.

Conversion tracking

Conversion tracking lets you know how effective certain things are in your site at turning a potential
customer into a paying customer. For example, it's worthwhile for a marketing team to know which of
their ads are the most successful both in terms of allocating their budget and adjusting their messaging.

A typical way to track conversions is to keep track of a variety of UTM codes. UTM stands for "Urchin
Tracking Module", which is from a company that Google bought and they decided to keep the name.

There are 5 universal UTM codes. They are:

utm_source : identifies the source of the traffic (for example, Google)
utm_medium : identifies a medium, such as email, newsletter, etc
utm_term : identifies the search term used to get the user to click on the ad.

utm_content : used for A/B testing to differentiate between two pages that link to the same url. This is
not used very often.

utm_campaign : identifies a broad campaign that your ad is a part of. For example, "spring_sale" could be
the overall campaign.

Within Mixpanel, you can use these UTM codes to track which ads are the most successful.

To achieve reasonable conversion tracking, we're going to need to track the original source of the traffic
and follow that user through a series of events that lead us to the desired action.

So, an example funnel for conversion tracking would be:

1. A user gets to our site through a Google ad for the term "phoenix tutorial", which we know because of the tag
utm_source=google?utm term=phoenix+tutorial that was appended to the link and tracked by Mixpanel.

2. The user viewed four of the free lessons, which we know because we tracked that user across multiple page
routes.

3. That user went back to the homepage.

4. The the user clicked the purchase button.

5. The user went through with the purchase.

At every level of this process there is something that could go wrong and therefore something to learn.

At step 1, we know that the keyword was able to convince someone to come to the site. But perhaps the
keyword was not as specific as it should have been and the user was actually looking for something else.
If the user quickly leaves, it's safe to assume we did not target this properly.

www.learnphoenix.io 382 of 407
e

https://support.google.com/analytics/answer/1033867?hl=en#more_information_and_examples_for_each_parameter
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Alternatively, if we chose a keyword such as phoenix tutorial free, we might be attracting the wrong
customers, which is to say, only people who do not want to pay for tutorials. There's something to be said
for the marketing effect of free lessons, but it's something to keep in mind.

At step 2, we know that the user viewed several free lessons. This tells us that the free lessons are useful
for keeping the user's attention. If this user eventually converts, it means that giving her a sample of what
the lessons are all about helped turn her into a paying customer.

At step 3, we see that the user went back to the homepage. And why would she do that? Well, it might be
because there's no purchase button in the view she was in before. If there is significant drop-off between
step 3 and 4, then maybe you should make it easier for someone to purchase your product, reducing the

friction to make the purchase.

At step 4, the user has committed to making the purchase. But that doesn't always guarantee that the
user will actually pay. Sometimes if you force them to go through a long signup process, you'll
successfully convince them that it's not worth the time to fill everything out and they'll just leave.

And finally, step 5 means that you got a new customer. It's always worth your time to find customers who
actually converted and backtrack their actions to see what converting customers so you might be able to
garner some insights into how to turn other potential customers into paying customers.

Customer engagement

Are new users more engaged than existing users? Are people in Australia more engaged than people in
Texas? If so, why? Are users that receive direct communication from an admin more likely to be engaged?
There are hundreds of useful questions you could ask.

For PhoenixChat, we also want to know if people are actually using the app. But not only that, we want to
know how they're using the app. If we find that all of our customers are using a certain feature, but we are
hiding that feature behind several layers of dropdown menus, then maybe we should move that item to
somewhere more visible.

If you build out a feature (say, gamification or statistics), and you later discover that nobody is using it,
that's helpful information. It tells you that you need to 1) figure out a way to make these features more
interesting to your users, 2) easier to find, or 3) abandon them altogether and stop spending resources on
something that nobody uses.

Feature usage also tells you what features are useful to your customers and what you should be
spending your time on. If your customers seem to spend lots of time looking at their statistics, perhaps
you should add fancier charts and give them more feedback about the performance of their posts. If
users seem to send direct messages to each other on a regular basis, maybe you should expand chat into
a standalone app with additional functionality.

Tracking feature usage is one of the keys to knowing how and where to pivot if necessary. You might find

www.learnphoenix.io 383 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

that you set out to build a social network, but your users are actually more interested in some small
subset of your app, such as image sharing. You can either try to force everyone into the existing feature
set (which is almost always wrong), or you can embrace the behavior of your users and focus your app on
what they find most useful.

The many options in analytics

There are a seemingly endless number of options when it comes to analytics. Google Analytics, Mixpanel,
Kissmetrics, Heap, Segment.io, Customer.io, Intercom.io, and dozens (hundreds?) of others.

At the end of the day, most of these are the 90% the same. They all track events and they all track user
behavior and pageviews.

Almost every website uses Google Analytics. There is much more to Google Analytics than just the
snippet of code that tracks pageviews etc.,

In the software space, the two big players are Mixpanel and Kissmetrics. The two are more or less
identical with a slightly different user interface. They give you great reporting, deep user analytics, and a
lot of other useful features—-some of which we will go over later.

For this app, we are going to use Segment.io and Mixpanel.

Segment.io is an intermediary that separates your data from your analytics. You send all of your events
to Segment.io and then have Segment.io pass that data to the analytics service you want to use. We are
going to use Segment.io to pass data into both Mixpanel and Customer.io.

If you have a preference for Kissmetrics, feel free to use it. We are going with Mixpanel over Kissmetrics
solely because it has a free tier. Also, since we're using Segment.io as a data-intermediary, there is
nothing stopping you from using both. All you need to do is toggle the switch to turn on any number of
analytics tools.

The next step is to actually integrate Segment.io and start tracking the usage statistics of our app.

www.learnphoenix.io 384 of 407
e

file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/link
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/link
http://segment.io
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/mixpanel.com
https://www.learnphoenix.io

11/3/16

Connecting Segment.io and Mixpanel

e Using redux-segment
e Activating Mixpanel

Since we're using Redux, we're lucky. We don't have to worry about

www.learnphoenix.io 385 of 407
e

https://www.learnphoenix.io

|
y? . 11/3/16
/ Learn Phoenix by Sam Corcos

React and SEO

structured data
document.title
sitemap.xml

data highlighter

www.learnphoenix.io 386 of 407

https://www.learnphoenix.io

11/3/16

Password Reset Link and Email

e Password reset flow
e Generate reset token
e Validate token and reset password

In this lesson, we're going to cover how to send a password reset link via email. If you've skipped any
lessons so far, you'll want to make sure that you've at least implemented transactional email.

Password reset flow

Resetting a password is more complicated than you might expect. The way password reset works is
First, create a link that allows a user to request a new password

Second, create the view that for the user to submit the reset link

Third, generate and send the password reset link via email

Fourth, create another view that accepts a token as a query parameter and sends the new password
along with the token

Fifth, match the token with an existing user account

Sixth, automatically log the user in if the token and new password is valid

Generate reset token

The first thing we're going to do is change our backend to accept a password reset. We're going to need
two additional endpoints to add this functionality.

The first endpoint will be reset-request which will take the initial request from the frontend and will
include the email address for which we want to reset the password. The second endpoint will be reset
which will pass along the new password and a (presumably) valid token in order to reset the password of
the account that made the request. Let's add those endpoints now.

www.learnphoenix.io 387 of 407
e

https://www.learnphoenix.io

11/3/16

scope "/api", PhoenixChat do
pipe_through [:api, :api_auth]

resources "/users", UserController, except: [:index, :show, :new, :edit]
post "/users/reset-request”, UserController, :reset_request, as: :reset
post "/users/reset”, UserController, :reset, as: :reset

The next thing we should do is update our UserController . You can see in the code above that we
created two new functions, :reset_request and :reset, so we should define those now. We will start
with reset_request, which is the function we'll call along with an email to send the reset link to the email
address specified. We'll go over each line below the code block.

defmodule PhoenixChat.UserController do

def reset_request(conn, %{"email” => email}) do
user = Repo.get_by(User, email: String.downcase(email))

if user do
user
|> User.password_reset_changeset
|> Repo.update!
|> send_password_reset_email

send_resp(conn, :no_content, "")
else
send_resp(conn, :bad_request, "user does not exist")
end
end

First, we check to see if the user exists by using Repo.get_by . If the user exists, we pass the user along
to the password_reset_changeset (which we will create later) that will generate the token and store it
along with our user so we can match against it later.

Then we send it along to the send_password_reset_email function, which we will define later. If it does
not exist, we send along an error.

www.learnphoenix.io 388 of 407
e

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

In order to store this token with our user, we need to create a new migration to update our User model.

$ mix ecto.gen.migration add_user_password_reset_fields

Within our new migration, we need to add two fields. One is the token that we will match against and the
other is a timestamp for the last time a user changed her password.

defmodule .Repo.Migrations.AddUserPasswordResetFields do
use Ecto.Migration

def do
alter table(:users) do
add :password_reset_token, :string, default: nil
add :password_reset_timestamp, :datetime
end
end
end

Go ahead and run mix ecto.migrate . Now that we have our model updated, we need to create our
password_reset_changeset . This looks similar to our other changesets except for the put_token
function, in which we will generate a token and add it to our user.

def (model, params \\ %{}) do
model
|> changeset(params)

|> put_change(:password_reset_timestamp, Ecto.DateTime.utc)
|> put_token(:password_reset_token)
end

Now we need to define put_token . In the function below, we're checking to make sure the changeset is
valid (recall that changesets have the valid? parameter), and if it is, we call generate_token (defined
later) and use put_change to add the token to our user.

www.learnphoenix.io 389 of 407
e

https://www.learnphoenix.io

11/3/16

def put_token(changeset, field) when field in ~w(password_reset_token)a do
case changeset do
%Ecto.Changeset{valid?: true} ->
token = generate_token()

put_change(changeset, field, token)
->
changeset

So now we need to define generate_token . All we're doing is creating a 50-character random string.

defp generate_token do
50
|> :crypto.strong_rand_bytes

|> Base.url_encode64
|> binary_part(0, 50)
end

This confuses a lot of people because it's so simple. Contrary to what you might think, there is no magic
that comes with keys or tokens—they're just random numbers and letters that you match against another
key or token.

In our case, we are creating a token and saving it with our user. When that user requests a new password,
we send along that token as a query parameter in a link via email. When that link is clicked, we search our
database for matching tokens, and if we find a match, we allow the user to reset the password.

Send reset email

Now that we have our token, we need to define the password reset email function, which we're calling in
our reset_request function. This simply takes in the user and passes it along to the
Email.password_reset_email function, which we will also need to define.

www.learnphoenix.io 390 of 407
e

https://www.learnphoenix.io

11/3/16

defmodule .UserController do

defp (user) do
user

|> Email.password_reset_email
|> Mailer.deliver_later
end

Now we need to define the email that is sent to the user who forgot her password. Recall that we're
taking in the user, which now has a password_reset_token field. For now, we're going to hard-code the

reset link, but eventually we would want to use the email_reset_link function to set the link based on
the environment (test, dev, prod, etc).

The first thing we do is URI encode the query so that it makes for a valid link, then we concatenate it with

the email_reset_link . From there, we pass along the reset_link to the email address associated with
the current user.

defmodule .Email do

def (user) do

query = URI.encode_query(token: user.password_reset_token)
reset_link =" ? !

user

|> base_email

|> subject("Password Reset")

|> text_body ("""
A password reset was requested, follow to reset your password.
If this was a mistake, please ignore this email.

nn H)

end

defp do
This will eventually handle for environment using
Application.get_env(PhoenixChat.Mailer)
"http://localhost:3000/#/reset-password”

end

www.learnphoenix.io 391 of 407

https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

Now, when a user clicks on the link, she will be directed a page that will allow her to set a new password.

The last thing we need to do before moving to the frontend is to set up our reset endpoint that will
actually allow our user to change her password.

In this function, we're going to find the user that has the matching token (user_for_password_token),
ensure that the token is less than 48 hours old, update the password, send the user an email, and log the
userin.

Adding an expiration is a good idea from a security perspective because it limits the time that an account
could be potentially vulnerable. That said, it's still next to impossible that someone can guess a 50-
character token in their lifetime no matter how many guesses per second (see our blog post for more
information on collision probabilities), so leaving an account sort-of-vulnerable for 48 hours is not a big
deal.

defmodule PhoenixChat.UserController do

def reset(conn, %{"token" => token, "password” => password}) do
case user_for_password_token(token) do
user = %User{} ->
user
|> User.registration_changeset (%{password: password})
|> Repo.update!

{:0k, jwt, _claims} = Guardian.encode_and_sign(user,

send_password_change_email (user)

conn
|> put_status(:ok)
|> render("show. json", user: user, web_token: jwt)
nil ->
conn
|> put_status(:bad_request)
|> render(ErrorView, "error.json", errors: ["invalid or expired token"])
end
end

This should all look familiar. We are using user_for_password_token (defined below) to match the token
and sure validity, then using the existing registration_changeset to update the password, then
Guardian.encode_and_sign to log the user in, just as we did before in our automatic login on signup, and
finally sending the email.

www.learnphoenix.io 392 of 407
e

https://blog.learnphoenix.io/how-long-should-i-make-my-api-key-833ebf2dc26f#.whgoujsrw
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

The user_for_password_token function is a little bit tricky. We're creating a query that searches through
our User models and finds a password_reset_token that matches the token that was passed into the
function. Then, it checks to make sure that the timestamp is less than 48 hours old using fragment, which
allows us to send database queries directly to Postgres.

defp user_for_password_token(token) do
query = from u in User,
where: u.password_reset_token == “token
and u.password_reset_timestamp > fragment("now() - interval '48hours'"),
select: u
Repo.one(query)
end

Now we need to define the function in which we send the confirmation email.

defp send_password_change_email (user) do
user
|> Email.password_change_email
|> Mailer.deliver_later

end

And finally, define the email.

def password_change_email (user) do
user
|> base_email
|> subject("Password Change")

|> text_body("Your password on Learn Phoenix has been updated recently.")
end

And that's it for our backend. Now we need to create the forms on our frontend and connect it to our
backend.

www.learnphoenix.io 393 of 407

https://hexdocs.pm/ecto/Ecto.Query.API.html#fragment/1
https://www.learnphoenix.io

11/3/16

Connect Password Reset

www.learnphoenix.io 394 of 407
e

https://www.learnphoenix.io

11/3/16

Send New Message Notifications

www.learnphoenix.io 395 of 407
e

https://www.learnphoenix.io

11/3/16

Browser Notifications

www.learnphoenix.io 396 of 407
e

https://www.learnphoenix.io

11/3/16

Web Workers and Page Visibility

e Basics of Web Workers
e Page Visibility API
¢ Send messages in the background

coming soon

www.learnphoenix.io 397 of 407
e

https://www.learnphoenix.io

11/3/16

Persisting ETS Data

www.learnphoenix.io 398 of 407
e

https://www.learnphoenix.io

11/3/16

Add Profile Image

www.learnphoenix.io 399 of 407
e

https://www.learnphoenix.io

11/3/16

Basics of React Native

e Background

e Differences from React
¢ |Installation

e Hello World!

* |gnite

One of the biggest advantages of this stack is the ease with which you can create native mobile
applications that share code and allow for significantly faster iteration cycles.

In this lesson, we're going to go over some of the basics of React Native, walk through a "Hello World!"
app, then use Ignite to create a boilerplate app.

Background

TODO(image: cordova, ionic)

In the olden days we built hybrid apps with technologies like Cordova, Phonegap, lonic, Sencha Touch, et
al. They gave us easy access to native API calls, but the majority of the app still ran as HTML and
JavaScript within a WebView, but it was still better than the alternatives (which were limited). The motto
of the hybrid app:

Write once, run everywhere

But while these hybrid apps made the development process easier, it was not as performant as truly
native app written in Objective C (i0S) or Java (Android). Things like scrolling, keyboard behavior, and
other small things were a dead giveaway that the app wasn't really native.

TODO(image: react native)

Then in 2015, Facebook released React Native, which changed everything. While everything is still written
in JavaScript (similar to a web-based React project), the components are rendered as native platform
widgets that run on a separate thread, giving you native look, feel, and performance (for most tasks) that
was not possible with your typical hybrid app. The new motto:

Learn once, write everywhere

The reason for this change in mindset is that while you can share logic between platforms, it does not
make sense to deploy the same frontend app to Android as iOS, since user experience will be noticeably

www.learnphoenix.io 400 of 407
e

https://github.com/infinitered/ignite
https://www.learnphoenix.io

. 11/3/16
/ E Learn Phoenix by Sam Corcos

different. But, by sharing a similar syntax, we can at least save ourselves the time of learning a new
programming language and syntax and we can reuse a lot of our core logic between the platforms.

To further drill down on the question, "But is it really native?", for all practical purposes the answer is
"yes". Your JavaScript code is run on its own thread that is separate from the main Ul thread, so even
when your JavaScript code is running complicated logic, it won't mess with your Ul, which is the reason
that hybrid apps can feel janky.

Differences from React

Since we've been working with React, you'll feel right at home. Instead of using <div> and <p> tags, you
use <View> and <Text>.These are mapped to the iOS and Android equivalents of UIView and
android.view respectively and are rendered as native components.

React Native also does not support CSS, so you'll have to do all your styling in JavaScript, much like how
we handled styles in our NPM component. An example stylesheet would look like the code below.
import { StyleSheet } from 'react-native'’

export default StyleSheet.create({
container: {

justifyContent: 'center’,
marginVertical: '25'

}

1

You probably noticed the StyleSheet.create function. This is not strictly necessary, but it's something
you get for free with React Native which handles style caching and it's something you'll want to use.

React Native also uses a subset of Flexbox to handle alignment and justification. Since we're already
using Flexbox, this should be easy to understand once we start implementing it.

Routing is done through Navigator and there are several libraries out there that make it as easy to use
as react-router , which we have already used.

And that's about it. With the exception of directory structure changes, you'll start to feel comfortable
writing React Native code in no time.

Installation

There's a lot to install, and this can take some time. Follow the steps in the docs to install everything you
need. The basics are:

www.learnphoenix.io 401 of 407
e

https://facebook.github.io/react-native/docs/getting-started.html
https://www.learnphoenix.io

11/3/16

$ brew install node

$ brew install watchman
$ npm install -g react-native-cli

Then you need to make sure you have Xcode installed as well as Android Studio. Once that's done, we
can move to the next step.

Hello World!

The React Native Docs handle the "Hello World!" app about as well as it can be handled, but we'll go over
it here for the sake of simplicity. The simplest possible app looks like the code below.

import React, { Component } from 'react’
import { AppRegistry, Text } from 'react-native'’

class extends {
render() {
return (
<Text>Hello world!</Text>

AppRegistry.registerComponent('HelloWorldApp', () => HelloWorldApp)

With the exception of AppRegistry (which is effectively ReactDOM), this should look very familiar. And
that's it! You can run this on iOS with the following command:

$ react-native run-ios

Ignite

Unlike previous lessons where we built the app from an empty text file, we're going to use a generator.
One of the best generators out there is Ignite put together by the fine people at Infinite Red, a dev shop
based out of Portland and San Francisco. Once we have that set up, we'll spend the rest of the lesson
walking through the different pieces of the app.

The first step is to install Ignite.

www.learnphoenix.io 402 of 407
e

https://facebook.github.io/react-native/docs/tutorial.html#content
https://github.com/infinitered/ignite
file:///var/folders/ry/1bm9svy96r7g40j_4kcfh9gh0000gn/T/infinite.red
https://www.learnphoenix.io

11/3/16

$ npm install -g react-native-ignite

Then we should create our app.

$ ignite new phoenix-chat-mobile

Now to run it, cd into the directory and build it. We'll stick with iOS for now.

$ cd phoenix-chat-mobile

$ react-native run-ios

This will build your app and launch the simulator. This can take some time, so be patient. Also, for some
reason this can error out on your first build, so go ahead and refresh with Command + R if you run into a
glaring red error screen.

Now let's take a look at the directory structure. Most of the code you write will be within the App

directory. We're only going to touch on things that are directly relevant to our app for now, then branch
out as other pieces become necessary.

The Components directory is where things like buttons will live. You'll see that all of these components

have an associated . js fileinthe ./Styles sub-directory. This is where the styles for those
components live.

The next directory to look at is Containers, which contains your views. The first view you'll see when you
run the simulator is PresentationScreen, so let's check out that file:

/App/Containers
commit: coming soon

www.learnphoenix.io 403 of 407

https://www.learnphoenix.io

11/3/16

import React from 'react'’

import { ScrollView, Text, Image, View } from 'react-native'’

import { Images } from '../Themes'

import RoundedButton from '../Components/RoundedButton’

import { Actions as NavigationActions } from 'react-native-router-flux'

// Styles
import styles from './Styles/PresentationScreenStyle’

export default class extends
render () {
return (
<View style={styles.mainContainer}>
<ScrollView style={styles.container}>

<View style={styles.section} >
<Text style={styles.sectionText} >
Default screens for development, debugging, and alpha testing
are available below.
</Text>
</View>

<RoundedButton onPress={NavigationActions.componentExamples}>
Component Examples Screen
</RoundedButton>

<View style={styles.centered}>
<Text style={styles.subtitle}>Made with @ by Infinite Red</Text>
</View>

</ScrollView>
</View>

With the exception of the different tag names, this should look very familiar. <view> is the replacement
for <div>, <Scrollview> docs lets React Native know that this should scroll and <Text> contains text.
The RoundedButton component is simply an imported component, just like we've done several times
already. Also, onPress replaces onClick .

It's also worth checking out the list of generators that Ignite gives us, which will save you some time
down the road.

Now that we have the app template, it's time to dig into the meat of Ignite and build our mobile app with
React Native.

www.learnphoenix.io 404 of 407
e

https://facebook.github.io/react-native/docs/scrollview.html
https://github.com/infinitered/ignite#arrow_up-built-in-generators
https://www.learnphoenix.io

11/3/16

Server-Side Rendering with React

e Set up Express server

Coming Soon

www.learnphoenix.io 405 of 407
e

https://www.learnphoenix.io

11/3/16

Stripe Subscriptions

e Add Stripe
e Connect customer_id to user

While one-off payments with Stripe are so easy as to be almost trivial, setting up subscriptions is
surprisingly complicated. This is primarily due to the sizable number of edge cases that need to be
handled. For example, you need to handle all of the following:

e Does subscription end immediately when user cancels?
e Does subscription refund pro-rated amount?

e User upgrades/downgrades?

e User cancels, then re-subscribes?

¢ Plan expiration date?

e Plan is active, but does not auto-renew?

www.learnphoenix.io 406 of 407
e

https://www.learnphoenix.io

11/3/16

Patch Security Vulnerabilities

¢ Index and show user endpoints
e Delete other users

coming soon

www.learnphoenix.io 407 of 407
e

https://www.learnphoenix.io

	Introduction
	What is Phoenix?
	What is React
	What will be covered?
	What is the ideal type of app for this framework?
	What are some alternatives?
	General formatting
	Contact

	Installing Phoenix and React
	Install Homebrew
	Install Node.js
	Install Elixir
	Install Phoenix
	Install PostgreSQL
	Postgres errors
	Additional Installations

	Directory structure
	Generating the frontend
	Frontend directory structure
	Generating the backend
	Backend directory structure

	Basics of React
	What is React?
	What is Webpack?
	Setting up our frontend
	SemVer
	Loaders
	Back to setting up the frontend

	Basics of Webpack
	Webpack configuration
	Server configuration
	HTML, React, and ReactDOM
	Hello World!
	Additional

	Routes and views
	Components
	React Router
	Hash history

	Set Up Styles in Webpack
	Webpack configuration
	Resetting default css and globals

	Style a React Component
	Creating a Sidebar component
	Optional formatting for styles
	Styling the Sidebar component
	Additional

	Snippets and Aliases
	Snippets
	Aliases
	.vimrc

	Unit Tests with Enzyme
	What is a unit test?
	What to test?
	Setting up Enzyme
	Writing a unit test
	Running our tests
	Full and static rendering
	Istanbul and test coverage
	Additional

	Basics of Elixir and Functional Programming
	Basics of functional programming
	Interactive Elixir
	Basic types
	Atoms
	Strings in Elixir
	Collections
	Pattern Matching
	Additional

	More Basics of Elixir and Phoenix
	Control Structures
	Pipes
	Functions
	Modules
	Structs
	Notes for Ruby Developers
	Model-View-Controller
	Additional

	User Accounts and Signup: Part 1
	Creating our user
	The Controller
	The View
	The Migration
	The Model
	The Router

	User Accounts and Signup: Part 2
	Sign-up
	Registration changeset
	Controller updates
	Cross-Origin Resource Sharing (CORS)

	Create a Reusable Button Component
	Style the buttons
	Unit tests

	Login and Signup Forms
	Unit tests
	Styling the homepage

	Connect the API
	Making HTTP calls
	Chat component

	Basics of Redux
	What is Redux?
	Basics of Flux
	Working with data
	Basics of Redux
	Setting up Redux

	Actions, Reducers, and Store
	The action
	The reducer
	The store
	Proof of concept

	Login and Authentication: Part 1
	Account login
	Configuring Ueberauth
	Configuring Guardian
	Plugs
	Creating our AuthController

	Login and Authentication: Part 2
	Adding authentication
	Automatic login on signup

	Move Logic to Redux
	Asynchronous actions
	Connecting the login form
	Connecting the signup form
	Toggling between signup/login forms

	Check Login Status
	Setting up userAuth action
	Automatic authentication
	Authenticated pages
	A Note on Frontend Security

	NPM Package for a React Component: Part 1
	Installing dependencies
	Creating the PhoenixChat component
	Connecting in development

	NPM Package for a React Component: Part 2
	Chat interface
	Auto-scroll
	peerDependencies

	Set up Phoenix Channels
	Setting up a room channel
	Extracting authorization

	Connect React to Channels
	Adding Phoenix.js
	Configuring your channel
	Anonymous users
	Submitting messages

	Use Presence to List Active Users
	Basics of Phoenix Presence
	Creating the AdminChannel

	Persist Messages to the Database
	Creating the Message model
	Updating our RoomChannel
	Updating handle_in
	Unix timestamp to DateTime

	Create Anonymous User Model
	Add Faker
	Create and update models

	Persist Anonymous Users
	Add anonymous users to admin channel
	Validate params

	Broadcast Active and Inactive Users
	Reactor Message and RoomChannel
	Broadcast lobby_list

	Connect the Frontend to AdminChannel
	Updating phoenix-chat
	Adding AdminChannel to Chat

	Join Room and Receive Messages
	Create ChatRoom component
	Connecting to channel

	Change Room and Respond to Messages
	Responding to messages

	List Active and Inactive Users
	List inactive users
	Merge with Presence
	Empty room indicator

	Styling the Chat Component
	Update styles
	Refactor Sidebar component
	Refactor ChatRoom component

	Transactional Email with Mailgun and Bamboo
	Install Bamboo
	Configuration
	Defining Emails
	Sending Emails

	Testing with Elixir and Phoenix: Controllers
	UserController tests
	Metaprogramming
	AuthController tests
	Debugging

	Testing with Elixir and Phoenix: Channels
	RoomChannel tests
	ChannelHelpers tests
	AdminChannel tests
	UserSocket tests

	Testing with Elixir and Phoenix: Models
	User model
	Message model

	Creating an Organization Model
	Creating an Organization model
	Organization model tests

	Associate Organizations and Users
	Alter :users table
	Update User and Organization models
	Update model tests

	CRUD Endpoints for Organization: Part 1
	Update OrganizationControllerTest
	Update OrganizationController
	Create organization on signup

	CRUD Endpoints for Organization: Part 2
	Additional validations
	Update auth/me

	Controlling and Validating Forms
	Controlled form
	Update Login component
	Update Signup component

	Create and Join an Organization on Signup
	Update Signup component
	Create an action
	Add header to Chat component

	Create Organization from Settings Route
	Update Settings component
	Settings tests

	Pass API Key from Frontend
	Add token to PhoenixChat
	Update phoenix-chat

	Routing Messages Using API Keys
	Update UserSocket
	Broadcast by public_key
	Populate lobby_list by public_key

	Store and Track Recent Activity
	Display Recent Activity
	Update users when present
	Update user list
	Latest activity

	Deploying the API to Heroku
	Phoenix Buildpacks
	Configuring the App
	Environment Variables
	Deploying

	Deploying the Frontend to S3
	Change API_HOST
	Starting with AWS
	AWS Identity and Access Management (IAM)
	Configuring webpack for production
	Hosting on S3

	Continuous Integration and Deployment
	Automated deployment
	Continuous integration

	SSL and CloudFront
	Getting an SSL certificate
	Setting up CloudFront
	Cache Invalidation
	Domain names with Route 53

	ESLint and Airbnb style guide
	Install ESLint
	Rules
	Additional

	Refactoring Redux
	Incremental refactoring
	Remove Try-Catch
	Pulling out HTTP calls
	Async-Await
	Separating synchronous actions

	Testing Redux
	Refactoring React
	UI Component Development with React Storybook
	Redux Optimization with ImmutableJS
	Basics of analytics
	The goal of analytics
	Conversion tracking
	Customer engagement
	The many options in analytics

	Connecting Segment.io and Mixpanel
	React and SEO
	Password Reset Link and Email
	Password reset flow
	Generate reset token
	Send reset email

	Connect Password Reset
	Send New Message Notifications
	Browser Notifications
	Web Workers and Page Visibility
	Persisting ETS Data
	Add Profile Image
	Basics of React Native
	Background
	Differences from React
	Installation
	Hello World!
	Ignite

	Server-Side Rendering with React
	Stripe Subscriptions
	Patch Security Vulnerabilities

